




Contamination Assessment/ Remedial Activities Investigation Crash Crew Training Area (Site 3) November 1992

Naval Air Station Pensacola Pensacola, Florida

Interim Data Report



Southern Division
Naval Facilities
Engineering Command
Charleston, South Carolina
29411-0068

## DISTRIBUTION

SOUTH NAVFACENGCOM--SUZANNE SANBORN (2)
NAS PENSACOLA--RON JOYNER (6)
FDER--ERIC NUZIE (2)
EPA--ALLISON DREW (4)
TRC MEMBERS (7)

# CONTAMINATION ASSESSMENT/ REMEDIAL ACTIVITIES INVESTIGATION CRASH CREW TRAINING AREA (SITE 3) NAVAL AIR STATION PENSACOLA PENSACOLA, FLORIDA

INTERIM DATA REPORT

November 1992

Contract N62467-88-C-0200

Prepared by:

Ecology and Environment, Inc. 316 South Baylen Street, Suite 670 Pensacola, Florida

Prepared for:

Southern Division Naval Facilities Engineering Command, P.O. Box 10068 Charleston, South Carolina 29411-0068 Linda Martin

| SECURITY CLAS | SIFICATION OF | THIS PAGE |
|---------------|---------------|-----------|

| SECURITY CLASSIFICATION OF THIS PAGE                                              |                         |                             | ****                     |                  | <del></del>                        |
|-----------------------------------------------------------------------------------|-------------------------|-----------------------------|--------------------------|------------------|------------------------------------|
| REPORT I                                                                          | OOCUMENTATIO            | N PAGE                      |                          |                  | Form Approved<br>OMB No. 0704-0188 |
| 1a REPORT SECURITY CLASSIFICATION                                                 |                         | 16 RESTRICTIVE              | MARKINGS                 |                  | <u> </u>                           |
| unclassified                                                                      |                         | n/a                         |                          |                  |                                    |
| 2a. SECURITY CLASSIFICATION AUTHORITY                                             |                         | 3. DISTRIBUTION             | /AVAILABILITY OF         | REPORT           |                                    |
| n/a                                                                               |                         |                             |                          |                  |                                    |
| 2b. DECLASSIFICATION/DOWNGRADING SCHEDU n/a                                       | LE                      | "See Dis                    | tribution P              | age"             |                                    |
| 4. PERFORMING ORGANIZATION REPORT NUMBE                                           | : R(S)                  | 5 MONITORING                | ORGANIZATION RE          | PORT NI          | IMBER/S\                           |
| E & E Report No. UH8039:T0361                                                     |                         | n/a                         | ONGAINEA BOIL            |                  | -Wide May                          |
| E & E Report No. 0110039:1030                                                     | L                       | 11/ a                       |                          |                  |                                    |
| 6a. NAME OF PERFORMING ORGANIZATION                                               | 6b. OFFICE SYMBOL       | 72 NAME OF MO               | ONITORING ORGAI          | MIZATION         |                                    |
|                                                                                   | (If applicable)         | 74. 112.00                  |                          | TILA HOIL        |                                    |
| Ecology & Environment, Inc.                                                       | n/a                     | Naval Air                   | Station Pen              | saco1a           |                                    |
| 6c. ADDRESS (City, State, and ZIP Code)                                           |                         | 75 ADDRESS (Cit             | y, State, and ZIP (      | -oxio)           |                                    |
| 316 South Baylen Street, Ste.                                                     | . 670                   | 7 B. ADDINESS (CIT          | y, stote, and zir t      | .002/            |                                    |
| Pensacola FL 32501                                                                |                         | Pensacola,                  | Florida                  |                  |                                    |
|                                                                                   |                         | ,                           |                          |                  |                                    |
| 8a. NAME OF FUNDING/SPONSORING                                                    | Bb. OFFICE SYMBOL       | 9 PROCHBEMENT               | T INSTRUMENT IDE         | NTIFICAT         | ION NUMBER                         |
| ORGANIZATION Southern Division                                                    | (If applicable)         | J. I ROCORCIVIEIV           |                          | Mod N            |                                    |
| Naval Facilities Engineering                                                      | n/a                     | N62467-88-                  | C-0200                   | Amand            | No. 12                             |
| 8c. ADDRESS (City, State, and ZIP Code)                                           |                         | <del></del>                 | UNDING NUMBER            |                  | 10.12                              |
| 2155 Eagle Drive                                                                  |                         | PROGRAM                     | PROJECT                  | TASK             | WORK UNIT                          |
| P. O. Box 10068                                                                   |                         | ELEMENT NO.                 | NO.                      | ON               | ACCESSION NO.                      |
| Charleston SC 29411                                                               |                         |                             | 1                        | l                |                                    |
|                                                                                   |                         | 1                           | 1 1 4 - 5 1 - 1 5        | <u> </u>         |                                    |
| 11. TITLE (Include Security Classification) Cont<br>Crash Crew Training Area (Sit | tamination Asses        | ssment/kemed<br>Nata Report | lai Activit<br>Naval Air | ies in<br>Statio | vestigation,<br>n Pensacola.       |
| Pensacola, Florida.                                                               | ic 5/, interim /        | bata Report,                | Navai Ali                | btatio           | n renducora,                       |
| 12. PERSONAL AUTHOR(S)                                                            |                         |                             |                          |                  |                                    |
| Barry R. Levine, P.G. No. 259                                                     | 1 Fra 07/31/0           | ond Dan E                   | 0.55                     |                  |                                    |
| 13a. TYPE OF REPORT 13b TIME CO                                                   | OVERED                  | 14. DATE OF REPO            | RT (Year Month )         | Day) 15          | PAGE COUNT                         |
| 1 _ 1 - 1                                                                         | /91 to 11/92            | November 1                  |                          | ,                | 135                                |
| 16. SUPPLEMENTARY NOTATION                                                        |                         |                             |                          |                  |                                    |
| n/a                                                                               |                         |                             |                          |                  |                                    |
|                                                                                   |                         |                             |                          |                  |                                    |
| 17 COSATI CODES                                                                   | 18 SUBJECT TERMS (      | Continue on revers          | e if necessary and       | identify         | by block number)                   |
| FIELD GROUP SUB-GROUP                                                             | 1                       |                             | ,                        | Ť                | •                                  |
|                                                                                   | 1                       |                             |                          |                  |                                    |
|                                                                                   | 1                       |                             |                          |                  |                                    |
| 19 ABSTRACT (Continue on reverse if necessary                                     | and identify by block n | umber)                      |                          |                  |                                    |
| * This Interim Data Report co                                                     | ontains the rest        | ılts of Phas                | e I of the               | Contam           | ination                            |
| Assessment/Remedial Activities                                                    |                         |                             |                          |                  |                                    |
| (Site 3), located on the Naval                                                    |                         |                             |                          |                  |                                    |
| ducted as part of the U.S. Na                                                     |                         | -                           |                          |                  | objective of                       |
| the Phase I investigation at S                                                    |                         |                             |                          |                  | 2                                  |
| contaminants of concern at the                                                    |                         |                             |                          |                  |                                    |
|                                                                                   | igation was the         |                             |                          |                  |                                    |
| Facility Investigation/Correct                                                    |                         |                             |                          |                  |                                    |
| soil, and groundwater contamin                                                    |                         |                             |                          |                  |                                    |
| VOCs, PAHsbase/neutral extra                                                      |                         |                             |                          |                  |                                    |
| on-site contaminants. Contami                                                     |                         |                             |                          |                  |                                    |
|                                                                                   |                         |                             |                          |                  |                                    |
| areas where burning activities                                                    |                         |                             |                          |                  |                                    |
| additional off-site, and ambi                                                     | ent sources of o        |                             | _                        |                  | sent. Overall,                     |
| 20 DISTRIBUTION / AVAILABILITY OF ABSTRACT  UNCLASSIFIED/UNLIMITED   SAME AS F    | RPT DTIC USERS          | 21 ABSTRACT SEC<br>n/a      | CURITY CLASSIFICA        | TION             |                                    |
| 22a. NAME OF RESPONSIBLE INDIVIDUAL                                               |                         | 225. TELEPHONE (I           |                          |                  |                                    |
| Glenn C. Bradley                                                                  |                         | (803) 743-                  |                          |                  | 82                                 |

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603

<sup>\*</sup> Indicates item is all or partly site-specific.

| ECURITY CLASSIFICATION OF THIS PAGE                                                                                                                                                                                                                                                                |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 19. (con't)                                                                                                                                                                                                                                                                                        |  |  |  |
| t appears that little off-site migration of contaminants has occurred. Additional ssessment activities will be required at Site 3. Furthermore, Interim Remedial easures should be implemented to address the presence of excessively contaminated oils in and adjacent to burn areas 1 through 6. |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                    |  |  |  |
| ·                                                                                                                                                                                                                                                                                                  |  |  |  |

# TABLE OF CONTENTS

| Section |       |                                                            | <u>Page</u> |
|---------|-------|------------------------------------------------------------|-------------|
|         | RECOR | RD OF DOCUMENT CHANGES                                     | xiii        |
|         | EXEC  | UTIVE SUMMARY                                              | 1           |
| 1       | INTRO | DDUCTION                                                   | 1-1         |
| 2       | INVE  | STIGATION METHODOLOGY                                      | 2-1         |
|         | 2.1   | AERIAL PHOTOGRAPH AND EXISTING DATA ANALYSIS               | 2-1         |
|         | 2.2   | SITE RECONNAISSANCE                                        | 2 - 1       |
|         | 2.3   | HABITAT/BIOTA SURVEY                                       | 2-3         |
|         | 2.4   | OVA SURFACE EMISSIONS SURVEY AND PARTICULATE AIR SCREENING | 2~3         |
|         | 2.5   | GEOPHYSICAL SURVEY                                         | 2-3         |
|         | 2.6   | UTILITIES SURVEY                                           | 2-7         |
|         | 2.7   | SOIL HEADSPACE SURVEY                                      | 2-7         |
|         | 2.8   | DATA ANALYSIS                                              | 2-8         |
|         | 2.9   | SURFACE WATER SAMPLING                                     | 2-9         |
|         | 2.10  | SEDIMENT SAMPLING                                          | 2-9         |
|         | 2.11  | SOIL BORINGS AND TEMPORARY MONITORING WELL                 |             |
|         |       | INSTALLATION                                               | 2-12        |
|         | 2.12  | SOIL SAMPLING                                              | 2-13        |
|         | 2.13  | GROUNDWATER SAMPLING                                       | 2-13        |
|         |       | 2.13.1 Temporary Monitoring Wells                          | 2-13        |
|         |       | 2.13.2 Existing Permanent Monitoring Wells                 | 2-13        |
|         |       |                                                            |             |

# Table of Contents (Cont.)

| Section |       |        |                                                 | Page |
|---------|-------|--------|-------------------------------------------------|------|
|         | 2.14  | HYDROL | OGIC ASSESSMENT                                 | 2-14 |
|         | 2.15  |        | QUALITY ASSURANCE/QUALITY CONTROL               |      |
|         |       | •      | )                                               | 2-14 |
|         |       | 2.15.1 | Field QA/QC Samples                             | 2-15 |
|         |       | 2.15.2 | Decontamination Procedures                      | 2–15 |
|         | 2.16  | INVEST | IGATION-DERIVED WASTE MANAGEMENT                | 2-15 |
| 3       | RESU: | LTS    |                                                 | 3-1  |
|         | 3.1   | AERIAL | PHOTOGRAPH AND EXISTING DATA ANALYSIS           | 3-1  |
|         | 3.2   | SITE R | ECONNAISSANCE                                   | 3-3  |
|         | 3.3   | HABITA | T/BIOTA SURVEY                                  | 3-5  |
|         | 3.4   |        | E EMISSIONS SURVEY AND PARTICULATE AIR          |      |
|         |       |        | ING                                             | 3-9  |
|         | 3.5   |        | SICAL SURVEY                                    | 3–13 |
|         |       | 3.5.1  | Magnetometer Survey                             | 3–13 |
|         |       | 3.5.2  | EM-31 Survey                                    | 3–16 |
|         | 3.6   |        | EADSPACE SURVEY                                 | 3–22 |
|         | 3.7   | HYDROL | OGIC ASSESSMENT                                 | 3–25 |
|         |       | 3.7.1  | Shallow Subsurface Lithology                    | 3-25 |
|         |       | 3.7.2  | Water Levels and Groundwater/Surface Water Flow | 3-26 |
|         | 3.8   | CHEMIC | AL ANALYSES                                     | 3-32 |
|         |       | 3.8.1  | Surface Water                                   | 3-32 |
|         |       | 3.8.2  | Sediment                                        | 3-35 |
|         |       | 3.8.3  | Soil                                            | 3-42 |
|         |       | 3.8.4  | Groundwater                                     | 3-59 |
|         |       |        | 3.8.4.1 Field Parameters                        | 3-59 |
|         |       |        | 3.8.4.2 Analytical Screening Parameters         | 3-61 |
|         |       |        | 3.8.4.3 TAL/TCL Parameters                      | 3-73 |
|         | 3.9   | CONTAM | INATION DISTRIBUTION/SOURCE DISCUSSION          | 3-83 |
|         |       | 3.9.1  | Surface Water                                   | 3-83 |
|         |       | 3.9.2  | Sediment                                        | 3-84 |

# Table of Contents (Cont.)

| Section  |                                                                    | Page                                 |
|----------|--------------------------------------------------------------------|--------------------------------------|
|          | 3.9.4 Groundwater                                                  | 3-84<br>3-85<br>3-86<br>3-86<br>3-88 |
| 4        | CONCLUSIONS                                                        | 4-1                                  |
| 5        | REFERENCES                                                         | 5-1                                  |
| 6        | FLORIDA PROFESSIONAL GEOLOGIST SEAL                                | 6-1                                  |
| Appendix |                                                                    | Page                                 |
| Α        | BIRDS OBSERVED DURING HABITAT/BIOTA SURVEY                         | A-1                                  |
| В        | SURFACE EMISSIONS DATA                                             | B-1                                  |
| С        | PARTICULATE AIR SCREENING DATA                                     | C-1                                  |
| D        | MAGNETOMETER AND EM-31 DATA                                        | D-1                                  |
| E        | SOIL HEADSPACE DATA                                                | E-1                                  |
| F        | TEMPORARY MONITORING WELL, SOIL BORING, AND LITHOLOGIC INFORMATION | F-1                                  |
| G        | SURFACE WATER SAMPLING ANALYTICAL SCREENING RESULTS                | G-1                                  |
| Н        | SEDIMENT SAMPLING ANALYTICAL SCREENING RESULTS                     | H-1                                  |

# Table of Contents (Cont.)

| Appendix |                                                                             | Page |
|----------|-----------------------------------------------------------------------------|------|
| I        | SOIL SAMPLING ANALYTICAL SCREENING RESULTS                                  | I-1  |
| J        | TEMPORARY MONITORING WELL GROUNDWATER SAMPLING ANALYTICAL SCREENING RESULTS | J-1  |
| K        | EXISTING PERMANENT MONITORING WELL GROUNDWATER SAMPLING ANALYTICAL RESULTS  | K-1  |

# LIST OF TABLES

| Table |                                                                                                                                | Page |
|-------|--------------------------------------------------------------------------------------------------------------------------------|------|
| 2-1   | Photographs and Maps Used in the Aerial Photograph Analysis, NAS Pensacola Site 3                                              | 2-2  |
| 2-2   | Sampling and Analytical Summary, NAS Pensacola Site 3                                                                          | 2-11 |
| 3–1   | Temporary Monitoring Well Construction Information and Water Level Elevations, NAS Pensacola Site 3                            | 3-27 |
| 3–2   | Permanent Monitoring Well Construction Information and Water Level Elevations, NAS Pensacola Site 3                            | 3-28 |
| 3-3   | Surface Water Level ElevationsNAS Pensacola Site 3                                                                             | 3-29 |
| 3-4   | Summary Analytical Screening Results for Surface Water Samples, NAS Pensacola Site 3                                           | 3-33 |
| 3–5   | Summary Analytical Screening Results for Sediment Samples, NAS Pensacola Site 3                                                | 3-38 |
| 3–6   | Summary Analytical Screening Results for Soil Samples, NAS Pensacola Site 3                                                    | 3-43 |
| 3-7   | Groundwater Field Parameters, NAS Pensacola Site 3                                                                             | 3-60 |
| 3-8   | Summary Analytical Screening Results for Groundwater Samples (from Temporary Monitoring Wells), NAS Pensacola Site 3           | 3-62 |
| 3-9   | Summary TAL/TCL Analytical Results for Groundwater Samples (from Permanent Monitoring Wells), NAS Pensacola Site 3             | 3-74 |
| 3-10  | Summary TAL/TCL Analytical Results for Groundwater Field QA/QC Samples (from Permanent Monitoring Wells), NAS Pensacola Site 3 | 3-76 |

# LIST OF ILLUSTRATIONS

| Figure |                                                                                                                                                  | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1-1    | Location MapNAS Pensacola Site 3                                                                                                                 | 1-2  |
| 1-2    | Site Vicinity MapNAS Pensacola Site 3                                                                                                            | 1-3  |
| 2-1    | Particulate Air Screening, On-Site Surface Water and Sediment Sampling, Soil Boring, and Temporary Monitoring Well LocationsNAS Pensacola Site 3 | 2-4  |
| 2-2    | Survey Grid MapNAS Pensacola Site 3                                                                                                              | 2-6  |
| 2-3    | Off-Site Surface Water and Sediment Sampling LocationsNAS Pensacola Site 3                                                                       | 2-10 |
| 3-1    | Habitat/Biota MapNAS Pensacola Site 3                                                                                                            | 3-6  |
| 3–2    | Surface Emissions Survey MapNAS Pensacola Site 3                                                                                                 | 3-10 |
| 3-3    | Magnetometer Survey Map, Total Magnetic FieldNAS Pensacola Site 3                                                                                | 3-14 |
| 3-4    | EM-31 Survey Map, Horizontal Coplanar ModeNAS Pensacola Site 3                                                                                   | 3–17 |
| 3–5    | EM-31 Survey Map, Vertical Coplanar ModeNAS Pensacola Site 3                                                                                     | 3-19 |
| 3-6    | Soil Headspace SurveyNAS Pensacola Site 3                                                                                                        | 3-23 |
| 3-7    | Surficial Zone Water Level Elevations for Temporary Monitoring WellsNAS Pensacola Site 3                                                         | 3-30 |
| 3-8    | Surface Water Elevations and Surficial Zone Water Level Elevations for Permanent Monitoring WellsNAS Pensacola Site 3                            | 3-31 |
| 3-9    | Chromium Concentrations Detected in On-Site and Off-Site Surface Water SamplesNAS Pensacola Site 3                                               | 3-34 |

# List of Illustrations (Cont.)

| Figure |                                                                                                                                                                                                  | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3–10   | TRPH and Phenol Concentrations Detected in On-Site and Off-Site Surface Water SamplesNAS Pensacola Site 3                                                                                        | 3-36 |
| 3-11   | Benzene, Toluene, Ethylbenzene, and Total Xylene<br>Concentrations Detected in On-Site and Off-Site Surface<br>Water SamplesNAS Pensacola Site 3                                                 | 3-37 |
| 3–12   | Chromium, Zinc, and Lead Concentrations Detected in On-Site and Off-Site Sediment SamplesNAS Pensacola Site 3                                                                                    | 3-40 |
| 3–13   | TRPH, Total Xylene, PAH, and Phenol Concentrations Detected in On-Site and Off-Site Sediment Samples NAS Pensacola Site 3                                                                        | 3-41 |
| 3–14   | Total Metals Concentrations (Screening Group Metals Only) Detected in Soil SamplesNAS Pensacola Site 3                                                                                           | 3-49 |
| 3-15   | Chromium, Lead, and Cadmium Concentrations Detected in Soil SamplesNAS Pensacola Site 3                                                                                                          | 3-51 |
| 3–16   | TRPH, PAH, and Phenol Concentrations Detected in Soil SamplesNAS Pensacola Site 3                                                                                                                | 3-54 |
| 3–17   | Toluene, Ethylbenzene, and Total Xylene Concentrations Detected in Soil Samples and Sampling Location Where Methylene Chloride was DetectedNAS Pensacola Site 3                                  | 3-56 |
| 3–18   | Total Chromium, Lead, and Cadmium Concentrations Detected in Groundwater Samples from Temporary and Permanent Monitoring WellsNAS Pensacola Site 3                                               | 3-64 |
| 3-19   | Total Metals (Screening Group Metals Only) Concentrations Detected in Groundwater Samples from Temporary and Permanent Monitoring WellsNAS Pensacola Site 3                                      | 366  |
| 3–20   | TRPH, PAHBase/Neutral Extractable Compound, and PhenolAcid Extractable Compound Concentrations Detected in Groundwater Samples from Temporary and Permanent Monitoring WellsNAS Pensacola Site 3 | 3-70 |

# List of Illustrations (Cont.)

| Figure |                                                                                                                                                                                                             | <u>Page</u> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3-21   | Benzene and Total BTEX Concentrations Detected in Groundwater Samples from Temporary and Permanent Monitoring WellsNAS Pensacola Site 3                                                                     | 3-72        |
| 3–22   | Volatile Tentatively Identified Organic Compound and Extractable Tentatively Identified Organic Compound Concentrations Detected in Groundwater Samples from Permanent Monitoring WellsNAS Pensacola Site 3 | 3-79        |

## RECORD OF DOCUMENT CHANGES

Revisions to this document were made based on comments received from the U.S. Environmental Protection Agency, Florida Department of Environmental Regulation, Florida Department of Natural Resources, and National Oceanic and Atmospheric Administration. All revisions are in bold and enclosed in brackets to denote changes to the last version of this document.

### EXECUTIVE SUMMARY

As part of the U.S. Navy's Installation Restoration Program, Phase I of the Contamination Assessment/Remedial Activities Investigation was conducted for the Crash Crew Training Area (Site 3), located on the Naval Air Station in Pensacola, Florida. This work was performed by Ecology and Environment, Inc., (E & E) under contract to the Southern Division, U.S. Navy, Naval Facilities Engineering Command.

Site 3 occupies an open area of land approximately 850 feet by 2,100 feet along the southwestern border of Forest Sherman Field. The site is bounded to the east by aircraft runway 19; to the north by a paved aircraft taxiway; to the west by partially wooded scrub lands; and to the south by an open field. An unimproved jeep trail runs north and south across the western portion of the site and connects with several other dirt trails. Four hundred feet west-southwest of Site 3 is NAS Pensacola Site 19, the Fuel Farm Pipeline Leak site.

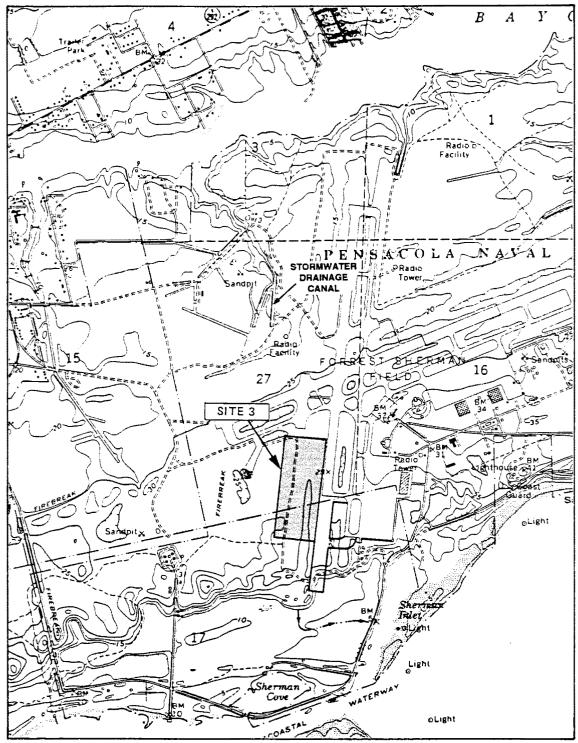
Surface runoff from the site is captured by two stormwater runoff drainage lines located near the eastern boundary of the site. The first stormwater drainage line discharges surface runoff derived from the northern third of the site to a drainage canal that flows northward into Bayou Grande. The second stormwater drainage line discharges surface runoff from the southern two-thirds of the site into a small creek that flows southeastward into Sherman Inlet.

Site 3 contains at least eight different burn areas. The two northernmost burn areas are currently being used for training exercises.

The purpose of the Phase I investigation was to identify principal areas and primary contaminants of concern at the site and to provide recommendations for subsequent phases of investigation. The Phase I fieldwork included a site reconnaissance; habitat/biota survey; surface emissions survey and particulate air screening; geophysical survey;

utilities survey; soil headspace survey; the collection and analysis of surface water, sediment, soil, and groundwater samples; and a hydrologic assessment.

Surface water, sediment, soil, and surficial zone groundwater contamination are present on Site 3. Most of the detected contamination is restricted to and clearly associated with areas where burning activities were conducted on site and the adjacent areas. Furthermore, although the Phase I results also indicate the potential presence of localized on-site, additional off-site, and ambient sources of contamination, overall it appears that little off-site migration of contaminants has occurred. In particular, the presence of surface water and/or sediment contamination in samples collected from the stormwater outfalls located north and south of Site 3 could reflect off-site and/or ambient sources.


Metals (chromium, lead, cadmium, and iron), total recoverable petroleum hydrocarbons (TRPHs), aromatic-type volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs)-base/neutral extractables, and phenols-acid extractables are the primary on-site contaminants. On-site surface water (catch basins LL1F and AA3M) and groundwater samples contained one or more of these contaminant species at concentrations exceeding applicable or potentially applicable Florida water quality standards. Soil sample contaminant concentrations were well below Resource Conservation and Recovery Act (RCRA) Proposed Corrective Action Levels (PCALs), where established; however, soil headspace concentrations within and adjacent to burn areas 1 through 6 were well above the 50 parts per million (ppm) Florida criterion for excessively contaminated soils.

Additional assessment activities will be required at Site 3. Furthermore, Interim Remedial Measures should be implemented to address the presence of excessively contaminated soils in and adjacent to burn areas 1 through 6.

### 1. INTRODUCTION

This Interim Data Report presents the findings of the Phase I investigation activities performed for Site 3, Crash Crew Training Area, located at the Naval Air Station (NAS) in Pensacola, Escambia County, Florida. This report has been prepared by Ecology and Environment, Inc., (E & E) for the Southern Division, U.S. Navy, Naval Facilities Engineering Command, under Contract No. N62467-88-C-0200. The information presented in this report is based on information and file documents provided by the Navy and on information gathered during the Phase I fieldwork conducted on the site from April 1991 to August 1991. The investigation was conducted in accordance with the administrative documents prepared by E & E for this project, which include the June 1990 Project Management Plan, June 1990 Site Management Plan, July 1990 Generic Quality Assurance Project Plan (GQAPP), July 1990 General Health and Safety Plan, and June 1990 Contamination Assessment/Remedial Activities Investigation Work Plan--Group J with appended Site-Specific Health and Safety Plan and Site-Specific Quality Assurance Plan. All references to these documents in this report apply only to the 1990 versions.

Site 3 occupies an open area of land approximately 850 feet by 2,100 feet along the southwestern border of Forrest Sherman Field (see figures 1-1 and 1-2). The site is bounded to the east by aircraft runway 19; to the north by a paved aircraft taxiway; to the west by partially wooded scrub lands; and to the south by an open field. An unimproved jeep trail runs north and south across the western portion of the site and connects with several other dirt trails. Four hundred feet west-southwest of Site 3 is NAS Pensacola Site 19, the Fuel Farm Pipeline Leak site.



SOURCE: U.S.G.S. 7.5 Minute Series (Topographic) Ouadrangles: Fort Barrancas, Fla. 1970 and West Pensacola, Fla. 1970, Photorevised 1987; Ecology and Environment, Inc., 1991

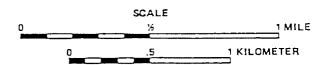
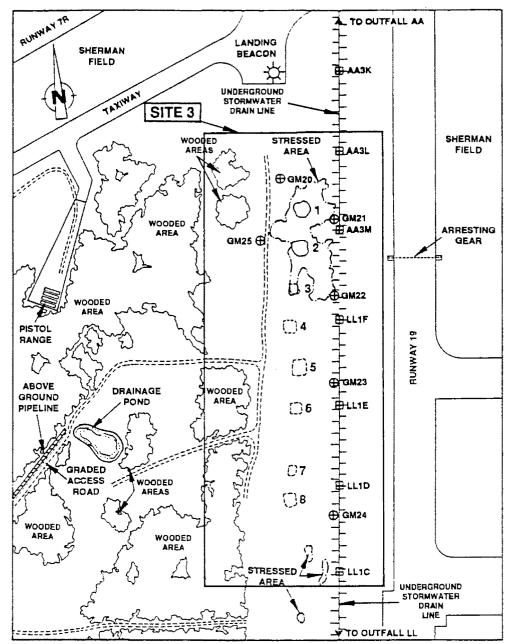
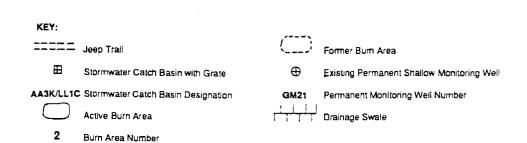





Figure 1-1 LOCATION MAP — NAS PENSACOLA SITE 3



SOURCE: U.S. Naval Air Station, Pensacola, Florida 1991; Ecology and Environment, Inc. 1991

100 200



SCALE

600

800 FEET

Figure 1-2 SITE VICINITY MAP — NAS PENSACOLA SITE 3

Surface runoff from the site is captured by two stormwater runoff drainage lines located near the eastern boundary of the site (see Figure 1-2). The first stormwater drainage line discharges surface runoff derived from the northern third of the site to a drainage canal that flows northward into Bayou Grande. The second stormwater drainage line discharges surface runoff from the southern two-thirds of the site into a small creek that flows southeastward into Sherman Inlet (see Figure 1-1).

Site 3 contains at least eight different burn areas. The two northernmost burn areas are currently being used for training exercises (see Figure 1-2). A complete site description and history are presented in the Group J work plan.

The purpose of the Phase I investigation was to identify principal areas and primary contaminants of concern at the site and to provide recommendations for subsequent phases of investigation. The Phase I fieldwork included a site reconnaissance, habitat/biota survey, surface emissions survey and particulate air screening, geophysical survey, utilities survey, soil headspace survey, and the collection and analysis of surface water, sediment, soil, and groundwater samples. In addition, a hydrologic assessment, which included the determination of groundwater and surface water elevations, groundwater flow direction, and hydraulic gradient, was performed at the site. The recommendations for additional work at this site will be incorporated in the revised Group J investigation work plan.

### 2. INVESTIGATION METHODOLOGY

## 2.1 AERIAL PHOTOGRAPH AND EXISTING DATA ANALYSIS

Prior to the initiation of fieldwork, E & E personnel examined all available aerial photographs of NAS Pensacola for past and present conditions, features, and developments that might have had direct relevance to the fieldwork methodology. The aerial photograph analysis task involved assembling and stereoscopically analyzing historical photographic imagery and topographic maps available for the site area. Photographs were scaled to allow analysis of past and present surface conditions, drainage, and land use. The aerial photographs used in the analysis are listed in Table 2-1. The photographs were analyzed to obtain information regarding where burning activities were conducted at the site, the evolution of site features that might have affected hydrologic conditions, and to aid in the performance of such tasks as field reconnaissance and monitoring well placement.

## 2.2 SITE RECONNAISSANCE

A field reconnaissance survey was conducted on and around the site. Available aerial photographs and maps were used as guides in locating surface features. Visual inspections were made of surface conditions, stressed vegetation, surface drainage patterns, areas of exposed site debris, and areas of soil discoloration. These observations of surface conditions on the site were used to update the site map. During the reconnaissance survey, the field team identified areas which presented the most suitable conditions for the establishment of survey grid baselines. The use of a grid system as part of the Phase I field investigation is discussed in the following sections; the actual grid system established at Site 3 is described in Section 2.5.

Table 2-1

PHOTOGRAPHS AND MAPS USED IN THE AERIAL PHOTOGRAPH ANALYSIS

NAS PENSACOLA SITE 3

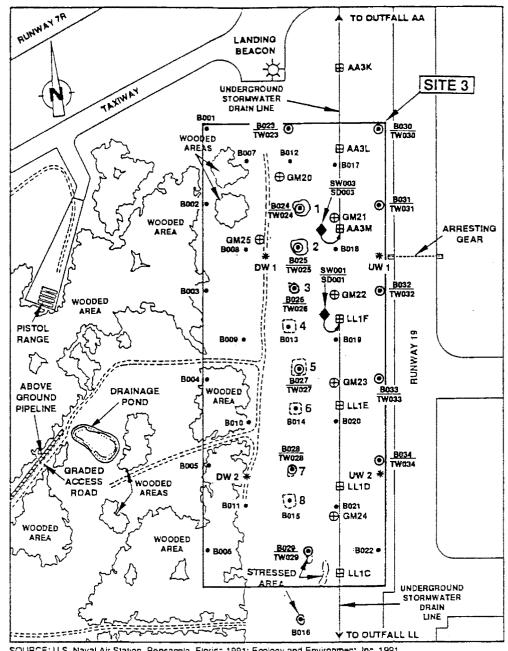
| Source                                | Photograph/Map<br>Number | Date     | Scale   |
|---------------------------------------|--------------------------|----------|---------|
| MAS Pensacola Public Works Department | 1276918                  | 7/1/88   | 1:2,400 |
|                                       | 1276919                  | 9/29/86  | 1:2,400 |
| lorida Department of Transportation   | PD-3886-11-02            | 10/26/89 | 1:24,00 |
|                                       | PD-3886-11-03            | 10/26/89 | 1:24,00 |
|                                       | PD-3886-168C             | 10/89    | 1:2,400 |
|                                       | PD-3886-169B             | 10/89    | 1:2,400 |
|                                       | PD-3618-11-03            | 11/21/86 | 1:24,00 |
|                                       | PD-3618-11-04            | 11/21/86 | 1:24,00 |
|                                       | PD-3109-11-03            | 9/22/83  | 1:24,00 |
|                                       | PD-3109-11-04            | 9/22/83  | 1:24,00 |
|                                       | PD-3109-11-05            | 9/22/83  | 1:24,00 |
|                                       | PD-2684-10-03            | 3/9/81   | 1:24,00 |
|                                       | PD-2684-11-03            | 3/9/81   | 1:24,00 |
|                                       | PD-2684-11-04            | 3/9/81   | 1:24,00 |
|                                       | PD-2684-11-05            | 3/9/81   | 1:24,00 |
|                                       | PD-1888-10-03            | 4/28/76  | 1:24,00 |
|                                       | PD-1888-10-04            | 4/28/76  | 1:24,00 |
|                                       | PD-1888-10-05            | 4/28/76  | 1:24,00 |
|                                       | PD-1331-10-05            | 5/4/73   | 1:24,00 |
|                                       | PD-868-4-07              | 4/6/70   | 1:24,00 |
|                                       | PD-616-7-04              | .3/25/68 | 1:24,00 |
|                                       | PD-285-4-05              | 10/8/64  | 1:12,00 |
|                                       | PNS-7054-1-2             | 10/12/61 | 1:24,00 |
| J.S. Department of Agriculture        | CPF-1V-199               | 1/3/58   | 1:24,00 |

14[NASP]UH8039:T0361/681/23

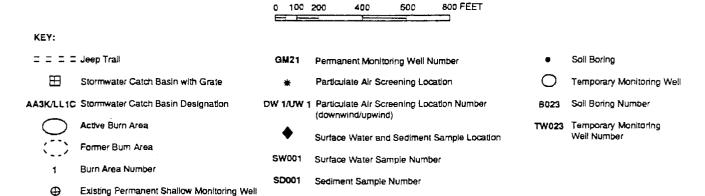
Source: Ecology and Environment, Inc., 1991.

The reconnaissance survey team utilized radiation and air monitoring equipment during walkovers of site areas, in accordance with Section 6.1.1 of the GQAPP. Areas with readings above background were located, flagged, and identified on a site map for future reference. All findings of the physical reconnaissance were mapped in detail and recorded in the field logbook.

#### 2.3 HABITAT/BIOTA SURVEY


A habitat/biota survey was conducted for the site, as well as an evaluation of applicable literature pertaining to NAS Pensacola. During the physical reconnaissance, an E & E biologist/ecologist determined the on-site terrestrial and aquatic habitats and the surrounding habitats that could be affected by off-site contaminant migration. During the walkover survey, rare, threatened, and endangered species and their potential habitats were identified, and general site conditions were evaluated regarding the site's ability to support viable populations of plants and animals.

#### 2.4 OVA SURFACE EMISSIONS SURVEY AND PARTICULATE AIR SCREENING


Following the establishment of the survey grid network (discussed in Section 2.5), a surface emissions survey was conducted using an organic vapor analyzer (OVA). The survey was conducted in accordance with Section 6.1.1 of the GQAPP. Measurements were made at each established grid point, and readings were recorded in the field logbook. In addition, preliminary air screening was conducted with a particulate monitor to determine if the site represents a source of airborne particulates. The particulate air screening was conducted in accordance with Section 6.1.1 of the GQAPP. Figure 2-1 presents the particulate air screening locations at Site 3.

## 2.5 GEOPHYSICAL SURVEY

Magnetometer and electromagnetic terrain conductivity surveys were conducted at the site and surrounding local areas. The magnetometer survey was conducted using a Geometrics G-856AX proton precession magnetometer, and the electromagnetic terrain conductivity survey was conducted using a Geonics, Ltd. EM-31 instrument. (The electromagnetic



SOURCE: U.S. Naval Air Station, Pensacola, Florida 1991; Ecology and Environment, Inc. 1991



SCALE

Figure 2-1 PARTICULATE AIR SCREENING, ON-SITE SURFACE WATER AND SEDIMENT SAMPLING, SOIL BORING, AND TEMPORARY MONITORING WELL LOCATIONS — NAS PENSACOLA SITE 3

terrain conductivity survey is referred to in this report as the EM-31 survey.) The EM-31 conductivity instrument measures the apparent terrain conductivity, allowing quick screening for changes in terrain conductivity potentially associated with buried utilities, buried metallic objects, or changes in soil conditions due to variations in lithology, water content, or the presence of leachate plumes. The EM-31 has a fixed intercoil spacing of 12.1 feet which yields an effective exploration depth of approximately 19.7 feet in the vertical dipole (deep) mode. Operation of the EM-31 in the horizontal dipole (shallow) mode yields an effective exploration depth of approximately 9.8 feet.

The survey effort required the initial establishment of a grid system over the study area. To construct the grid, baseline transects were established using a transit survey instrument and flagged at 50-foot intervals. The site was then gridded relative to the baseline transects with spacings based on 50-foot centers. The grid system was completed relative to an arbitrarily established origin point using a Brunton compass and tape measure. Grid points were flagged and numbered as follows:

Grid X, N 
$$n_1$$
 + yy, W  $n_2$  + zz,

where:

X = Grid designation;

n<sub>1</sub> = Distance in 100-foot increments north (N)
 from the origin point;

n<sub>2</sub> = Distance in 100-foot increments west (W)
 from the origin point;

yy = Additional distance in feet north from the nearest previously located 100-foot increment from the grid origin; and

zz = Additional distance in feet west from the nearest previously located 100-foot increment from the grid origin.

In the case of grid points located at even 100-foot increments from the origin, yy and zz = 00 (e.g., N1+00, W4+00 refers to the grid point located 100 feet north and 400 feet west of the origin point). Figure z-2 shows the location of the survey grid and origin point established on Site 3 and surrounding areas. The EM-31 and magnetometer surveys



Figure 2-2 SURVEY GRID MAP — NAS PENSACOLA SITE 3

Former Burn Area Burn Area Number were conducted by obtaining measurements at each 50-foot interval grid point. At each grid point, measurements were recorded along north-south and east-west instrument orientations for both the horizontal coplanar and vertical coplanar modes during the EM-31 survey.

The geophysical survey was performed in accordance with field methodologies and data interpretation techniques discussed in Section 6.2 of the GOAPP.

### 2.6 UTILITIES SURVEY

Prior to conducting any augering, boring, or drilling, E & E located all underground cables, pipes, utilities, and other subsurface features that could potentially be damaged, create a safety hazard, or otherwise hinder fieldwork. The appropriate authorities (e.g., NAS Pensacola Public Works and Southern Bell) were contacted to identify the location of all underground utilities in the site area. In addition, E & E examined available maps and documents to determine the potential presence of any other potentially hazardous subsurface features on site. The locations of all underground utilities and other obstructing features were marked with surveyor flags, fluorescent paint, or by other methods, as appropriate.

#### 2.7 SOTE HEADSPACE SURVEY

To provide information on the presence and extent of soil contamination and to aid in the placement of soil borings and temporary monitoring wells, a soil headspace survey was conducted at Site 3, in accordance with the procedures described in Section 6.4 of the GQAPP. A total of 184 soil borings were completed at survey grid points spaced at 100-foot intervals from the survey grid origin, using stainless steel hand augers and a portable drill rig equipped with 4-inch outside diameter (OD) solid-stem augers. Each boring was completed to a depth just penetrating the water table, which was located 0.3 feet to 5 feet below land surface (BLS) across most of Site 3. Because the water table was present at a depth of 5 feet BLS or less at all but four boring locations, where the depth to the water table was 5.5 to 6.5 feet BLS, only one composite soil headspace sample was collected at each Site 3

boring location. Consequently, all Site 3 soil headspace samples were collected from a single depth interval, assigned the letter designation A (A interval = land surface to 5 feet BLS or land surface to the water table).

Soil headspace samples were collected from the bucket portion of the hand auger or directly from the solid-stem auger flights as the auger or auger flights were withdrawn from the borehole. The sample aliquots were composited using stainless steel implements. The composite soil samples were then sealed in 16-ounce jars, leaving a headspace volume of approximately 50%.

After the samples had equilibrated to a temperature between approximately 20°C and 30°C, an OVA was employed to analyze the soil vapors. Each composite sample was screened using the OVA in survey mode to determine the total organic vapor concentration in the soil. A volume of soil vapor from each sample was also injected into the granular activated carbon chamber of the OVA to screen for the presence of methane. Following collection of the soil headspace sample, the borehole was checked for free product with a Solinst oil/water interface probe.

Detailed records of the boring locations and OVA readings (unfiltered and filtered/methane) were recorded in the field logbook. Borehole cuttings were backfilled into the borehole upon completion of sampling. All drilling and soil sampling equipment was thoroughly decontaminated prior to drilling each borehole and before collecting the soil headspace samples according to the procedures described in Section 6.10 of the GOAPP.

## 2.8 DATA ANALYSIS

Information obtained from the results of the above-described physical surveys was given primary consideration in the development of placement strategies for the Phase I soil borings, temporary monitoring wells, surface water samples, and sediment samples. Prior to establishing the Phase I temporary monitoring well locations or other sampling points, the results of the aerial photograph analysis, site reconnaissance, surface emissions survey and particulate air screening, geophysical survey, utilities survey, and soil headspace

survey were evaluated to identify potential areas of surface or subsurface contamination, areas of stressed vegetation or soil discoloration, and burn area boundaries. The proposed Phase I temporary monitoring well locations and other sampling points, shown on Figure 14-2 of the work plan, were then revised, as appropriate, upon approval by Southern Division.

## 2.9 SURFACE WATER SAMPLING

Four surface water samples, plus one duplicate sample, were collected during the Phase I investigation: one each from stormwater catch basins AA3M and LL1F, one from stormwater outfall AA located approximately 2,200 feet northwest of the northern site boundary, and one from stormwater outfall LL located approximately 1,500 feet south of the southern site boundary (see figures 2-1 and 2-3). Where the water depth was greater than 1 foot (outfall AA), surface water samples were collected from a zone extending from the water surface to immediately above the bottom using a teflon bailer. Where the water depth was less than 1 foot (outfall LL and both catch basins), samples were collected from a zone extending from the water surface to immediately above the bottom using stainless steel bowls. All sampling and equipment decontamination activities were conducted in accordance with sections 6.9.1 and 6.10 of the GQAPP. All surface water samples were shipped to E & E's Analytical Services Center (ASC) in Buffalo, New York, and analyzed for the screening parameters listed in Table 2-2.

## 2.10 SEDIMENT SAMPLING

Four sediment samples, plus one duplicate sample, were collected during the Phase I investigation: one each from stormwater catch basins AA3M and LL1F, one from stormwater outfall AA located approximately 2,200 feet northwest of the northern site boundary, and one from stormwater outfall LL located approximately 1,500 feet south of the southern site boundary (see figures 2-1 and 2-3). At each location, the sediment sample was collected from the sediment surface to a depth of approximately 4 inches. Where the water depth was greater than 8 inches (outfall AA), the samples were retrieved using a staff-mounted polypropylene cup. Where the water depth was less than 8 inches

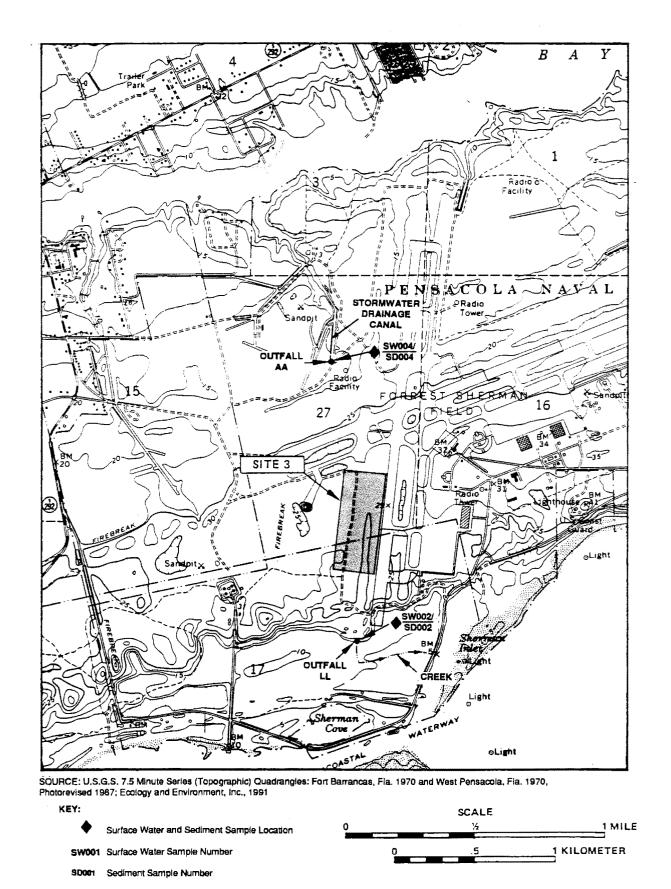



Figure 2-3 OFF-SITE SURFACE WATER AND SEDIMENT SAMPLING LOCATIONS — NAS PENSACOLA SITE 3

Table 2-2
SAMPLING AND ANALYTICAL SUMMARY
NAS PENSACOLA SITE 3

| Medium        |                   | o. of<br>amples | Duplicates      |                 |                                | Total                  | Analytical<br>Suite <sup>a</sup> , b |                                    |
|---------------|-------------------|-----------------|-----------------|-----------------|--------------------------------|------------------------|--------------------------------------|------------------------------------|
| Surface Water | r                 | 4               |                 | 1               |                                | 5                      |                                      | А                                  |
| Sediment      |                   | 4               |                 | 1               |                                | 5                      |                                      | A                                  |
| Soil          |                   | 34              |                 | 2               |                                | 36                     |                                      | A                                  |
| Groundwaterd  |                   | 12              |                 | 1               |                                | 13                     | *                                    | A                                  |
| Medium        | No. of<br>Samples | Dupli-<br>cates | Trip<br>Blanksf | Field<br>Blanks | Rinsate<br>Blanks <sup>g</sup> | Preservative<br>Blanks | Total                                | Analytical<br>Suite <sup>a,C</sup> |
| Groundwater e | 4                 | 1               | 1               | 1               | 1                              | 1                      | 9                                    | В                                  |

[NASP]UH8039:T0361/671/14

Key:

- A = Volatile organic compounds (VOCs) including chlorobenzene, polynuclear aromatic hydrocarbons (PAHs), phenols, pesticides, and total polychlorinated biphenyls (PCBs), total recoverable petroleum hydrocarbons (TRPHs), and metals (total, unfiltered).
- B = Target Compound List (TCL) VOCs plus xylene and ketones (EPA 8240), TCL base/neutral and acid extractable organic compounds (BNAs; EPA 8270), TCL pesticides and PCBs (EPA 8080), TRPHs (EPA 418.1), Target Analyte List (TAL) metals (total [i.e., unfiltered] and dissolved [i.e., millipore-filtered]; EPA 6010/7060/7421/7471/7740/7841), cyanide (EPA 9010), total organic carbon (EPA 415.1), hardness (water only; EPA 130.2), and alkalinity (water only; EPA 310.1).

Source: Ecology and Environment, Inc., 1991.

<sup>&</sup>lt;sup>a</sup>Analytical suite designations are as follows:

b Specific constituents encompassed by the various chemical groups included within analytical suite A are identified in tables 9-1 through 9-4 of the GQAPP.

<sup>&</sup>lt;sup>C</sup>Specific constituents encompassed by the various chemical groups included within analytical suite B are identified in tables 9-5 through 9-13 of the GOAPP.

dGroundwater samples and analyses shown are for temporary wells only.

egroundwater samples and analyses shown are for existing permanent wells.

fTrip blank analyzed for TCL VOCs only.

 $g_{
m Rinsate}$  blank analyzed for total and dissolved TAL metals, cyanide, TRPHs, TCL VOCs, TCL BNAs, TCL pesticides and PCBs, and total hardness.

 $<sup>^{</sup>m h}$ Preservative blanks analyzed for total TAL metals, cyanide, TRPHs, and TCL VOCs.

(outfall LL and both catch basins), a stainless steel trowel was used. The composition of bottom materials retrieved during sampling was recorded in the field logbook. All sediment sampling and equipment decontamination activities were conducted in accordance with sections 6.9.2 and 6.10 of the GQAPP. All sediment samples were shipped to E & E's ASC and analyzed for the screening parameters listed in Table 2-2.

#### 2.11 SOIL BORINGS AND TEMPORARY MONITORING WELL INSTALLATION

Thirty-four soil borings were completed at Site 3 (see Figure 2-1). At each boring location, a composite soil sample was collected over a single depth interval from land surface to the water table. Because the water table was present at a depth of 5 feet BLS or less at all but four boring locations (B006, B011, B022, and B034) where the depth to the water table was 5.5 to 6.5 feet BLS, only one composite soil sample was collected at each Site 3 boring location. Consequently, all Site 3 soil samples were collected from a single depth interval, assigned the letter designation A (A interval = land surface to 5 feet BLS or land surface to the water table). Samples were collected using either hand-operated bucket augers or a solid-stem auger powered by a drill rig. Lithologic characteristics of the materials encountered in each borehole were recorded in the field logbook. All sampling, compositing, and lithologic logging activities were performed in accordance with Section 6.6 of the GQAPP. Equipment decontamination was performed in accordance with Section 6.10 of the GQAPP.

Temporary, stainless steel monitoring wells were installed in 12 of the 34 soil borings (see Figure 2-1). Each well was constructed with 5 feet of 0.01-inch slotted screen and installed to a depth that allowed the well screen to bracket the water table. Lithologic characteristics of materials encountered during installation of the wells were recorded in the field logbook in accordance with Section 6.6 of the GQAPP. All equipment decontamination activities were performed in accordance with Section 6.10 of the GQAPP.

## 2.12 SOIL SAMPLING

Thirty-four soil samples, plus two duplicate samples, were collected as described in Section 2.11, in accordance with Section 6.6.2 of the GQAPP. All soil samples were shipped to E & E's ASC and analyzed for the screening parameters listed in Table 2-2.

### 2.13 GROUNDWATER SAMPLING

## 2.13.1 Temporary Monitoring Wells

Twelve groundwater samples, plus one duplicate sample, were collected from the 12 temporary monitoring wells shown on Figure 2-1. Weather conditions; water levels; purge volumes; and groundwater pH, specific conductance, and temperature measurements were recorded in the field logbook prior to sampling. In addition, prior to purging, each well was checked for the presence of floating and/or sinking immiscible hydrocarbons using a Solinst oil/water interface probe. Each groundwater sample was collected immediately following well purging. All well purging and sampling activities were performed in accordance with Section 6.8 of the GQAPP. Equipment decontamination was performed in accordance with Section 6.10 of the GQAPP. All groundwater samples collected from the temporary monitoring wells were shipped to E & E's ASC and analyzed for the screening parameters listed in Table 2-2.

## 2.13.2 Existing Permanent Monitoring Wells

Four groundwater samples, plus one duplicate sample, were collected from four (GM21, GM23, GM24, and GM25) of the six existing permanent shallow monitoring wells located on Site 3 (see Figure 2-1). The fifth and sixth wells (GM20 and GM22) could not be sampled due to severe damage that prevented a bailer being lowered into them. Weather conditions; water levels; purge volumes; and groundwater pH, specific conductance, and temperature measurements were recorded in the field logbook prior to sampling. Each groundwater sample was collected immediately following well purging. All well purging and sampling activities were performed in accordance with Section 6.8 of the GQAPP. Equipment decontamination was performed in accordance with Section 6.10 of the GQAPP. All groundwater samples collected from the existing wells

were analyzed according to U.S. Environmental Protection Agency (EPA) Contract Laboratory Program (CLP) protocol for the Target Analyte List (TAL), Target Compound List (TCL), and other parameters listed in Table 2-2.

### 2.14 HYDROLOGIC ASSESSMENT

The hydrologic assessment of the site and surrounding areas included a wellhead elevation survey of the temporary monitoring wells; static water level measurements and determination of water level elevations in both the temporary monitoring wells and the existing permanent shallow monitoring wells; and determination of surface water elevations at four locations within the drainage swale.

Wellhead top-of-casing (TOC) elevations for the temporary monitoring wells were measured relative to the top of a driven reference stake located adjacent to each well using a spirit level and tape measure. Following groundwater sampling and removal of the temporary monitoring wells, the elevations of the driven reference stakes were surveyed using a transit with reference to the permanent monitoring well GM21 TOC elevation. Surface water elevations were also referenced to the well GM21 TOC elevation.

Wellhead TOC elevations and static water levels measured in each existing permanent well were referenced directly to the established benchmark (GM21 TOC). Static water levels in the permanent monitoring wells were measured and surface water elevations surveyed on July 30, 1991. Static water levels in the temporary monitoring wells were measured over a 4-day period (July 23 through 26, 1991). The static water level data were used to determine the water table elevation, groundwater flow direction, and horizontal hydraulic gradient for the shallow surficial zone of the Sand-and-Gravel Aquifer in the site vicinity.

## 2.15 FIELD QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

All field tasks performed during the investigation were documented in the field logbooks according to the procedures specified in Section 7.2 of the GOAPP.

## 2.15.1 Field QA/QC Samples

Field QA/QC samples were prepared for all samples collected at the site during the Phase I investigation according to the procedures described in Section 6.12 of the GQAPP. Chain-of-custody was maintained for all samples collected, packaged, and shipped to E & E's ASC for analysis. Sample management was performed as specified in Section 7 of the GQAPP. The collected field QA/QC samples and corresponding analytical parameters are listed in Table 2-2.

## 2.15.2 Decontamination Procedures

All equipment used during field activities was decontaminated in accordance with Section 6.10 of the GOAPP.

### 2.16 INVESTIGATION-DERIVED WASTE MANAGEMENT

Excess soil generated during soil boring and temporary monitoring well installation activities was temporarily contained adjacent to the well or boring and then backfilled into the borehole after the auger flights or temporary well casings had been removed following sample collection. Any soil material remaining after completion of borehole backfilling was placed in 55-gallon drums, sealed, labeled, and moved to a central area on the site. Each drum had a painted-on label listing the site number and the type of material contained in the drum.

All water generated during development and purging of the temporary monitoring wells was temporarily contained adjacent to the well and then discharged back into the well following collection of samples.

All water generated during purging of the existing permanent monitoring wells was placed in 55-gallon drums, sealed, labeled, and moved to a central area on the site. Each drum had a painted-on label listing the site number and the type of material contained in the drum.

Potentially contaminated, personal protective clothing and disposable materials, wastes generated during decontamination activities, and other potentially contaminated, investigation-derived materials were placed in 55-gallon drums, labeled, and moved to a central area on the site. These drums were sealed and labeled "hot trash." All drummed investigation-derived materials were subsequently picked up and disposed of by NAS Pensacola.

#### 3. RESULTS

## 3.1 AERIAL PHOTOGRAPH AND EXISTING DATA ANALYSIS

Review of the January 3, 1958, aerial photograph indicated that Site 3 appeared then much as it does at present. The site was bordered by Sherman Field on the north and east, by a grassy field on the south, and by scattered scrub and trees on the west. In addition, the drainage swale that transects the site near its eastern boundary and the unpaved access road and jeep trail that transect the western portion of Site 3 were also present.

Review of the October 12, 1961, aerial photograph indicated that crash crew training (burning) activities were likely being conducted on Site 3 at the location of burn area 1 (see Figure 1-2). The photograph reveals small objects that resemble storage tanks or drums and small, barren/stressed areas that extend southwestward from burn area 1 to the jeep trail.

Review of the October 8, 1964, aerial photograph indicated that burn areas 2, 3, 4, 5, and 8 (see Figure 1-2) were in existence. Burning activities appear to have been confined to burn areas 4 and 5 at the time the photograph was taken; however, burn area 1 was surrounded by an approximately 100-foot-wide, barren, apparently stressed area. Several tank-like objects are visible west and south of burn area 1 in the area east of the jeep trail. In addition, several small objects that could be tanks or drums were present in the location of burn area 3 (see Figure 1-2).

Review of the March 25, 1968, aerial photograph indicated that burn areas 6 and 7 existed by this time. The photograph reveals that burn areas 1 through 5 were probably active and that burn areas 6 through 8 were likely inactive. Barren, stressed areas appear to have surrounded

burn areas 1 through 5. In addition, the stressed areas surrounding burn areas 1 and 2 appear to have extended eastward several hundred feet toward the drainage swale transecting the eastern portion of Site 3.

Review of the April 6, 1970, aerial photograph revealed that burn areas 1 through 6 appear to have been in use during the period between the March 25, 1968, and the April 6, 1970, aerial photographs. The photograph also indicates that only burn areas 1 and 2 were active at the time the April 6, 1970, photograph was taken. Areas of apparently stressed vegetation were present surrounding burn areas 1 through 6. The photograph reveals that approximately 10 tank-like objects and two or more airplanes were present along a section of the jeep trail extending from approximately 200 feet south of burn area 6 northward to the vicinity of burn area 1.

Review of the May 4, 1973, aerial photograph indicated that burning activities were likely being conducted only at burn areas 1 through 3. Burn areas 4 through 8 appear to have been inactive at this time. The photograph reveals that extensive stressed areas surrounded burn areas 1, 2, and 3 and extended eastward approximately 200 feet to the drainage swale, suggesting that surface runoff on the western side of Site 3 was eastward toward the drainage swale. The sizes of the stressed areas associated with burn areas 4 through 6 appear to have decreased in the time interval between the April 6, 1970, and May 4, 1973, aerial photographs.

Review of the April 28, 1976, aerial photographs suggested that burn areas 1 and 3 were active at this time. The stressed areas surrounding burn areas 1 through 3 appeared much as they did in the May 4, 1973, aerial photograph. By the time the April 28, 1976, aerial photographs had been taken, a tanker-trailer (confirmed by visual inspection during the site reconnaissance) was present adjacent to the jeep trail, approximately 100 feet due west of burn area 1.

Review of the March 9, 1981, aerial photographs indicated that burning activities were likely being conducted only in burn areas 1 and 2; however, burn areas 4 and 5 appeared to have been in recent use. Burn areas 3 and 6 through 8 appeared to be inactive at this time. In addition, the stressed areas that extended eastward to the Site 3 drainage swale from the vicinity of burn areas 1, 2, and 3 visible in

the May 1973 and April 1976 photographs were still visible in the March 1981 aerial photographs. Stressed areas surrounding burn areas 4 and 5 were also visible. The aerial photographs also reveal that linear piles of large, anchor chain (identified by visual inspection during the site reconnaissance) were present near the eastern side of the jeep trail, approximately 150 feet southwest of burn area 8 and immediately south of the southern site boundary.

Review of the September 22, 1983, aerial photographs indicated that burning activities were being conducted on burn areas 1, 2, and 3. Burn areas 4 through 8 appear to have been inactive. The stressed areas associated with burn areas 1 through 5 were still visible in the October 1983 aerial photographs.

Review of the November 21, 1986, aerial photographs indicated that burning activities at Site 3 were confined to burn areas 1 and 2. The site appeared much as it did at the time of the September 22, 1983, aerial photographs.

Review of aerial photographs subsequent to the 1986 aerial photographs revealed no other obvious changes on the site. It should be noted that burning activities have continued at burn areas 1 and 2 up to the present.

#### 3.2 SITE RECONNAISSANCE

During the site reconnaissance, a visual inspection was made of Site 3, the area of scattered scrub and trees that borders the site on the west, and the grassy field that borders Site 3 on the south. All eight burn areas exhibited dark, gray-black soil staining. Stressed vegetation was present within, or adjacent to, each of the eight burn areas. Sparse vegetation and darkened soils were present in three areas (not revealed by the aerial photograph analysis) located near the southern site boundary (see Figure 1-2).

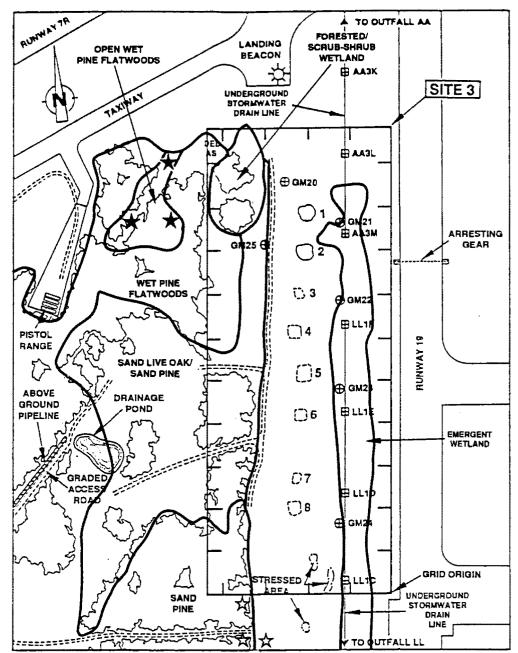
Steel, aircraft cockpit mock-ups were present in burn areas 1 and 2. An aircraft fuselage was present in burn area 3, and metallic aircraft debris was present in burn areas 4 and 5. In addition, aircraft parts, an old tanker-trailer, portable foam tanks, and other metallic debris were observed along the western side of the jeep trail that extends from the unpaved access road northward through the

northwestern portion of the site. Exposed and partially buried, isolated pieces of metallic debris were also present over the entire Site 3 area. A small, barren area of soil staining was noted adjacent to an aircraft fuselage located on the west side of the jeep trail, approximately 150 feet north of the unpaved access road.

Site 3 is relatively flat; however, land surface at the site slopes gently toward a shallow north-south oriented drainage swale that transects the site approximately 200 feet west of the site's eastern boundary along Sherman Field runway 19 (see Figure 1-2). Surface soils present at Site 3 are composed of clean quartz sands.

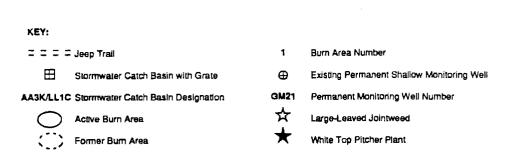
The shallow swale coincides with the location of a stormwater runoff drainage system consisting of two stormwater drainage lines that capture and transmit surface runoff from Site 3 (see Figure 1-2). Surface runoff from approximately the northern third of the site is captured by stormwater drainage line AA (see Figure 1-2) and discharged approximately 2,200 feet northwest of the site (at outfall AA) to an approximately 25-foot-wide canal that also receives stormwater runoff from other portions of Sherman Field, flows to the north-northwest, and empties into Bayou Grande (see Figure 2-3). Surface runoff from the southern two-thirds of Site 3 is captured by stormwater drainage line LL (see Figure 1-2) and discharged approximately 1,500 feet south of the site (at outfall LL) to a shallow, approximately 3-foot-wide creek that flows southeastward and empties into Sherman Inlet (see Figure 2-3).

A stressed area of soil staining surrounds burn areas 1 and 2 and extends eastward to the vicinity of the swale that transects the site. Hydrocarbon odors and readings of up to 20 parts per million (ppm) above background levels (0 ppm) detected by an HNu air monitoring device were noted in burn areas 1 and 2 and in the barren, stained areas extending eastward from these burn areas toward the swale located on the site. In addition, during performance of the surface emissions survey, oily sheens were noted on standing water within the swale in areas opposite of and extending approximately 400 yards south of burn areas 1 and 2. When disturbed, water-logged soils in the above-described barren area and in the swale adjacent to burn areas 1 and 2 produced oily sheens in nearby standing water.


#### 3.3 HABITAT/BIOTA SURVEY

The habitat/biota survey addressed several habitats located on or adjacent to Site 3. A majority of the site may be characterized as upland habitat, more specifically an open field, including several burn pits. Dominant plant species include bahia grass (Paspalum notatum), lovegrass (Eragrostis sp.), broomsedge (Andropogon virginicus), and (Panicum sp.), with lesser amounts of goatweed (Scoparia dulcis), rabbit tobacco (Gnaphalium purpureum), Venus' looking glass (Specularia perfoliata), dewberry (Rubus trivialis), yaupon (Ilex vomitoria), Wahlenbergia (Wahlenbergia marginata), dwarf dandelion (Krigia virginica), toadflax (Linaria canadensis), rustweed (Polypremum procumbens), and coinwort (Centella asiatica). The cutover upland area that borders the western perimeter of the site is dominated by flat-topped goldenrod (Euthamia minor), catbrier (Smilax rotundifolia), and dewberry (Rubrus cuneifolius).

Biota associated with these open areas include a variety of birds, such as killdeer, eastern meadowlark, barn swallow, tree swallow, and boat-tailed grackle. Other biota include snakes, frogs, turtles, and small mammals that may use the area as a travel corridor between the emergent wetland to the east and the pine flatwoods and sand pine scrub community located in the western part of the site. Appendix A presents a complete list of the birds observed at NAS Pensacola during the habitat/biota survey.


Numerous areas in the open field exhibited dark staining in the surficial soil layer.

The ground slopes to the east, and an emergent wetland is located between the burn pits and the edge of runway 19 (see Figure 3-1). The emergent wetland extends from the northernmost burn pit (burn area 1) to the southern boundary of the site and ranges from approximately 100 to 165 feet wide. Dominant plant species include coinwort, spikerush (Eleocharis sp.), violet (Viola lanceolata), and sundew (Drosera tracyi). Other species present include milkwort (Polygala lutea), broomsedge, St. John's-wort (Triadenum virginicum), lovegrass, red root (Lachnanthes caroliniana), colic root (Aletris lutea), chalky bluestem (Andropogon virginicus), clubmoss (Lycopodium sp.), bog buttons (Lachnocaulon anceps), hatpins (Eriocaulon sp.), breakrush (Rhynchospora



SOURCE: U.S. Naval Air Station, Pensacola, Florida 1991; Ecology and Environment, Inc. 1991

0 100 200



SCALE

400

600

800 FEET

Figure 3-1 HABITAT/BIOTA MAP — NAS PENSACOLA SITE 3

sp.), daisy fleabane (<u>Erigeron vernus</u>), bantam buttons (<u>Syngonanthus flavidulus</u>), black titi (<u>Cliftonia monophylla</u>), gallberry (<u>Ilex glabra</u>), lizard's tail (<u>Saururus cernuus</u>), stargrass (<u>Hypoxis sp.</u>), dewthreads (<u>Drosera tracyi</u>), wax myrtle (<u>Myrica cerifera</u>), and fuirena (<u>Fuirena scirpoidea</u>).

At the time the survey was conducted, soils were saturated throughout the wetland, and standing water was present in some areas. Water flow was to the north at the southern end of the site and to the south at the northern end. Vegetation east of burn area 3 was coated with a noticeable film. Water on the surface of burn area 4 exhibited an oily sheen. A very strong fuel odor was evident in this area.

An area dominated by sand live oak (<u>Quercus geminata</u>), sand pine (<u>Pinus clausa</u>), rosemary (<u>Conradina canescens</u>), and deer moss (<u>Caldonia sp.</u>) is located in the southwestern portion of the site. Other species present in lesser amounts include long leaf pine seedlings (<u>Pinus palustris</u>), saw palmetto (<u>Serenoa repens</u>), rosemary (<u>Ceratiola ericoides</u>), wild indigo (<u>Baptisia lanceolata</u>), and turkey oak (<u>Quercus laevis</u>).

This area is a potential habitat for the gopher tortoise (Gopherus polyphemus), officially a species of special concern in Florida. Gopher tortoises prefer areas with well-drained, sandy soils coupled with a rather sparse understory and abundant herbaceous groundcover. Two possible gopher tortoise burrows were observed; however, the burrows appeared inactive because debris partially obstructed the openings. The continuation of this habitat past the southern site boundary is the location of three areas populated by large-leaved jointweed (Polygonella macrophylla). This species is considered threatened in Florida and is a federal candidate species. Approximately 50 individuals were identified.

A forested/scrub-shrub wetland is located in the northwestern corner of the site. Dominant species include pond cypress (Taxodium ascendens) and myrtle-leaf holly (Ilex myrtifolia), along with lesser amounts of swamp tupelo (Nyssa biflora) and sweet bay magnolia (Magnolia virginiana). An herbaceous fringe associated with this wetland consists of Virginia chain-fern (Woodwardia virginica), giant plumegrass (Erianthus giganteus), beak rush (Rhynchospora sp.), pond cypress,

myrtle-leaf holly, red root, slash pine (Pinus elliottii), sweet pepperbush (Clethra alnifolia), and catbrier (Smilax bona-nox).

Birds utilizing this habitat include great blue heron, blue jay, rufous-sided towhee, boat-tailed grackle, northern mockingbird, and brown thrasher. A variety of snakes, lizards, frogs, insects, rodents, and other small mammals may utilize the habitat for nesting and/or foraging.

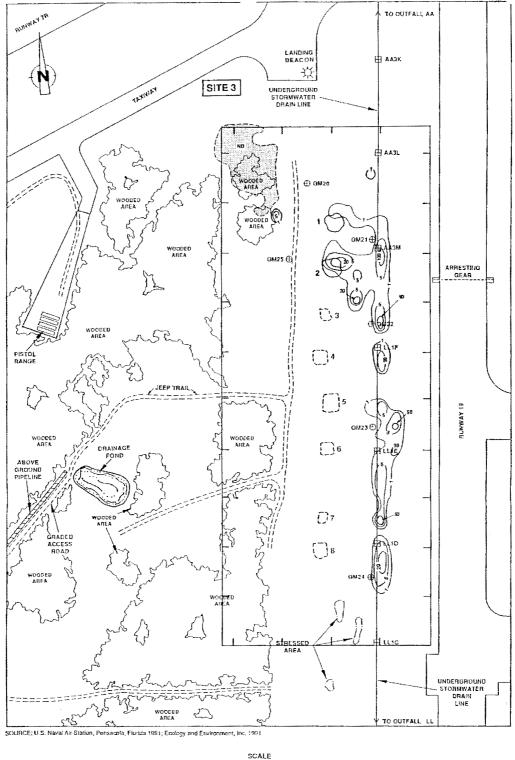
An area of disturbed flatwoods is located on the northwestern side of the site. This area is dominated by wiregrass (Aristida stricta) and gallberry. Other species present include southern magnolia, saw palmetto, catbrier, yellow-eyed grass (Xyris sp.), meadow beauty (Rhexia mariana), yaupon, broomsedge, yellow colic root (Aletris lutea), coinwort, bog buttons, milkwort (Polygala nana), blackberry (Rubus cuneifolius), flat-topped goldenrod, deer's tongue (Carphephorus sp.), dwarf dandelion, brackenfern (Pteridium aguilinum), and rosemary.

Wet pine flatwoods are located adjacent to the disturbed flatwoods community on the northwestern part of the site. The canopy consists of slash pine, sweetbay magnolia, and pond cypress. Sweetbay, pond cypress, and red maple (Acer rubrum) comprise the subcanopy, and the groundcover consists of gallberry, wiregrass, bog buttons, hatpins, slash pine, fetterbush (Lyonia lucida), bamboo-vine (Smilax laurifolia), and white-top pitcher plants (Sarracenia leucophylla). Hundreds of white-top pitcher plants were identified in and near an opening in the pine flatwoods. Notably, this species is listed by the State of Florida as an endangered species. Birds observed in this habitat include blue jay, northern mockingbird, boat-tailed grackle, and marsh wren. Snakes, frogs, salamanders, squirrels, rabbits, and rodents may also utilize this habitat for foraging, nesting, and den construction.

In summary, several habitats were identified on and adjacent to Site 3. Three wetland areas were identified: an emergent wetland near runway 19, a forested/scrub-shrub wetland located in the northwestern corner of the site, and a wet pine flatwoods community located outside the western boundary of the site. A white-top pitcher plant bog is located within the wet pine flatwoods. A sand live oak/sand pine community is located in the southern corner of the site. This habitat is favorable for the gopher tortoise, a species of special concern in

Florida, although none were observed during the survey. Approximately 50 individuals of large-leaved jointweed were observed in three areas immediately south of the southwestern site boundary. One area was directly surrounding a piezometer west of the third firing range box. This species is considered threatened in Florida and is a candidate species for federal protection. An oily sheen was observed on the surface of the water and on the vegetation in the emergent wetland. Numerous areas adjacent to the burn pits exhibited darkly stained surficial soils. A very strong fuel odor was evident in the vicinity of burn area 4. No other impacts from disposal of hazardous waste were evident on Site 3 or adjacent habitats.

### 3.4 SURFACE EMISSIONS SURVEY AND PARTICULATE AIR SCREENING


An OVA was used to monitor surface emissions at each grid node at Site 3. Figure 2-2 shows the grid layout of the site. The background OVA reading during the surface emissions survey was 0 ppm. Methane-corrected organic vapor concentrations detected on Site 3 during the surface emissions survey ranged from 0 ppm to 200 ppm. Figure 3-2 shows the locations of elevated surface emission readings detected on Site 3, and Appendix B lists the coordinates and readings recorded at each grid node on Site 3. Background surface emission readings were recorded in the field logbook during performance of the surface emissions survey. An activated carbon filter was used to test for the presence of methane; methane readings were then subtracted from the total organic vapor readings to yield a methane-corrected reading.

Organic vapor concentrations exceeding 1.0 ppm above background levels were detected in six areas of Site 3 (see Figure 3-2). The highest organic vapor concentrations were detected along the swale located in the eastern portion of the site. Organic vapor concentrations (corrected for the presence of methane) of up to 200 ppm were detected in four segments of the swale extending from opposite of burn area 1 southward for approximately 500 yards (see Figure 3-2). The elevated organic vapor concentrations observed in the vicinity of the swale generally correspond to the areas of the swale where hydrocarbon-like sheens were observed on standing water during the site reconnaissance. Elevated organic vapor concentrations of up to 43 ppm were also

detected in an area extending from burn areas 1 and 2 eastward to the swale (see Figure 3-2) where soil staining and hydrocarbon odors were noted during the site reconnaissance.

A slightly elevated, isolated OVA reading of 7 ppm was detected in a low, damp area located approximately 200 feet due west of burn area 1 where hydrocarbon-like sheens were present. In addition, as illustrated on Figure 3-2, a slightly elevated OVA reading of 1.8 ppm was detected in a wet area approximately 150 feet northeast of burn area 1 and approximately 50 feet west of the swale transecting the site; hydrocarbon-like sheens were present at this location.

On June 6, 1991, a Mini-Ram particulate air monitoring device was used to determine if Site 3 could represent a source of airborne particulates. Figure 2-1 shows the particulate air screening locations on Site 3, and Appendix C presents the particulate air screening data. During the test period, winds at the site were easterly at 5 to 8 miles per hour (mph). Airborne particulates were measured over 5-minute intervals at four locations in the vicinity of Site 3. Measurements were made at the following locations: upwind, 30 feet west of the western edge of runway 19 at the point where the arresting gear is located (UW1; geophysical survey grid point N15+00, W0+00); downwind, 580 feet west of the western edge of runway 19 where the arresting gear is located (DW1; geophysical survey grid point N15+00 W5+50); upwind, 1,000 feet south of and 30 feet west of the western edge of the point where the arresting gear crosses the western side of runway 19 (UW2; geophysical survey grid point N5+00, W0+00); and downwind, 1,000 feet south of and 680 feet west of the western side of runway 19 where it is crossed by the arresting gear (DW2; geophysical survey grid point N5+00, W6+50). Time weighted average (TWA) particulate concentrations measured at these four locations were 0.00 milligram per cubic meter (mg/m<sup>3</sup>),  $0.01 \text{ mg/m}^3$ ,  $0.01 \text{ mg/m}^3$ , and  $0.00 \text{ mg/m}^3$ , respectively. The average TWA particulate concentration measured at the two upwind screening locations and at the two downwind screening locations was  $0.005 \text{ mg/m}^3$ . Based on these measured concentrations, Site 3 does not appear to be a source of airborne particulates.



SCALE
0 200 400 FEET

KEY:

Discrimination of the Stormwater Catch Basin with Grate

AA3KALLC Stormwater Catch Basin with Grate

Active Burn Area

Methane-Corrected Organic Vapor Isopleth (ppm)

Former Burn Area

ND No Data Available (area under water at life of the survey)

Figure 3-2 SURFACE EMISSIONS SURVEY MAP — NAS PENSACOLA SITE 3

#### 3.5 GEOPHYSICAL SURVEY

The results of the magnetometer and EM-31 surveys conducted on Site 3 are discussed in the following sections. Grid coordinates and readings for the magnetometer and EM-31 surveys are presented in Appendix D. Figure 2-2 illustrates the grid system used for the geophysical surveys.

Overall, the results of the geophysical survey indicate that ferrometallic objects and utilities are present in the shallow subsurface (approximately 10 feet BLS or less) beneath Site 3. Anomalous readings for each of the two survey types are generally linear and can be attributed either to the presence of ferrometallic objects or to the presence of subsurface utilities. The EM-31 survey detected anomalously high electromagnetic conductances in several areas of the northwestern corner and the southeastern portion of the site. These anomalies may reflect elevated water table conditions or the presence of subsurface contaminants.

# 3.5.1 Magnetometer Survey

Figure 3-3 shows the contoured total magnetic field strength values (in units of gammas x 100) observed across Site 3. Background magnetometer readings obtained across Site 3 ranged from 502 to 503 gammas x 100. Magnetometer readings, grid coordinates, and detailed maps of the magnetometer readings recorded on Site 3 are presented in Appendix D.

Moderate (±5 to 10 gammas x 100) to strong (>+10 gammas x 100 or <-10 gammas x 100) magnetic anomalies relative to the regional ambient total magnetic field strength of approximately 50,000 gammas are present on Site 3, indicating that buried ferrometallic material may be present within the boundaries of the site. However, many of the magnetic anomalies observed on site form linear alignments that may be attributable to the presence of subsurface utilities.

Several moderate to strong, positive and negative magnetic anomalies were recorded in the west-central area of Site 3. These anomalies generally lie along a series of three straight lines oriented as follows: north-south, parallel to the western site boundary; east-west, from just north of burn area 5 to the southern end of the

north-south line of anomalies; and southeast-northwest, from just north of burn area 5 to the northern end of the north-south line of anomalies (see Figure 3-3). These three sets of anomalies probably represent the location of subsurface utilities, such as electrical cables or fuel lines, given the linear orientations and, as will be discussed in Section 3.5.2, the fact that EM-31 anomalies were also generally recorded along the same lineaments.

As illustrated on Figure 3-3, a very large (2,100 feet by 400 feet), strong, negative magnetic anomaly was recorded over and adjacent to the drainage swale located near the eastern site boundary. However, given that no EM-31 anomalies were recorded in this area, this large magnetic anomaly appears spurious and is most likely attributable to instrument malfunction.

Several isolated, moderate to strong, positive and negative magnetic anomalies were detected in the southern and east-central areas of Site 3. These anomalies are again generally associated with EM-31 anomalies and probably reflect isolated surface/subsurface ferrometallic debris (southern area) and subsurface utilities associated with flight operations at Sherman Field (east-central area), respectively. Two moderate anomalies were recorded in the vicinity of catch basins LL1D and LL1C, located in the drainage swale near the southern boundary of the site (see Figure 3-3); these anomalies likely reflect the metal grates present on top of catch basins LL1D and LL1C.

# 3.5.2 EM-31 Survey

Figures 3-4 and 3-5 summarize the results of the EM-31 survey performed on Site 3. Figure 3-4 identifies areas where anomalous readings ( $\geq$ 10 millimhos per meter [mmhos/m]) were recorded in the horizontal [dipole] mode (exploration depth of approximately 3 meters [9.8 feet]), and Figure 3-5 identifies areas where anomalous readings ( $\geq$ 10 mmhos/m) were recorded in the vertical [dipole] mode (exploration depth of approximately 6 meters [19.7 feet]). Background EM-31 readings obtained across the site ranged from 3.5 to 5 mmhos/m. EM-31 readings, grid coordinates, and detailed maps of the EM-31 survey readings are presented in Appendix D.

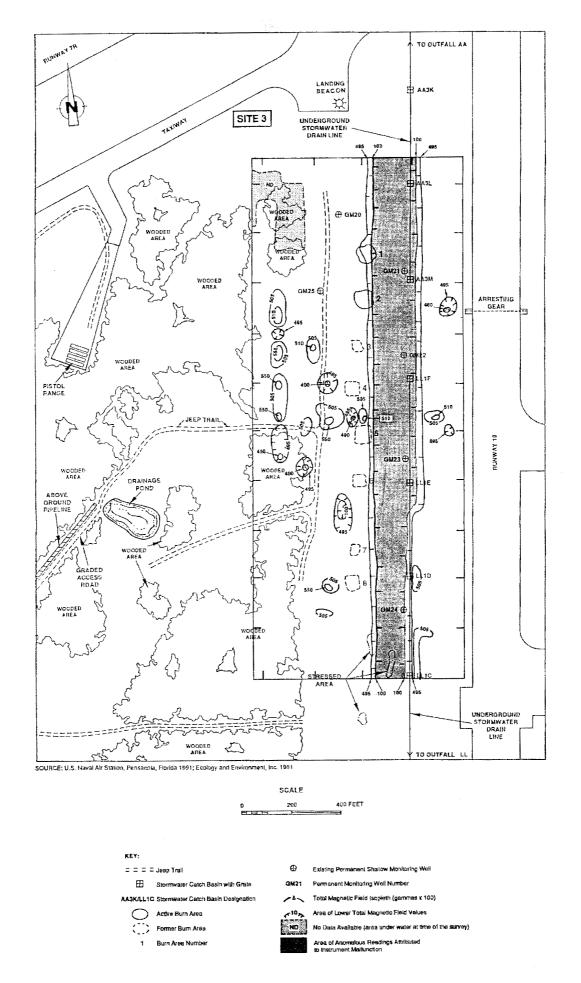
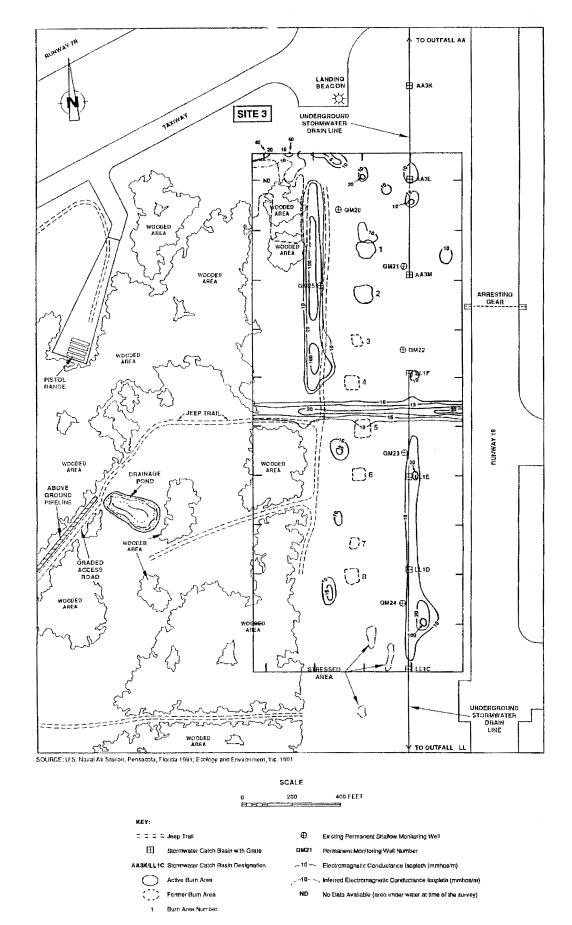
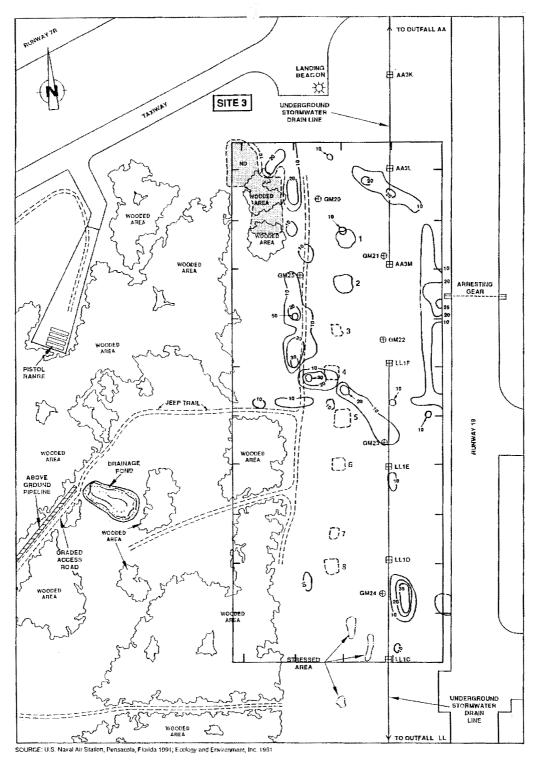





Figure 3-3 MAGNETOMETER SURVEY MAP, TOTAL MAGNETIC FIELD — NAS PENSACOLA SITE 3



NOTE: Contained values represent highest observed values from north-south or east-west instrument orientation readings at each grid point.

Figure 3-4 EM-31 SURVEY MAP, HORIZONTAL DIPOLE MODE --- NAS PENSACOLA SITE 3



SCALE
D 200 400 FEET



NOTE: Conjoured values represent highest observed values from north-south or east-west instrument orientation readings at each grid point.

Figure 3-5 EM-31 SURVEY MAP, VERTICAL DIPOLE MODE — NAS PENSACOLA SITE 3

As shown on figures 3-4 and 3-5, linear zones of anomalous electromagnetic conductance are present on Site 3 and generally coincide with the areas where magnetic anomalies were recorded (see Appendix D). EM-31 anomalies in these areas probably reflect the presence of subsurface utilities or ferrometallic objects.

Electromagnetic anomalies not supported by the presence of magnetic anomalies are also present on the site. Figures 3-4 and 3-5 show the presence of a curvilinear set of anomalies that trends northward for approximately 900 feet from the middle of the site adjacent to runway 19 and then turns to the northwest and passes through the northeastern corner of the site. This set of anomalies can be attributed to the presence of an underground high voltage power line. The linear anomaly trending northward along the west side of the jeep trail from near the middle of the site and the linear anomaly trending southward from the middle of the site along the drainage swale (see Figure 3-4) are supported by the presence of magnetic anomalies only over the southern third of each anomaly. These two anomalies are likely attributable to the presence of buried subsurface ferrometallic objects or utilities; however, the possibility that these anomalies may also be partially attributable to the presence of subsurface contaminants cannot be discounted. Alternatively, these anomalies may also represent elevated conductances resulting from increasing proximity of the water table to land surface.

EM-31 anomalies were also recorded in the northwestern corner of the site immediately north of a wet, swampy area; adjacent to the north side of burn area 1; and in two areas adjacent to stormwater catch basins AA3L and LL1F (see figures 3-4 and 3-5). The EM-31 anomaly observed in the northwest corner of Site 3 is probably attributable to an increased proximity of the water table to land surface in this area; however, the possibility that this anomaly may reflect the presence of buried utilities or metallic objects or subsurface contamination cannot be discounted. The anomaly adjacent to burn area 1 may reflect the presence of subsurface contaminants, given the historic use of burn area 1. The anomalies associated with catch basins AA3L and LL1F can probably be attributed to the presence of metal grates overlying each catch basin.

In general, the frequency and magnitude of elevated electromagnetic readings observed on Site 3 were greater in the horizontal [dipole] mode than in the vertical [dipole] mode. This relationship suggests that the burial depth of the material responsible for the observed elevated electromagnetic conductances lies above the effective exploration depth of the EM-31 vertical [dipole] mode survey (19.7 feet) and that the burial depth most likely is between land surface and the effective exploration depth of the EM-31 horizontal [dipole] survey mode (9.8 feet).

# 3.6 SOIL HEADSPACE SURVEY

Figure 3-6 shows the overall distribution of methane-corrected soil headspace readings above background (i.e., >1 ppm) recorded across Site 3. Grid coordinates, sample depth intervals, headspace readings, and a detailed soil headspace map are presented in Appendix E.

Four areas on Site 3 exhibited methane-corrected soil headspace readings in excess of the applicable Chapter 17-770, Florida

Administrative Code (FAC), 50 ppm criterion for excessively petroleum-contaminated soils (see Figure 3-6; Florida Department of Environmental Regulation [FDER] 1990b). The largest area is located in the north-central portion of the site and encompasses burn areas 1 through 4. Smaller, but still extensive areas of >50 ppm methane-corrected soil headspace readings were recorded in the vicinity of burn areas 5 and 6. A very localized area of >50 ppm methane-corrected soil headspace readings was recorded southeast of burn area 8. Neither burn area 7 nor burn area 8 exhibited elevated headspace readings.

Given that waste oils and other non-fuel materials might have been burned at Site 3, the 50 ppm headspace criterion noted above cannot be used as the sole determinant of on-site petroleum contamination of soils. Consequently, Figure 3-6 also shows areas where methane-corrected soil headspace readings above background (i.e., >1 ppm) were recorded. All four >50 ppm areas described above exhibited >1 ppm methane-corrected soil headspace readings around their perimeters. In addition, three isolated areas of >1 ppm methane-corrected soil headspace readings were identified: in the southwest corner of the

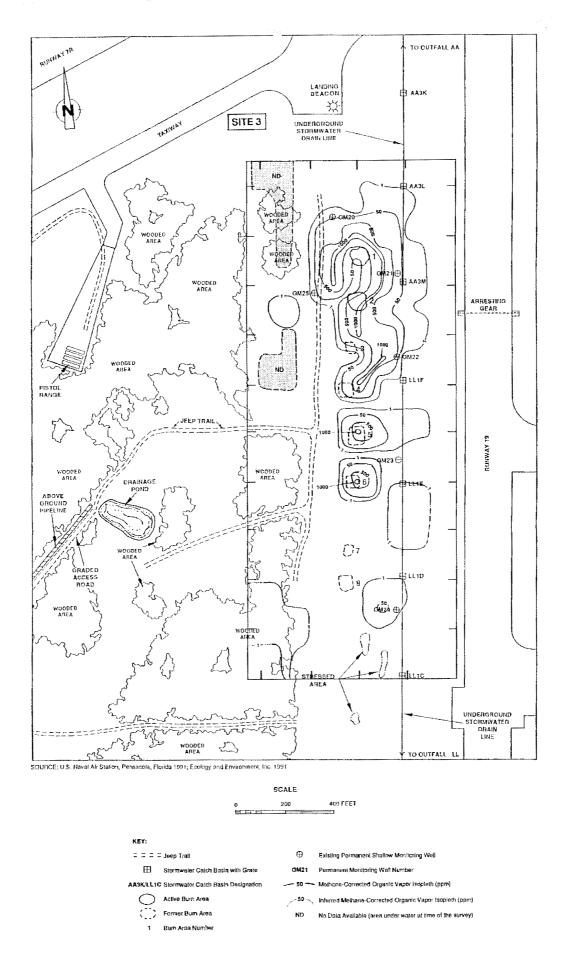



Figure 3-6 SOIL HEADSPACE SURVEY --- NAS PENSACOLA SITE 3

site, along the drainage swale southeast of burn area 6, and west of burn area 2 (see Figure 3-6).

The above results clearly indicate the presence of excessively petroleum-contaminated soils in and surrounding burn areas 1 through 6, as well as southeast of burn area 8. Soil contamination may also be present in the areas shown on Figure 3-6 where methane-corrected soil headspace readings above background (i.e., >1 ppm) were recorded.

## 3.7 HYDROLOGIC ASSESSMENT

# 3.7.1 Shallow Subsurface Lithology

Based on information collected during the completion of 22 soil borings and 12 temporary monitoring wells, the shallow subsurface lithology in the vicinity of Site 3 can be characterized as a pale tan to tan, medium- to coarse-grained quartz sand that becomes a pale tan-gray to gray, medium- to coarse-grained quartz sand near the water table. A black, peaty, silty, fine-grained quartz sand was encountered from 1.5 to 2.8 feet BLS during completion of boring BOO2 at the western site boundary near the northwestern corner of the site. In addition, during completion of boring BOO7 near the northwestern corner of the site, a reddish-brown, peaty, fine-grained quartz sand was encountered from 1 to 1.5 feet BLS. During the installation of temporary monitoring wells TWO24 and TWO25 in burn areas 1 and 2, respectively (see Figure 1-2), located in the north-central portion of Site 3, dark gray-black, medium- to coarse-grained, hydrocarbon residue-stained quartz sand was encountered from land surface to 9 feet BLS and land surface to 1.5 feet BLS, respectively. A medium-brown, coarse-grained quartz sand was encountered from 0.7 to 2.5 feet BLS and from 0.2 to 0.8 feet BLS during completion of borings BO30 and BO32, respectively, along the eastern site boundary in the northeastern quarter of the site. Non-methane organic vapor concentrations measured with an HNu in all the open boreholes ranged from 0 ppm to 199.2 ppm. Lithologic logs for the 22 soil borings and 12 temporary monitoring wells completed on Site 3 are presented in Appendix F. HNu readings taken in the open boreholes are also presented in Appendix F.

# 3.7.2 Water Levels and Groundwater/Surface Water Flow

Tables 3-1 and 3-2 list the surficial zone static water levels and water level elevations for the Site 3 temporary monitoring wells and permanent monitoring wells, respectively. Surface water elevations measured on Site 3 are listed in Table 3-3. The depth to the water table across Site 3 varies from approximately 4 feet BLS in topographically higher areas (i.e., near the center of the northwestern quadrant of the site and along the southeastern-eastern border of the site) to approximately 1 foot BLS in topographically lower portions of the site (i.e., the drainage swale in the vicinity of the northern half of the site). When water level elevation measurements were made on Site 3, the only surface water present on the site was within the drainage swale. Figure 3-7 presents the surficial zone water level elevations measured in the temporary monitoring wells from July 23, 1991, to July 26, 1991, and corresponding groundwater flow directions in the upper portion of the surficial zone of the Sand-and-Gravel Aquifer at Site 3, determined from these elevations. Figure 3-8 presents the surface water elevations measured in the drainage swale on July 30, 1991; the water level elevations measured in the permanent monitoring wells on July 30, 1991; and the corresponding groundwater flow directions in the upper portion of the surficial zone of the Sand-and Gravel Aquifer at Site 3, determined from these elevations.

Figures 3-7 and 3-8 indicate that the direction of surficial zone groundwater flow is generally to the south-southeast across the southern two-thirds of the site and to the east-northeast across the northern one-third of the site. The horizontal hydraulic gradient is about 0.002 in the south-southeast flow direction and between about 0.001 and 0.002 in the east-northeast flow direction. The direction of surficial zone groundwater flow in the general vicinity of Site 3 is probably controlled by groundwater discharge to Pensacola Bay, located approximately 3,000 feet east-southeast of the site; however, the stormwater drainage system present on Site 3 may influence localized surficial zone groundwater flow at the site.

Table 3-3 presents the surface water elevations measured in the Site 3 drainage swale. The direction of surface water flow within the

Table 3-1

TEMPORARY MONITORING WELL CONSTRUCTION INFORMATION
AND WATER LEVEL ELEVATIONS
NAS PENSACOLA SITE 3

| Well<br>Number | Total Depth<br>(BLS) | Depth to<br>Water (BLS) | Depth to<br>Water BTOC | TOC<br>Elevation | Water Level<br>Elevation | Date<br>Measured |
|----------------|----------------------|-------------------------|------------------------|------------------|--------------------------|------------------|
| TW0 2 3        | 7.40                 | 3.43                    | 5.99                   | 30.56            | 24.57                    | 7/25/91          |
| TW0 2 4        | 6.87                 | 2,36                    | 5.42                   | 30.17            | 24.75                    | 7/26/91          |
| TW0 25         | 6.81                 | 2.16                    | 5.30                   | 30.10            | 24.80                    | 7/26/91          |
| TW0 2 6        | 7.05                 | 3.27                    | 6.12                   | 30.69            | 24.57                    | 7/24/91          |
| TW0 27         | 8.38                 | 2.83                    | 5.30                   | 29.64            | 24.34                    | 7/24/91          |
| TW0 28         | 7.91                 | 3.77                    | 5.75                   | 29.47            | 23.72                    | 7/23/91          |
| TW029          | 8.30                 | 3.58                    | 5.14                   | 27.83            | 22.69                    | 7/23/91          |
| TW030          | 8.14                 | 3.43                    | 5.15                   | 29.42            | 24.27                    | 7/25/91          |
| TW031          | 7.45                 | 3.09                    | 5.47                   | 29.98            | 24.51                    | 7/25/91          |
| TW032          | 8.22                 | 2.97                    | 5.32                   | 29.71            | 24.39                    | 7/25/91          |
| TW033          | 7.52                 | 2.98                    | 5.22                   | 29.38            | 24.16                    | 7/25/91          |
| TW034          | 8.24                 | 4.20                    | 5.80                   | 28.75            | 22.95                    | 7/23/91          |

14[NASP]UH8039:T0361/618/22

#### Notes:

All depths are in feet; all elevations are in feet referenced to mean sea level (MSL); and all wells were constructed of 2-inch diameter stainless steel with 5 feet of 0.01-inch screen.

#### Key:

BLS = Below land surface.

TOC = Top of casing.

BTOC = Below top of casing.

Source: Ecology and Environment, Inc., 1991.

Table 3-2

PERMANENT MONITORING WELL CONSTRUCTION IMPORMATION
AND WATER LEVEL ELEVATIONS
HAS PENSACOLA SITE 3

| Well<br>Number | Total Depth<br>(BLS) | Depth to<br>Water (BLS)** | Depth to<br>Water BTOC | TOC<br>Elevation | Water Level<br>Elevation | Date<br>Measured |
|----------------|----------------------|---------------------------|------------------------|------------------|--------------------------|------------------|
| GM20*          |                      |                           |                        |                  |                          |                  |
| GM21           | 12.76                | 1.14                      | 2.24                   | 26.30            | 24.06                    | 07/30/91         |
| GM22*          |                      |                           |                        |                  |                          |                  |
| GM23           | 12.84                | 1.28                      | 2.19                   | 26.11            | 23.92                    | 07/30/91         |
| GM24           | 12.745               | 1.49                      | 2.10                   | 24.91            | 22.81                    | 07/30/91         |
| GM25           | 12.74                | 4.21                      | 5.26                   | 30.15            | 24.89                    | 07/30/91         |
|                |                      |                           |                        |                  | ,                        |                  |

14[NASP]UH8039:T0361/816/22

## Notes:

All depths are in feet; all elevations are in feet referenced to mean sea level (MSL); and all wells were constructed of 2-inch diameter PVC with 2.5 feet of 0.01-inch screen.

#### Key:

\*Well destroyed; could not be measured.

\*\*Calculations based on land surface elevations from G & M 1984.

BLS = Below land surface.

TOC = Top of casing.

BTOC = Below top of casing.

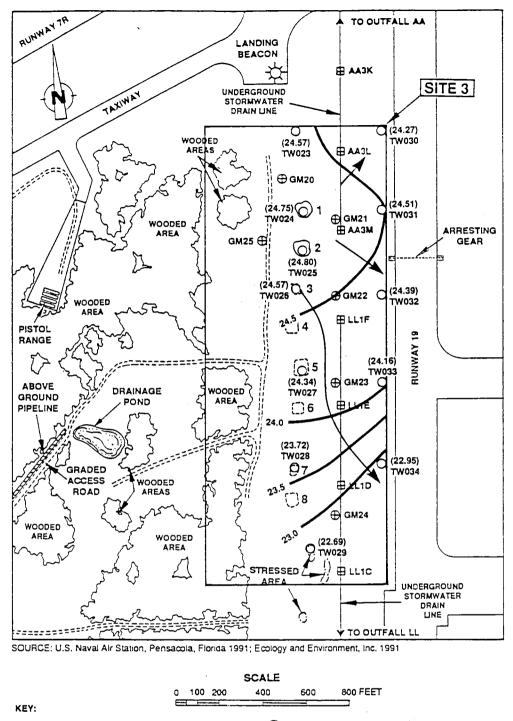
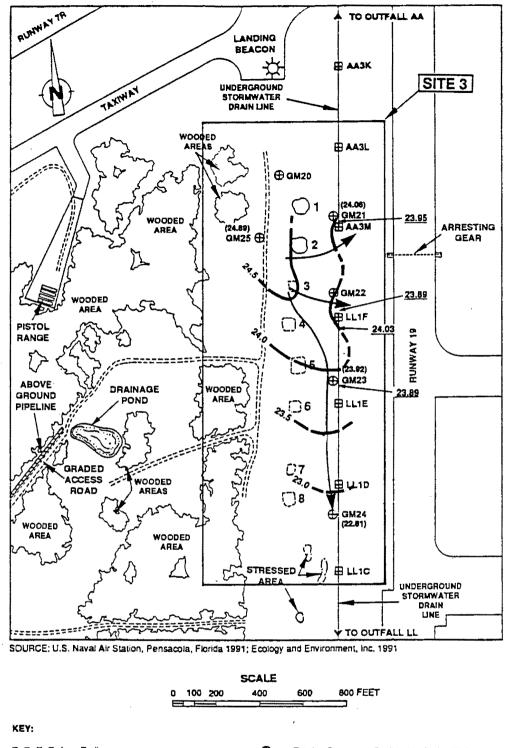

Source: Geraghty and Miller, 1984; Ecology and Environment, Inc., 1991.

Table 3-3
SURFACE WATER ELEVATIONS
NAS PENSACOLA SITE 3

| Location            | Water Level<br>Elevation | Date<br>Measured |  |
|---------------------|--------------------------|------------------|--|
| SW01 (N16+40/W2+25) | 23.95                    | 07/30/91         |  |
| SW02 (N11+50/W2+00) | 24.03                    | 07/30/91         |  |
| SW03 (N12+50/W2+00) | 23.89                    | 07/30/91         |  |
| SW04 (N9+00/W2+00)  | 23.89                    | 07/30/91         |  |

14[NASP]UH8039:T0361/818/31


Source: Ecology and Environment, Inc., 1991.



= = = Jeep Trail Temporary Monitoring Well  $\oplus$ Stormwater Catch Basin with Grate TW023 Temporary Monitoring Well Number AA3K/LL1C Stormwater Catch Basin Designation (22.95) Surficial Zone Water Level Elevation (feet above MSL) Active Burn Area Surficial Zone Water Level Elevation Isopleth (feet above MSL; dashed where inferred) Former Burn Area Groundwater Flow Direction Burn Area Number Existing Permanent Shallow Monitoring Well Φ

Figure 3-7 SURFICIAL ZONE WATER LEVEL ELEVATIONS FOR TEMPORARY MONITORING WELLS — NAS PENSACOLA SITE 3

Permanent Monitoring Well Number



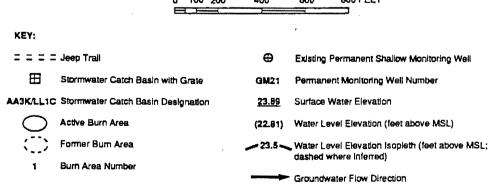



Figure 3-8 SURFACE WATER ELEVATIONS AND SURFICIAL ZONE WATER LEVEL ELEVATIONS FOR PERMANENT MONITORING WELLS (MEASURED 7/30/91) — NAS PENSACOLA SITE 3

drainage swale appears to be generally to the south; however, localized flow within the swale is toward the nearest stormwater catch basin.

#### 3.8 CHEMICAL ANALYSES

The following section presents the results of the laboratory analyses of the surface water, sediment, soil, and groundwater samples collected at Site 3. The specific analytical parameters and parameter groups are listed or referenced in Table 2-2.

#### 3.8.1 Surface Water

Table 3-4 summarizes the analytical screening results for the surface water samples collected during the Phase I investigation of Site 3. Samples SW001 and SW003 were collected from on-site stormwater catch basins LL1F and AA3M, respectively (see Figure 2-1). Samples SW002 and SW004 were collected from off-site stormwater drainage system outfalls LL and AA, respectively (see Figure 2-3). The complete analytical results for the Site 3 surface water samples are presented in Appendix G.

In general, one or more of the Site 3 surface water samples exhibited low to moderately elevated concentrations of metals, total recoverable petroleum hydrocarbons (TRPHs), volatile organic compounds (VOCs), and/or phenols. Polynuclear aromatic hydrocarbons (PAHs), pesticides, and polychlorinated biphenyls (PCBs) were not detected in any of the surface water samples.

## Metals

Chromium and zinc were the only metals detected in the Site 3 surface water samples (see Table 3-4). However, zinc at similar levels was also detected in the associated laboratory method blank; therefore, the presence of zinc in the surface water samples can be attributed to laboratory-derived contamination.

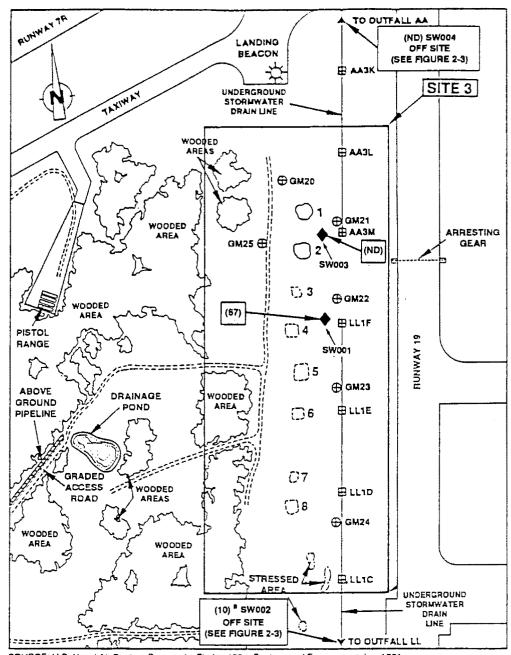
Chromium was detected in only two samples: on-site catch basin LL1F sample SW001 (67 micrograms per liter [ $\mu$ g/L]) and off-site outfall LL duplicate sample SW002D (10  $\mu$ g/L; see Table 3-4 and Figure 3-9). The detected chromium concentration in sample SW001 exceeds the FDER Class III Surface Water Quality Standard/Fresh Water of 50  $\mu$ g/L (FDER 1990c).

Table 3-4 SUMMARY ANALYTICAL SCREENING RESULTS FOR SURFACE WATER SAMPLES NAS PENSACOLA SITE 3 (All results in  $\mu g/L$ , unless noted)

|                               |                    | Sample Number (Location) |                     |                                   |                     |                     |      |
|-------------------------------|--------------------|--------------------------|---------------------|-----------------------------------|---------------------|---------------------|------|
| Parameter                     | Detection<br>Limit | P03SW001<br>(SW001)      | P035W002<br>(SW002) | P03SW002D <sup>a</sup><br>(SW002) | P03SW003<br>(SW003) | P035W004<br>(SW004) | FSWS |
| Chromium                      | 10                 | 67                       |                     | 10                                |                     |                     | 50   |
| Zinc                          | 20                 | 48 (B)                   | 26(B)               | 64(B)                             | <b></b>             | 50(B)               | 30   |
| TRPHs (mg/L)                  | 1.0                |                          |                     |                                   | 3.0                 | <del></del>         |      |
| Benzene                       | 10                 | <del></del>              |                     |                                   | 56                  |                     |      |
| Toluene                       | 10                 | 21                       | ****                | -                                 | TROPO FACIONE       |                     |      |
| Ethylbenzene                  | 10                 | 10                       |                     | .ma van                           | ~                   | ***                 |      |
| Total Xylenes                 | 10                 | 150                      | ****                |                                   | 87                  |                     |      |
| Phenols as<br>Trichlorophenol | 100                |                          |                     | 230                               | 140                 | ****                | 1.0  |

14[NASP]UH8039:T0361/669/19

Key:


FSWS  $\neq$  Florida Class III Surface Water Quality Standard/Fresh Water. Dash (--) indicates compound not detected.

#### Qualifier:

(B) = Compound also present in method blank.

Source: Ecology and Environment, Inc., 1991.

Duplicate of sample P03SW002.



SOURCE: U.S. Navai Air Station, Pensacola, Florida 1991; Ecology and Environment, Inc. 1991

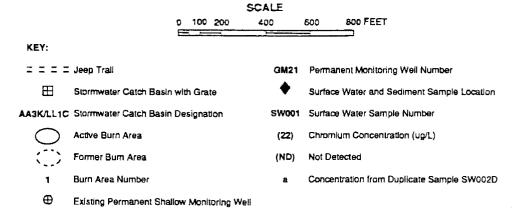



Figure 3-9 CHROMIUM CONCENTRATIONS DETECTED IN ON-SITE AND OFF-SITE SURFACE WATER SAMPLES — NAS PENSACOLA SITE 3

#### TRPHs

A low TRPH concentration of 3.0 milligrams per liter (mg/L) was detected only in on-site catch basin AA3M surface water sample SW003 (see Table 3-4 and Figure 3-10). No FDER Class III Surface Water Quality Standard/Fresh Water exists for this analyte (FDER 1990c).

# V0Cs

VOCs were detected only in on-site catch basin surface water samples SW001 and SW003 (see Table 3-4 and Figure 3-11). Xylenes were detected in both samples (150 and 87  $\mu g/L$ , respectively). Toluene (21  $\mu g/L$ ) and ethylbenzene (10  $\mu g/L$ ) were detected only in sample SW001, and benzene (56  $\mu g/L$ ) was detected only in sample SW003. No FDER Class III Surface Water Quality Standards/Fresh Water exist for these compounds (FDER 1990c.)

#### **Phenols**

Phenols were detected in only two surface water samples: on-site catch basin AA3M sample SW003 (140  $\mu g/L$ ) and off-site outfall LL duplicate sample SW002D (230  $\mu g/L$ ; see Table 3-4 and Figure 3-10). The detected phenol concentrations exceed the FDER Class III Surface Water Quality Standard/Fresh Water of 1.0  $\mu g/L$  for both phenolic compounds and phenol (FDER 1990c). It should be noted that phenols were reported as trichlorophenol for laboratory reporting purposes; however, phenols other than trichlorophenol may be present in the samples.

#### 3.8.2 Sediment

Table 3-5 summarizes the analytical screening results for the sediment samples collected during the Phase I investigation of Site 3. Samples SD001 and SD003 were collected from on-site stormwater catch basins LL1F and AA3M, respectively (see Figure 2-1). Samples SD002 and SD004 were collected from off-site stormwater drainage system outfalls LL and AA, respectively (see Figure 2-3). Appendix H presents the complete analytical screening results for sediment samples.

In general, one or more of the Site 3 sediment samples exhibited low to highly elevated concentrations of metals, TRPHs, VOCs (xylenes),

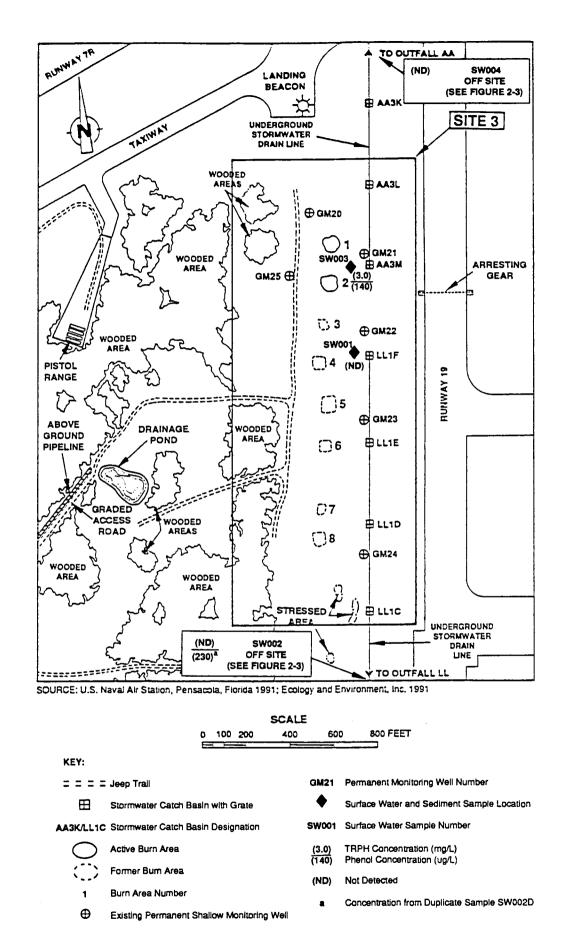
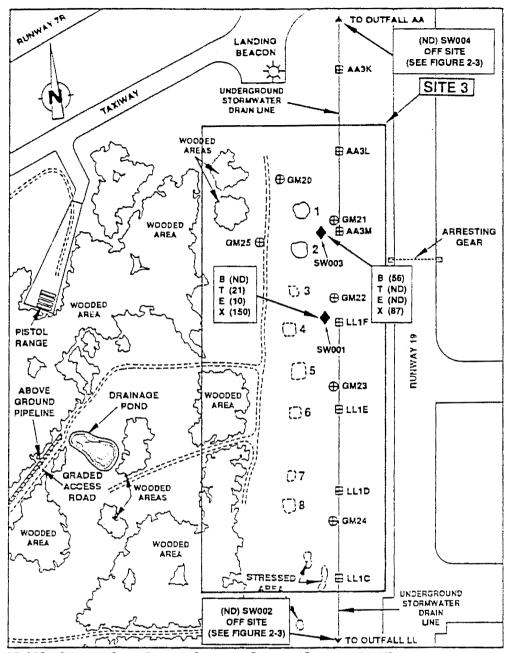




Figure 3-10 TRPH AND PHENOL CONCENTRATIONS DETECTED IN ON-SITE AND OFF-SITE SURFACE WATER SAMPLES — NAS PENSACOLA SITE 3



SOURCE: U.S. Naval Air Station, Pensacola, Florida 1991; Ecology and Environment, Inc. 1991

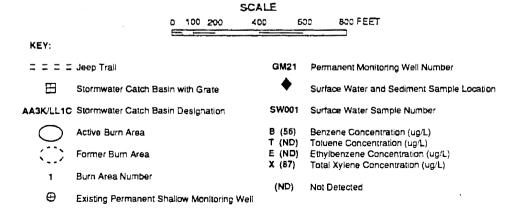



Figure 3-11 BENZENE, TOLUENE, ETHYLBENZENE, AND TOTAL XYLENE CONCENTRATIONS DETECTED IN ON-SITE AND OFF-SITE SURFACE WATER SAMPLES — NAS PENSACOLA SITE 3

Table 3-5

SUMMARY ANALYTICAL SCREENING RESULTS FOR SEDIMENT SAMPLES

NAS PENSACOLA SITE 3

(All results in mg/kg, unless noted)

|                                         |                    | Sample Number (Location) |                     |                                   |                     |                     |  |  |
|-----------------------------------------|--------------------|--------------------------|---------------------|-----------------------------------|---------------------|---------------------|--|--|
| Parameter                               | Detection<br>Limit | P03SD001<br>(SD001)      | P03SD002<br>(SD002) | P03SD002D <sup>a</sup><br>(SD002) | P035D003<br>(SD003) | P03SD004<br>(SD004) |  |  |
| Chromium                                | 1.0                | 1.8                      |                     |                                   | 7.0                 | 1.3                 |  |  |
| Zinc                                    | 2.0                | 4.0                      | 18                  | 14                                | 32                  | 9.5                 |  |  |
| Lead                                    | 4.0                | 13                       |                     | 10                                | 180                 |                     |  |  |
| Cadmium                                 | 0.50               | *****                    |                     | ~~~                               | 1.4                 |                     |  |  |
| Copper                                  | 2.5                | -                        |                     |                                   | 31                  |                     |  |  |
| TRPHs                                   | 5.0                | 11                       |                     |                                   | 770                 | 9.7                 |  |  |
| Total Xylenes (µg/kg)                   | 1,000              | 1,600                    |                     |                                   | 1,200               |                     |  |  |
| Total PAHs as<br>Benzo-a-pyrene (μg/kg) | 1,000              | 1,700                    |                     |                                   | (L)                 | (L)                 |  |  |
| Phenols as<br>Trichlorophenol (µg/kg)   | 2,000              |                          | 5,300               | 3,700                             | 21,000              | ****                |  |  |

14[NASP]UH8039:T0361/670/19

# Key:

#### Qualifier:

(L) = Present below stated detection limit.

Source: Ecology and Environment, Inc., 1991.

aDuplicate of sample P03SD002.

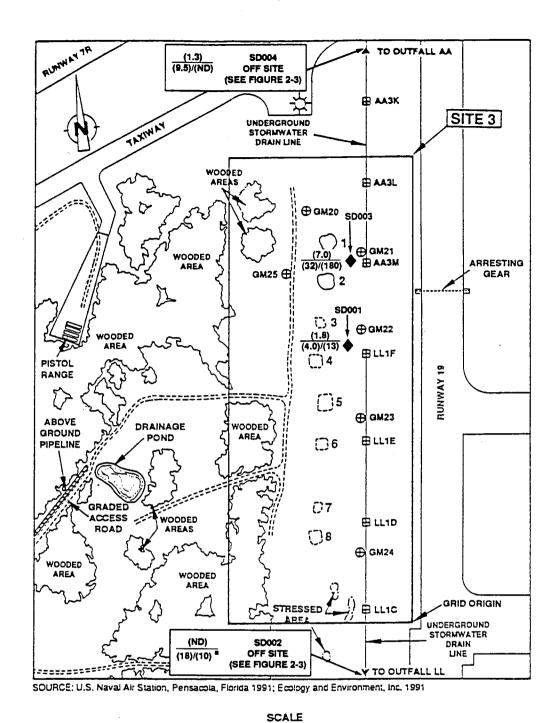
Dash (--) indicates compound not detected.

PAHs, and/or phenols. Pesticides and PCBs were not detected in any of the sediment samples.

## Metals

Sediment samples SD001, SD002, duplicate SD002, and SD004 exhibited low (<24 milligrams per kilogram [mg/kg]) total metals concentrations (see Table 3-5). In contrast, on-site sample SD003 (catch basin AA3M) not only exhibited a much higher total metals concentration (251.4 mg/kg), but also exhibited the highest detected concentrations of chromium, zinc, and lead (7.0 mg/kg, 32 mg/kg, and 180 mg/kg, respectively), as well as the only detectable levels of cadmium and copper (1.4 mg/kg and 31 mg/kg, respectively). Figure 3-12 shows the distribution of chromium, zinc, and lead concentrations detected in the Site 3 on-site and off-site sediment samples.

#### TRPHs


TRPHs were detected in both on-site catch basin sediment samples SD001 and SD003, as well as in off-site outfall AA sample SD004 (see Table 3-5 and Figure 3-13). The highest concentration was detected in on-site catch basin AA3M sample SD003 (770 mg/kg), in contrast to the concentrations detected in samples SD001 (11 mg/kg) and SD004 (9.7 mg/kg).

# V<sub>0</sub>Cs

Xylenes were the only VOCs detected. Xylenes were detected only in on-site catch basin sediment samples SD001 and SD003 at similar concentrations of 1,600 micrograms per kilogram ( $\mu$ g/kg) and 1,200  $\mu$ g/kg, respectively (see Table 3-5 and Figure 3-13).

### **PAHs**

PAHs were detected in both on-site catch basin sediment samples SD001 (1,700  $\mu g/kg$ ) and SD003 (<1,000  $\mu g/kg$ ), as well as in off-site outfall AA sample SD004 (<1,000  $\mu g/kg$ ; see Table 3-5 and Figure 3-13). It should be noted that PAHs were reported as benzo-a-pyrene for laboratory reporting purposes; however, PAHs other than benzo-a-pyrene may be present in the samples.



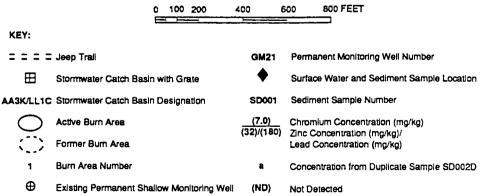
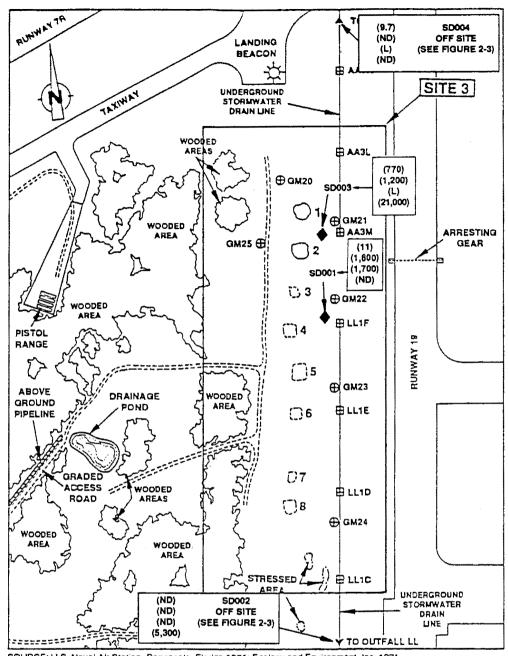




Figure 3-12 CHROMIUM, ZINC, AND LEAD CONCENTRATIONS DETECTED IN ON-SITE AND OFF-SITE SEDIMENT SAMPLES — NAS PENSACOLA SITE 3



SOURCE; U.S. Naval Air Station, Pensacola, Florida 1991; Ecology and Environment, Inc. 1991

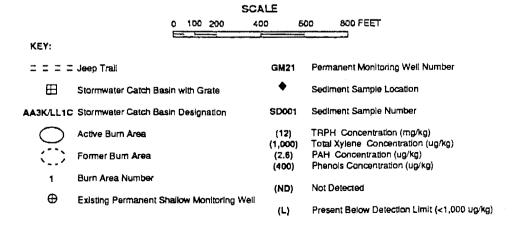



Figure 3-13 TRPH, TOTAL XYLENE, PAH, AND PHENOL CONCENTRATIONS DETECTED IN ON-SITE AND OFF-SITE SEDIMENT SAMPLES — NAS PENSACOLA SITE 3

# **Phenols**

Phenols were detected in only two of the Site 3 sediment samples: on-site catch basin AA3M sample SD003 (21,000  $\mu$ g/kg) and off-site outfall LL sample SD002 and duplicate SD002D (5,300 and 3,700  $\mu$ g/kg, respectively; see Table 3-5 and Figure 3-13). It should be noted that phenols were reported as trichlorophenol for laboratory reporting purposes; however, phenols other than trichlorophenol may be present in the samples.

#### 3.8.3 Soil

Table 3-6 summarizes the analytical screening results for soil samples collected on Site 3 and presents the Resource Conservation and Recovery Act (RCRA) Proposed Corrective Action Levels (PCALs) for soil, where applicable (EPA 1990). Figure 2-1 shows the soil boring locations on Site 3. The complete analytical screening results for Site 3 soil samples are presented in Appendix I.

In general, elevated concentrations of metals, TRPHs, VOCs, PAHs, and/or phenols were detected in one or more of the soil samples. Pesticides and PCBs were not detected in any of the soil samples.

## Metals

Figure 3-14 shows the distribution of total (analytical screening group) metals concentrations detected in the Site 3 soil samples. Figure 3-15 shows the distribution of chromium, lead, and cadmium concentrations in the Site 3 soil samples.

Most of the Site 3 soil samples exhibited very low metal concentrations. In samples collected from 23 of the 34 soil borings, metals were either not detected (13 borings) or total concentrations were less than 5 mg/kg (10 borings). Only five samples exhibited total metal concentrations greater than 20 mg/kg:

| S018A  | 108.12 mg/kg | Edge of drainage swale, east of burn area 1; |
|--------|--------------|----------------------------------------------|
| S013AD | 56.0 mg/kg   | Burn area 4, duplicate sample;               |
| S025A  | 43.77 mg/kg  | Burn area 2;                                 |
| S014A  | 36.86 mg/kg  | Burn area 6; and                             |
| S024A  | 23.5 mg/kg   | Burn area 1.                                 |

Table 3-6 SUMMARY ANALYTICAL SCREENING RESULTS FOR SOIL SAMPLES NAS PENSACOLA SITE 3 (All results in  $\mu g/kg$ , unless noted)

|                               |                    | Sample Number (Location and Depth Interval) |                     |                     |                     |                     |                     |                             |
|-------------------------------|--------------------|---------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------------------|
| <b>Param</b> eter             | Detection<br>Limit | P03S001A<br>(B001A)                         | P03S002A<br>(B002A) | P03S003A<br>(B003A) | P03S004A<br>(B004A) | P03S005A<br>(B005A) | P035006A<br>(B006A) | PCAL <sup>a</sup>           |
| Chromium (mg/kg)              | 1.0                |                                             | 1.3                 | 1.4                 | 1.2                 | 1.0                 |                     | 4 x 10 2                    |
| Zinc (mg/kg)                  | 2.0                |                                             |                     |                     | 2.5                 |                     |                     | 1.6×10 <sup>4</sup>         |
| Lead (mg/kg)                  | 4.0                |                                             |                     |                     |                     |                     |                     |                             |
| Cadmium (mg/kg)               | 0.50               |                                             |                     |                     |                     |                     | -oto men            | $4 \times 10^{\frac{1}{3}}$ |
| Copper (mg/kg)                | 2.5                |                                             |                     |                     | 3600 Name           |                     |                     | 2.5x10 <sup>3</sup>         |
| TRPHs (mg/kg)                 | 5.0                | 23                                          | 15                  | 15                  | ****                | 23                  |                     |                             |
| Toluene                       | 1,000              |                                             |                     |                     |                     |                     |                     | 2x10 <sup>7</sup>           |
| Ethylbenzene                  | 1,000              |                                             | ****                |                     |                     |                     |                     | 8 x 1 0 6                   |
| Total Xylenes                 | 1,000              |                                             | , mark words        | erea ejab           | THE STATE           | -                   |                     | 2x10 <sup>8</sup>           |
| Methylene Chloride            | 1,000              |                                             |                     | 1,000               |                     | - Link Alley        | and make            | 9 x 1 0 4                   |
| Total PAHs as                 |                    |                                             |                     |                     |                     |                     |                     |                             |
| Benzo-a-pyrene                | 1,000              |                                             | Manual Manual       |                     |                     | rina este           |                     |                             |
| Phenols as<br>Trichlorophenol | 2,000              |                                             |                     |                     |                     |                     |                     |                             |

Table 3-6 (Cont.)

|                               |                    | Sample Number (Location and Depth Interval) |                     |                     |                     |                     |                     |                                        |
|-------------------------------|--------------------|---------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------------------------|
| Parameter                     | Detection<br>Limit | P03S007A<br>(B007A)                         | P03S008A<br>(B008A) | P035009A<br>(B009A) | P035010A<br>(B010A) | P03S011A<br>(B011A) | P03S012A<br>(B012A) | PCAL <sup>®</sup>                      |
| Chromium (mg/kg)              | 1.0                | 2.1                                         |                     | 2.0                 |                     |                     |                     | 4x10 <sup>2</sup>                      |
| Zinc (mg/kg)                  | 2.0                |                                             | -Acres              |                     | 2.9                 | 3.1                 |                     | 1.6x10 <sup>4</sup>                    |
| Lead (mg/kg)                  | 4.0                | 6.1                                         |                     | Park Marin          |                     |                     |                     |                                        |
| Cadmium (mg/kg)               | 0.50               | 0.53                                        |                     |                     | ***                 |                     |                     | 4x101                                  |
| Copper (mg/kg)                | 2.5                | ****                                        |                     |                     |                     |                     |                     | 2.5x10 <sup>3</sup>                    |
| TRPHs (mg/kg)                 | 5.0                | 14                                          |                     |                     |                     |                     | 20                  |                                        |
| Toluene                       | 1,000              | Notes Annual                                | ****                |                     |                     | Ann and             |                     | 2x10 <sup>7</sup>                      |
| Ethylbenzene                  | 1,000              |                                             | -villa solar        | NO 974              |                     |                     |                     | 8x10 <sup>6</sup>                      |
| Total Xylenes                 | 1,000              | -section                                    | take one            |                     | ****                | ****                |                     | 8x10 <sup>6</sup><br>2x10 <sup>8</sup> |
| Methylene Chloride            | 1,000              |                                             |                     |                     |                     |                     | nine desir          | 9 x 1 0 4                              |
| Total PAHs as                 |                    |                                             |                     |                     |                     |                     |                     |                                        |
| Benzo-a-pyrene                | 1,000              |                                             |                     |                     |                     |                     |                     |                                        |
| Phenols as<br>Trichlorophenol | 2,000              |                                             |                     |                     |                     |                     |                     |                                        |

Table 3-6 (Cont.)

|                    |                    |                      | Sam                               | ple Number (Lo      | cation and Depth    | n Interval)         |                     |                |
|--------------------|--------------------|----------------------|-----------------------------------|---------------------|---------------------|---------------------|---------------------|----------------|
| Parameter          | Detection<br>Limit | P03S013A<br>(B013A)  | P03S013AD <sup>b</sup><br>(B013A) | P03S014A<br>(B014A) | P03S015A<br>(B015A) | P03S016A<br>(B016A) | P035017A<br>(B017A) | PCAL           |
| Chromium (mg/kg)   | 1.0                | 1.1                  |                                   |                     |                     | AND AND             | 1.8                 | 4x1            |
| Zinc (mg/kg)       | 2.0                | 5.7                  | 9.0                               | 9.2                 | 3.0                 | ****                | -                   | 1.6x1          |
| Lead (mg/kg)       | 4.0                | 13                   | 22                                | 27                  | 9.4                 |                     | 10                  |                |
| Cadmium (mg/kg)    | 0.50               | 0.57                 |                                   | 0.66                |                     |                     |                     | 4x1            |
| Copper (mg/kg)     | 2.5                | 9.7                  | 25                                |                     |                     | ***                 |                     | 2.5x1          |
| RPHs (mg/kg)       | 5.0                | 19,000               | 16,000                            | 13,000              | 480                 |                     | 230                 |                |
| Coluene            | 1,000              | 30,000               | (L)d<br>(L)d<br>(L)d<br>150,000   | е                   |                     | year case           |                     | 2x1            |
| thylbenzene        | 1,000              | 24 000 <sup>a</sup>  | (L) d                             | 7,100 <sup>e</sup>  | ***                 | HANK BURN           |                     | 8 x 1<br>2 x 1 |
| otal Xylenes       | 1,000              | 200,000 <sup>d</sup> | 150,000°                          | 43,000 <sup>e</sup> | ****                | ****                | ·                   | 2×1            |
| Methylene Chloride | 1,000              | d                    | d                                 | e                   | t <sub>m-m</sub>    |                     |                     | 9x1            |
| otal PAHs as       |                    |                      |                                   |                     |                     |                     |                     |                |
| Benzo-a-pyrene     | 1,000              | 11,000               | 10,000                            | 2,800               |                     |                     |                     |                |
| henols as          |                    |                      |                                   |                     |                     |                     |                     |                |
| Trichlorophenol    | 2,000              | 360,000              | 230,000                           | 300,000             |                     |                     | 12,000              |                |

Table 3-6 (Cont.)

|                    |                    | Sample Number (Location and Depth Interval) |                     |                     |                     |                     |                                        |                             |
|--------------------|--------------------|---------------------------------------------|---------------------|---------------------|---------------------|---------------------|----------------------------------------|-----------------------------|
| Parameter          | Detection<br>Limit | P03S018A<br>(B018A)                         | P03S019A<br>(B019A) | P035020A<br>(B020A) | P03S021A<br>(B021A) | P035022A<br>(B022A) | P035023A<br>(B023A)                    | PCAL <sup>a</sup>           |
| Chromium (mg/kg)   | 1.0                | 2.3                                         | 1.0                 | 1.6                 | 1.3                 |                     | , and the same                         | 4×10 <sup>2</sup>           |
| Zinc (mg/kg)       | 2.0                | 13                                          |                     |                     |                     | 6.2                 | ****                                   | 1.6x10 <sup>4</sup>         |
| Lead (mg/kg)       | 4.0                | 71                                          | <del></del>         |                     | 15                  |                     | ***                                    |                             |
| Cadmium (mg/kg)    | 0.50               | 0.82                                        | ****                |                     |                     |                     |                                        | 4x101                       |
| Copper (mg/kg)     | 2.5                | 21                                          |                     | -                   | ****                |                     | and the                                | 2.5x10 <sup>4</sup>         |
| TRPHs (mg/kg)      | 5.0                | 2,000                                       | 15                  | 17                  |                     |                     | 19                                     |                             |
| Toluene            | 1,000              |                                             | pass views          |                     |                     |                     | ****                                   | 2x10 7                      |
| Ethylbenzene       | 1,000              | ***                                         |                     |                     | made south          | ****                | mage made                              | 8 x 10 6                    |
| Total Xylenes      | 1,000              | <del></del>                                 | ****                |                     | AND THE PERSON      |                     | ************************************** | 2 <b>x10</b> <sup>8</sup>   |
| Methylene Chloride | 1,000              |                                             | -0.70               |                     |                     |                     |                                        | 9 <b>x 1</b> 0 <sup>4</sup> |
| Total PAHs as      |                    |                                             |                     |                     |                     |                     |                                        |                             |
| Benzo-a-pyrene     | 1,000              |                                             | STOR AREA           |                     |                     |                     |                                        |                             |
| Phenois as         |                    |                                             |                     |                     |                     |                     |                                        |                             |
| Trichlorophenol    | 2,000              | 30,000                                      | -4-40               |                     |                     |                     |                                        |                             |

Table 3-6 (Cont.)

|                               |                    |                     | Sa                  | mple Number (Locat                | tion and Depth      | Interval)           |                     |                      |
|-------------------------------|--------------------|---------------------|---------------------|-----------------------------------|---------------------|---------------------|---------------------|----------------------|
| Parameter                     | Detection<br>Limit | P03S024A<br>(B024A) | P03S025A<br>(B025A) | P035025AD <sup>C</sup><br>(B025A) | P03S026A<br>(B026A) | P03S027A<br>(B027A) | P03S028A<br>(B028A) | PCAL <sup>a</sup>    |
| Chromium (mg/kg)              | 1.0                | 1.5                 |                     |                                   |                     | 1.0                 |                     | 4×10 <sup>2</sup>    |
| Zinc (mg/kg)                  | 2.0                |                     | 7.0                 | 6.7                               | 2.0                 | ~~~                 |                     | 1.6x10 <sup>4</sup>  |
| Lead (mg/kg)                  | 4.0                | 22                  | 23                  | 15                                |                     | 14                  | ****                |                      |
| Cadmium (mg/kg)               | 0.50               |                     | 0.77                | 0.74                              |                     |                     |                     | 4x101                |
| Copper (mg/kg)                | 2.5                |                     | 13                  | 8.5                               |                     |                     | ******              | 2.5x10 <sup>3</sup>  |
| TRPHs (mg/kg)                 | 5.0                | 3,700               | 13,000              | 12,000                            | 950                 | 1,700               | yada Mah            |                      |
| Toluene                       | 1,000              | e                   | 39,000 <sup>£</sup> | 39,000 f                          |                     | a                   | and rate            | 2x10 7               |
| Ethylbenzene                  | 1,000              | e                   | 16 000              | 18,000 [                          |                     | g                   |                     | 8x106                |
| Total Xylenes                 | 1,000              | 10,000 <sup>e</sup> | 110,000 f           | 130,000 <sup>r</sup>              | 70n 300             | 2,500 <sup>9</sup>  |                     | 2x10 <sup>8</sup>    |
| Methylene Chloride            | 1,000              | e                   | f                   | f                                 | and Allen           | g                   | perfectives.        | 9 x 1 0 <sup>4</sup> |
| Total PAHs as                 |                    |                     |                     |                                   |                     |                     |                     |                      |
| Benzo-a-pyrene                | 1,000              | 3,200               | 8,600               | 9,000                             | TAXAB               | 1,300               |                     |                      |
| Phenols as<br>Trichlorophenol | 2,000              | 130,000             | 380,000             | 360,000                           | 13,000              | 61,000              |                     |                      |

Table 3-6 (Cont.)

|                                 |                    | Sample Number (Location and Depth Interval) |                     |                     |                     |                     |                     |                     |
|---------------------------------|--------------------|---------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Parameter                       | Detection<br>Limit | P03S029A<br>(B029A)                         | P03S030A<br>(A030A) | P03S031A<br>(B031A) | P035032A<br>(B032A) | P03S033A<br>(B033A) | P03S034A<br>(B034A) | PCAL <sup>°</sup>   |
| Chromium (mg/kg)                | 1.0                |                                             |                     |                     |                     |                     | `                   | 4x10 <sup>2</sup>   |
| Zinc (mg/kg)                    | 2.0                |                                             |                     |                     |                     |                     | ~~                  | 1.6x10 <sup>4</sup> |
| Lead (mg/kg)                    | 4.0                |                                             |                     |                     |                     |                     |                     |                     |
| Cadmium (mg/kg)                 | 0.50               |                                             |                     | -                   |                     |                     |                     | 4x101               |
| Copper (mg/kg)                  | 2.5                |                                             |                     |                     |                     |                     |                     | 2.5x10 <sup>3</sup> |
| TRPHs (mg/kg)                   | 5.0                | 7.6                                         | 21                  | 13                  | 6.1                 | 11                  | 11                  |                     |
| Toluene                         | 1,000              |                                             |                     |                     |                     | ang arms            | contra conggi       | 2x10 <sup>7</sup>   |
| Ethylbenzene                    | 1,000              |                                             |                     |                     |                     | -                   |                     | 8 x 10 a            |
| Total Xylenes                   | 1,000              |                                             |                     |                     |                     | -4-1-               |                     | 2×10 8              |
| Methylene Chloride              | 1,000              |                                             |                     | med edge            |                     |                     | NOM SAME            | 9x10 <sup>4</sup>   |
| Total PAHs as<br>Benzo-a-pyrene | 1,000              |                                             | ****                |                     |                     |                     |                     |                     |
| Phenols as<br>Trichlorophenol   | 2,000              | Name to the                                 | 3,900               |                     |                     |                     |                     |                     |

#### Key:

PCAL = RCRA Proposed Corrective Action Level. Dash (--) indicates compound not detected.

#### Qualifier:

(L) = Present below stated detection limit.

Source: Ecology and Environment, Inc., 1991.

a PCAL listed for chromium is for chromium (VI).

Duplicate of sample P03s013A.

Duplicate of sample P03s025A.

Detection limit for specified parameter increased by a factor of 20 in this sample.

Detection limit for specified parameter increased by a factor of 5 in this sample.

Detection limit for specified parameter increased by a factor of 10 in this sample. qDetection limit for specified parameter increased by a factor of 2 in this sample.



Figure 3-14 TOTAL METALS CONCENTRATIONS (SCREENING GROUP METALS ONLY)
DETECTED IN SOIL SAMPLES — NAS PENSACOLA SITE 3

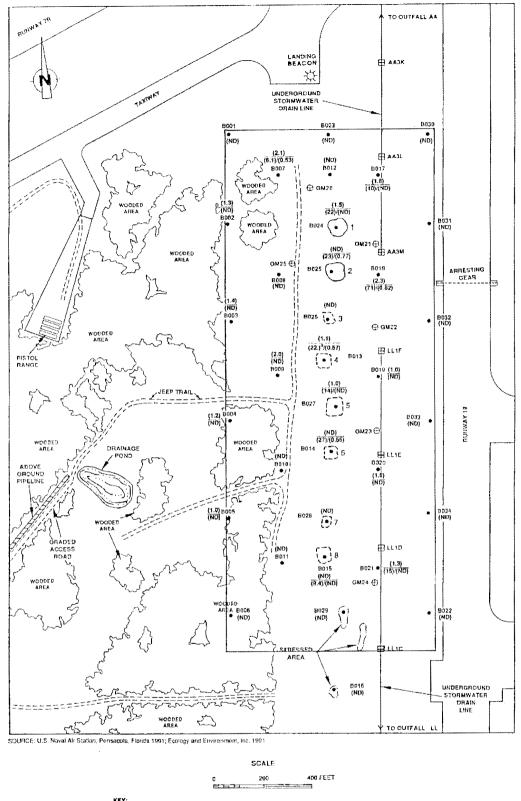





Figure 3-15 CHROMIUM, LEAD, AND CADMIUM CONCENTRATIONS DETECTED IN SOIL SAMPLES — NAS PENSACOLA SITE 3

Clearly, comparatively elevated total metal concentrations were associated with samples collected in or near the burn areas.

Chromium (14 borings), zinc (10 borings), and lead (10 borings) were the most commonly detected metals. Cadmium was detected in samples from five borings, and copper was detected in samples from three borings. The highest chromium, zinc, lead, and cadmium concentrations were detected in the sample from boring B018: chromium, 2.3 mg/kg; zinc, 13 mg/kg; lead, 71 mg/kg; and cadmium, 0.82 mg/kg. The highest copper concentration (25 mg/kg) was detected in the duplicate sample from boring B013, with the second highest level of this metal (21 mg/kg) being detected in the sample from boring B018. The detected chromiumm zinc, cadmium, and copper concentrations are well below the RCRA PCALs (400 mg/kg; 16,000 mg/kg; 40 mg/kg; and 2,500 mg/kg, respectively) for these metals. A RCRA PCAL has not been established for lead.

#### TRPHs

Figure 3-16 illustrates the distribution of TRPH concentrations detected in the Site 3 soil samples. TRPHs were detected in samples from 24 of the 34 Site 3 soil borings. The highest TRPH concentrations (19,000 mg/kg, 13,000 mg/kg, and 13,000 mg/kg) were detected in soil samples S013A, S025A, and S014A, respectively, collected in burn areas 4, 2, and 6, respectively. In addition, significantly elevated TRPH concentrations ranging from 230 mg/kg to 3,700 mg/kg were detected in the soil samples collected from borings adjacent to the drainage swale opposite and north of burn area 2 (samples S017A and S018A, respectively) and in burn areas 1, 3, 5, and 8 (samples S024A, S026A, S027A, and S015A, respectively). Low levels (<23 mg/kg) of TRPHs were present in the remaining 15 soil samples where this parameter was detected (see Table 3-6 and Figure 3-16).

## VOCs

Aromatic-type VOCs (toluene, ethylbenzene, and/or xylenes) were detected in samples from five of the Site 3 soil borings: BO13, BO14, BO24, BO25, and BO27 (see Table 3-6 and Figure 3-17). All five borings are located within identified burn areas (areas 4, 6, 1, 2, and 5, respectively) where highly elevated (>50 ppm) soil headspace

readings were recorded. The other soil samples, where aromatic-type VOCs were not detected, were all collected in areas exhibiting lower headspace readings (<50 ppm). Total aromatic-type VOC concentrations were as follows:

| Sample | S013A  | 254,000 | μg/kg | Burn | area | 4 |
|--------|--------|---------|-------|------|------|---|
| Sample | S025AD | 187,000 | μg/kg | Burn | area | 2 |
| Sample | S014A  | 50,100  | μg/kg | Burn | area | 6 |
| Sample | S024A  | 10,000  | μg/kg | Burn | area | 1 |
| Sample | S027A  | 2,500   | μg/kg | Burn | area | 5 |

Xylenes were detected in all five samples at concentrations between 2,500 µg/kg (sample S027A) and 200,000 µg/kg (sample S013A). However, the detected concentrations were well below the RCRA PCAL of 200 million µg/kg for this compound. Toluene was detected in samples collected from only two borings (B013 and B025) at concentrations (30,000 µg/kg and 39,000 µg/kg, respectively) well below the RCRA PCAL of 20 million µg/kg for this compound. Ethylbenzene was detected in samples from three borings (B013, B014, and B025), also at concentrations (7,100 to 18,000 µg/kg) well below the RCRA PCAL of 800,000 µg/kg for this compound.

Methylene chloride was the only halocarbon-type VOC detected, and it was detected only in sample S003A at a concentration (1,000  $\mu g/kg$ ) well below the RCRA PCAL of 90,000  $\mu g/kg$  for this compound. Although this common laboratory solvent was not detected in the associated laboratory method blank, the low level of methylene chloride detected in sample S003A can probably be attributed to laboratory-derived contamination.

# **PAHs**

Figure 3-16 shows the distribution of PAHs detected in the Site 3 soil samples. PAHs were detected only in samples collected from the same five burn area borings (B013, B014, B024, B025, and B027) where aromatic-type VOCs were detected. The highest PAH concentrations (9,000  $\mu$ g/kg and 11,000  $\mu$ g/kg) were detected in duplicate sample S025AD and sample S013A, respectively, collected from burn areas 2 and 4,

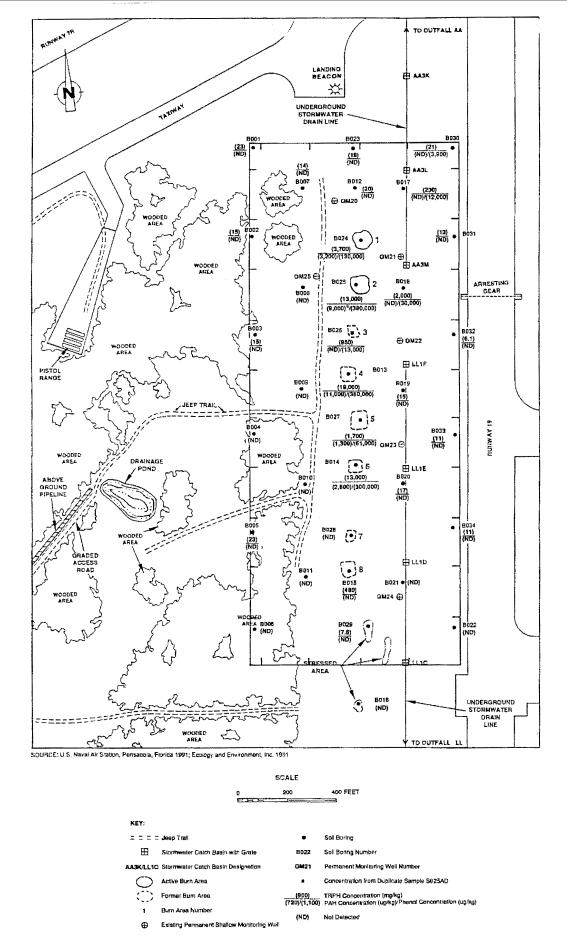



Figure 3-16 TRPH, PAH, AND PHENOL CONCENTRATIONS DETECTED IN SOIL SAMPLES — NAS PENSACOLA SITE 3

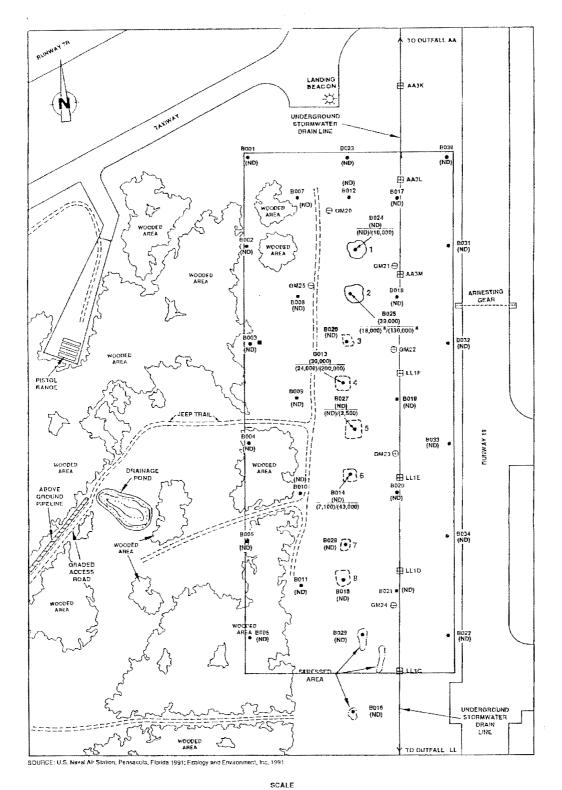





Figure 3-17 TOLUENE, ETHYLBENZENE, AND TOTAL XYLENE CONCENTRATIONS DETECTED IN SOIL SAMPLES AND SAMPLING LOCATION WHERE METHYLENE CHLORIDE WAS DETECTED — NAS PENSACOLA SITE 3

respectively. In addition, samples SO24A, SO27A, and SO14A, collected from burn areas 1, 5, and 6, respectively, exhibited PAH concentrations of 3,200  $\mu$ g/kg, 1,300  $\mu$ g/kg, and 2,800  $\mu$ g/kg, respectively.

#### **Phenols**

Figure 3-16 illustrates the distribution of phenol concentrations detected in the Site 3 soil samples. Phenols were detected in samples collected from nine of the Site 3 soil borings: B013, B014, and B024 through B027 (burn areas 4, 6, 1, 2, 3, and 5, respectively); B017 and B018 (drainage swale area northeast of burn area 1 and east of burn area 2, respectively); and B030 (northeast corner of Site 3). The highest phenol concentrations (61,000 to 380,000 µg/kg) were detected in samples collected from the five burn area soil borings (B013, B014, B024, B025, and B027) where aromatic-type VOCs and PAHs (as well as very elevated TRPHs) were detected. Concentrations detected in samples collected from the other four soil borings were 3,900 µg/kg (S030A); 12,000 µg/kg (S017A); 13,000 µg/kg (S026A); and 30,000 µg/kg (S018A); distinctly elevated TRPH concentrations (230 to 2,000 mg/kg) were also detected in these samples, except in S030A (21 mg/kg; see Figure 3-16).

#### 3.8.4 GROUNDWATER

#### 3.8.4.1 Field Parameters

Table 3-7 lists the groundwater temperature, pH, and specific conductance values measured in the groundwater samples from the Site 3 temporary and permanent surficial zone monitoring wells. The pH and specific conductance values ranged from 4.4 to 8.6 standard units and 20 micromhos per centimeter (µmhos/cm) to 159 µmhos/cm, respectively. These values are within the range of values reported by Clemens et al. (1989) for ambient groundwater in Escambia County; however, the average measured temperature of the Site 3 groundwater samples (26.4°C) is approximately 4°C higher than the average temperature (22.3°C) of 19 groundwater samples collected from the Sand-and-Gravel Aquifer in Escambia County (Clemens et al. 1989). No floating or sinking immiscible hydrocarbons were observed in any of the wells; however, oily

Table 3-7

GROUNDWATER FIELD PARAMETERS
NAS PENSACOLA SITE 3

|         |             |         | Specific    |          |
|---------|-------------|---------|-------------|----------|
| Well    | Temperature | рн      | Conductance | Date     |
| Number  | (°C)        | (units) | (µmhos/cm)  | Measured |
| TW0 23  | 27.0        | 5.9     | 137         | 7/25/91  |
| TW0 2 4 | 27.0        | 5.9     | 159         | 7/26/91  |
| TW0 25  | 29.0        | 5.2     | 90          | 7/26/91  |
| TW026   | 28.0        | 4.8     | 39          | 7/24/91  |
| TW027   | 28.0        | 4.4     | 94          | 7/24/91  |
| TW0 28  | 27.0        | 5.6     | 28          | 7/24/91  |
| TW029   | 27.0        | 5.3     | 32          | 7/24/91  |
| TW030   | 27.0        | 4.9     | 41          | 7/25/91  |
| TW031   | 28.0        | 6.3     | 100         | 7/26/91  |
| TW032   | 27.0        | 6.3     | 87          | 7/26/91  |
| TW033   | 28.0        | 5.2     | 47          | 7/26/91  |
| TW034   | 27.0        | 5.7     | 56          | 7/24/91  |
| GM20*   |             |         |             |          |
| GM21    | 22.0        | 6.8     | 80          | 5/03/91  |
| GM22*   |             |         |             |          |
| GM23    | 23.0        | 7.2     | 30          | 5/03/91  |
| GM24    | 24.0        | 6.6     | 20          | 5/03/91  |
| GM25    | 23.0        | 8.6     | 40          | 5/03/91  |

# Key:

\*Well destroyed; could not be measured.

Source: Ecology and Environment, Inc., 1991.

sheens (iridescence) were observed during collection of groundwater samples from temporary monitoring wells TWO23, TWO24, TWO26, and TWO27.

Temporary monitoring well information, including field parameter and groundwater elevation data, are presented in Appendix F.

# 3.8.4.2 Analytical Screening Parameters

Table 3-8 summarizes the analytical screening results for ground-water samples collected from the 12 temporary monitoring wells installed on Site 3. Figure 2-1 shows the locations of the Site 3 temporary monitoring wells. The complete analytical screening results for the groundwater samples are presented in Appendix J.

In general, one or more of the temporary monitoring well samples exhibited elevated concentrations of metals, VOCs, PAHs, and phenols. However, it is possible that the elevated metals concentrations detected in the groundwater samples may reflect leaching or dissolution of aquifer matrix materials entrained in these unfiltered samples by the acid employed as a preservative, rather than actual groundwater contamination (see Section 3.9). TRPHs were detected at low concentrations in only four samples. Pesticides and PCBs were not detected in any of the groundwater samples.

# Metals

Figure 3-18 shows the distribution of chromium, lead, and cadmium concentrations in the Site 3 temporary and (for reference) permanent monitoring well groundwater samples. Figure 3-19 shows the distribution of total metals concentrations in the Site 3 temporary and (for reference, analytical screening group metals only) permanent monitoring well groundwater samples. As noted on Figure 3-19, the total metals values reported for the samples from temporary wells TW026 through TW029 and TW034 do not include zinc. Because zinc was detected at similar levels in the associated laboratory method blanks, the presence of this metal in these groundwater samples may be attributable to laboratory-derived contamination.

As shown in Table 3-8, chromium, lead, and cadmium were detected in several of the temporary well groundwater samples at concentrations exceeding the corresponding Florida Primary Drinking Water Standards

Table 3-8

SUMMARY ANALYTICAL SCREENING RESULTS FOR GROUNDWATER SAMPLES
(FROM TEMPORARY MONITORING WELLS)

NAS PENSACOLA SITE 3

(All results in \(\rho g/L\), unless noted)

|                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     | Sample Numb         | er (Location)       |                                   |                     |                 |
|-------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|-----------------------------------|---------------------|-----------------|
| Parameter                     | Detection<br>Limit | P03GW023<br>(TW023)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P03GW024<br>(TW024) | P03GW025<br>(TW025) | P03GW026<br>(TW026) | P03GW027<br>(TW027) | P03GW027D <sup>a</sup><br>(TW027) | P03GW028<br>(TW028) | FPDWS/<br>FSDWS |
| Chromium                      | 10                 | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78                  | 19                  |                     | 150                 | 150                               | ****                | 50              |
| Zinc                          | 20                 | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 4                 | 56                  | 31(B)               | 62(B)               | 75(B)                             | 24(B)               | 5,000           |
| Lead                          | 40                 | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,800               | 740                 | 95                  | 560                 | 580                               |                     | 50              |
| Cadmium                       | 5.0                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , <del></del>       | 15                  |                     | 7.9                 | 9.5                               |                     | 10              |
| Nickel                        | 40                 | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                     |                     |                     | 41                                |                     |                 |
| Copper                        | 25                 | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                  | 62                  |                     | 160                 | 180                               | *******             | 1,000           |
| TRPHs (mg/L)                  | 1.0                | - T- Marie - M | 10                  | 11                  | 7.3                 | 5.2                 | 4.4                               | ****                |                 |
| Benzene                       | 10                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 810b                | c                   | d                   | e                   | e                                 | ****                | 1               |
| Toluene                       | 10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | р                   | 3,900 <sup>C</sup>  | d                   | e                   | e                                 |                     | _               |
| Total Xylenes                 | 10                 | aprilla manon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,500 <sup>b</sup>  | 2,400               | 220 <sup>d</sup>    | 1,400 <sup>8</sup>  | 1,600 <sup>e</sup>                | ****                |                 |
| Total PAHs as                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                     |                     |                                   |                     |                 |
| Benzo-a-pyrene                | 100                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                 | 120                 | (L)                 |                     |                                   | -ner-settes         |                 |
| Phenols as<br>Trichlorophenol | 100                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,400               | 3,700               |                     | 800                 | 930                               | -mails water        |                 |

Key at end of table.

14[NASP]UH8039:T0361/642/5

Table 3-8 (Cont.)

|                                 |                    | Sample Number (Location) |                     |                     |                     |                     |                     |                 |  |
|---------------------------------|--------------------|--------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------|--|
| Parameter                       | Detection<br>Limit | P03GW029<br>(TW029)      | P03GW030<br>(TW030) | P03GW031<br>(TW031) | P03GW032<br>(TW032) | P03GW033<br>(TW033) | P03GW034<br>(TW034) | FPDWS/<br>FSDWS |  |
| Chromium                        | 10                 |                          | 58                  | 12                  | 11                  | 14                  | 25                  | 50              |  |
| Zinc                            | 20                 | 24(B)                    | 33                  |                     | 30                  |                     | 24(B)               | 5,000           |  |
| Lead                            | 40                 |                          |                     |                     |                     |                     |                     | 50              |  |
| Cadmium                         | 5.0                | ***                      | 5.3                 | ****                | 5.0                 | 7.3                 |                     | 10              |  |
| Nickel                          | 40                 |                          |                     |                     | NAME AND            |                     |                     |                 |  |
| Copper                          | 25                 |                          |                     | - ap com-           | -                   | ***                 |                     | 1,000           |  |
| TRPHs (mg/L)                    | 1.0                |                          |                     |                     |                     |                     |                     |                 |  |
| Benzene                         | 10                 | b                        | Head states         |                     |                     |                     | Allea Marie         | 1               |  |
| Coluene                         | 10                 | 'p                       | ***                 |                     |                     |                     | made needs          |                 |  |
| Total Xylenes                   | 10                 | 1,200 <sup>b</sup>       | ating America       | note about          |                     |                     |                     |                 |  |
| Total PAHs as<br>Benzo-a-pyrene | 100                |                          |                     |                     | -10 Auto            |                     | ***                 |                 |  |
| Phenols as<br>Trichlorophenol   | 100                | 200                      |                     |                     |                     |                     | note mane           |                 |  |

# Key:

#### Qualifiers:

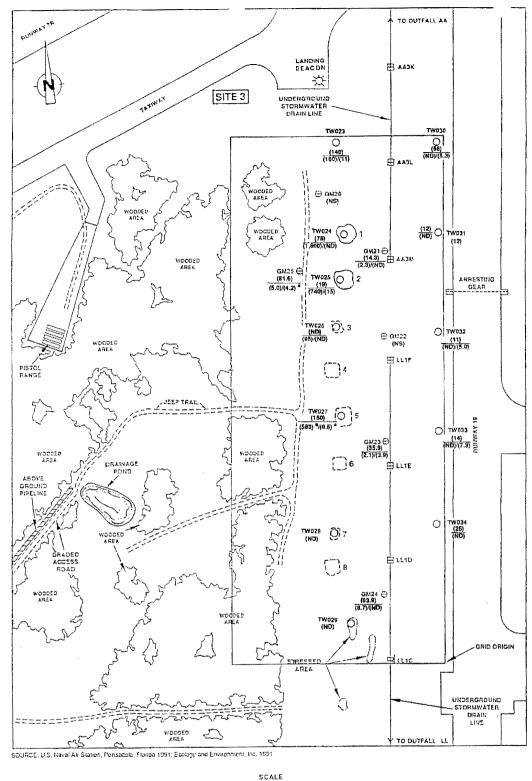
- (B) = Present in method blank.
- (L) = Present below stated detection limit.

Source: Ecology and Environment, Inc., 1991.

Duplicate of sample P03GW027.

Detection limit for specified parameter increased by a factor of 20 in this sample.

Consider the specified parameter increased by a factor of 100 in this sample.


Detection limit for specified parameter increased by a factor of 5 in this sample.

Detection limit for specified parameter increased by a factor of 50 in this sample. Dash (--) indicates compound not detected.

(FPDWSs) of 50  $\mu$ g/L, 50  $\mu$ g/L, and 10  $\mu$ g/L, respectively (FDER 1990a). Zinc and copper were also detected in several samples, but at concentrations well below the Florida Secondary Drinking Water Standards (FSDWSs) of 5,000  $\mu$ g/L and 1,000  $\mu$ g/L, respectively (FDER 1990a). Nickel was detected in only two samples, at concentrations well below the Florida Groundwater Guidance Concentration (FGGC) of 150  $\mu$ g/L (FDER 1989).

As indicated on figures 3-18 and 3-19, elevated metals concentrations were primarily associated with samples from temporary wells completed in burn areas 1 through 3 and 5 (wells TW024 through TW027, respectively) and along the northern site boundary (TW023 and TW030). All of the above burn area temporary well samples contained lead at concentrations (95 to 1,800 µg/L) exceeding the FPDWS of 50 µg/L; two samples (GW024 and GW027) contained chromium at concentrations (78 and 150 µg/L, respectively) exceeding the FPDWS of 50 µg/L; and one sample (GWO25) contained cadmium at a concentration exceeding the FPDWS of 10 µg/L (FDER 1990a). The sample from northern boundary temporary well TW023 contained lead (160  $\mu$ g/L), chromium (140  $\mu$ g/L), and cadmium (11 µg/L) at concentrations exceeding the above-referenced FPDWSs, and the sample from well TW030 contained chromium (58  $\mu$ g/L) at a concentration slightly above the FPDWS. All of the other temporary well samples either contained these metals at concentrations well below the FPDWSs or these metals were not detected (see Table 3-8).

The presence of elevated groundwater metals concentrations in the samples collected from burn area wells is consistent with the detected presence of metal and organic contamination of the soils in these areas (see Section 3.8.3). In contrast, the elevated metal concentrations in the two northern site boundary temporary well samples could reflect the possible hydraulically downgradient location of these wells relative to burn areas 1 and 2 (see figures 3-7 and 3-8); however, local sources of the detected metals cannot be discounted. Furthermore, as will be discussed further in Section 3.9, the detected presence of elevated total metals concentrations in the temporary well samples may reflect acid preservative leaching and/or dissolution of aquifer matrix materials entrained in the unfiltered temporary well samples rather than actual groundwater contamination. However, even if metals leaching



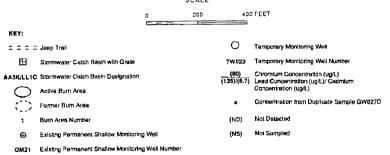
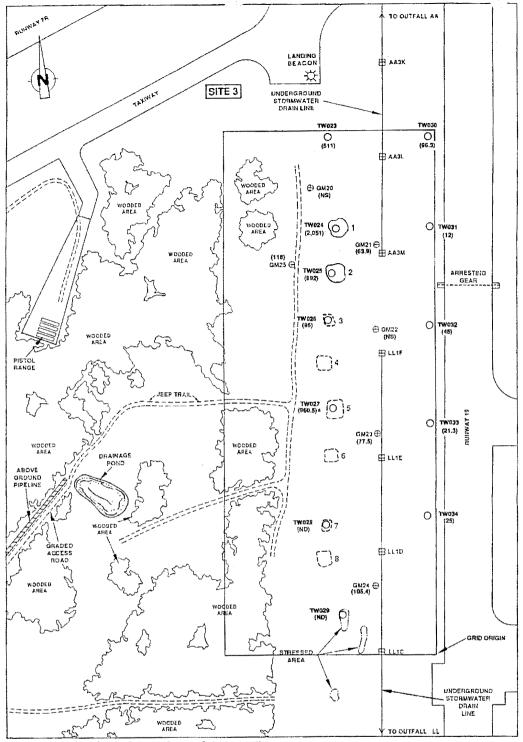
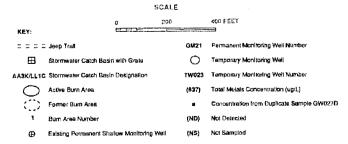





Figure 3-18 TOTAL CHROMIUM, LEAD, AND CADMIUM CONCENTRATIONS DETECTED IN GROUNDWATER SAMPLES FROM TEMPORARY AND PERMANENT MONITORING WELLS — NAS PENSACOLA SITE 3



SOURCE: U.S. Naval Air Station, Pensacola, Florida 1991; Ecology and Environment, Inc. 1991



NOTE: Total metals concentration presented for each permanent monitoring well groundwater sample is the sum of the higher detected metal concentrations, whether total or dissolved. Also, total metals concentrations presented for samples from temporary monitoring wells TW026, TW027, TW028, TW029, and TW034 do not include zinc.

Figure 3-19 TOTAL METALS (SCREENING GROUP METALS ONLY) CONCENTRATIONS DETECTED IN GROUNDWATER SAMPLES FROM TEMPORARY AND PERMANENT MONITORING WELLS — NAS PENSACOLA SITE 3

and/or dissolution from entrained aquifer materials occurred in the temporary monitoring well groundwater samples, the magnitude and distribution of elevated metals concentrations in the temporary well samples suggest that aquifer matrix sediments under portions of Site 3 might have been adversely impacted by metals introduced to the site by burning activities conducted in the on-site burn areas.

#### TRPHs

Figure 3-20 shows the distribution of TRPH concentrations in the Site 3 temporary and (for reference) permanent monitoring well samples. TRPHs were detected at low concentrations slightly above the Florida Groundwater Cleanup Standard (FGCS) of 5 mg/L (FDER 1990b) in four temporary well samples (GW024, 10 mg/L; GW025, 11 mg/L; GW026, 7.3 mg/L; and GW027, 5.2 mg/L), collected from burn areas 1, 2, 3, and 5, respectively.

#### V0Cs

Figure 3-21 shows the distribution of benzene and total benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations in the Site 3 temporary monitoring well and (for reference) permanent monitoring well groundwater samples. BTEX concentrations were detected at concentrations exceeding the FGCS of 50 µg/L (FDER 1990b) in five temporary well samples (GW024, 2,310 µg/L; GW025, 6,300 µg/L; GW026, 220 µg/L; duplicate sample GW027D, 1,600 µg/L; and GW029, 1,200 µg/L), collected in burn areas 1, 2, 3, and 5 and in an apparently stressed area located near the southern site boundary, respectively (see Figure 3-21). In addition, sample GW024 exhibited a benzene concentration of 810 µg/L, significantly greater than the FPDWS of 1 µg/L (FDER 1990a).

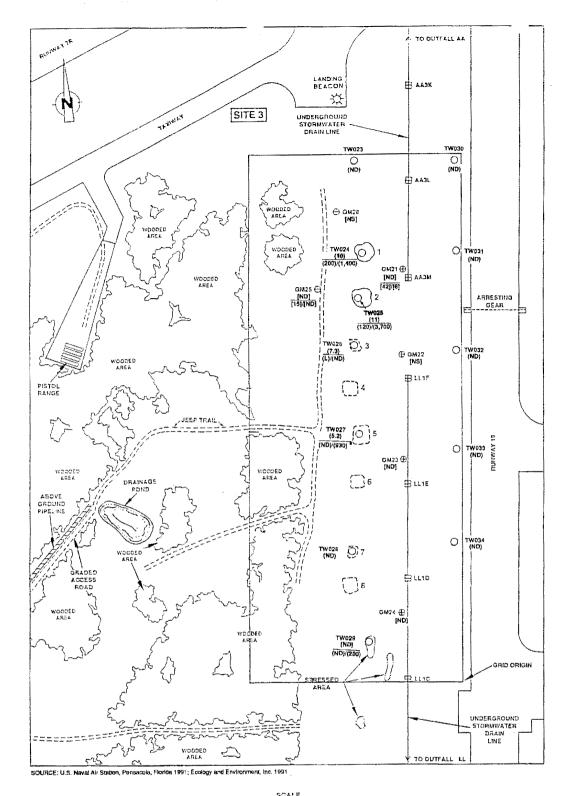
## PAHs

Figure 3-20 shows the distribution of PAH concentrations in the Site 3 groundwater samples. Burn area 1 and 2 temporary well samples GW024 and GW025 exhibited PAH concentrations of 200  $\mu$ g/L and 120  $\mu$ g/L, respectively, slightly above the potentially applicable FGCSs of 10  $\mu$ g/L for individual PAHs, excluding naphthalenes, and 100  $\mu$ g/L for total

naphthalenes (FDER 1990b). In addition, PAHs were detected in sample GW026 at a concentration below the method detection limit of 100  $\mu$ g/L (see Table 3-8).

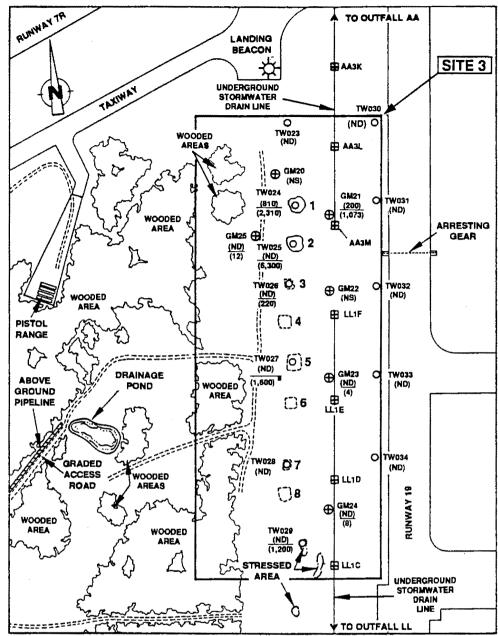
#### **Phenols**

Figure 3-20 shows the distribution of phenol concentrations detected in the Site 3 temporary well groundwater samples. Elevated phenol concentrations were detected in four of the temporary monitoring well samples (GW024, 1,400  $\mu$ g/L; GW025, 3,700  $\mu$ g/L; duplicate sample GW027, 930  $\mu$ g/L; and GW029, 200  $\mu$ g/L) collected in burn areas 1, 2, and 5 and in the apparently stressed area near the southern site boundary, respectively. These concentrations exceed the potentially applicable FGGCs for specific phenolic compounds (e.g., FGGC for phenol is 20  $\mu$ g/L; FDER 1989).


# 3.8.4.3 TAL/TCL Parameters

Tables 3-9 and 3-10 summarize the analytical results for the groundwater samples collected from four of the six permanent monitoring wells located on Site 3. As previously mentioned, permanent monitoring wells GM20 and GM22 were found to be severely damaged and therefore could not be sampled. The permanent monitoring well groundwater samples were analyzed for the TAL/TCL parameter groups, TRPHs, total alkalinity, total hardness, and total organic carbon. Figures 3-20, 3-21, and 3-22 show the locations of the existing Site 3 permanent monitoring wells. The complete TAL/TCL analytical results are presented in Appendix K.

In general, one or more of the permanent well groundwater samples exhibited elevated levels of metals, VOCs, and base/neutral-acid extractable organic compounds (BNAs). TRPHs, cyanide, pesticides, and PCBs were not detected in any of the samples.


# Metals

As shown in Table 3-9, five metals (cadmium, calcium, magnesium, sodium, and vanadium) were detected at similar concentrations in both the total and dissolved metals samples. Of these metals, only cadmium and sodium are subject to FPDWSs (10  $\mu$ g/L and 160,000  $\mu$ g/L, respectively; FDER 1990a). Cadmium was detected only in two samples, at



KEY: TW023 = = = = Jeep Trail Concentration from Duplicate Sample GW027D  $\blacksquare$ Stormwater Coton Basin with Grate TRPH Concentration (mg/L; from temporary well)
PAH Cancentration (ug/L; from temporary well)
Ph
Concentration (ug/L; from temporary well) AA3K/LL1C Stormwater Catch Basin Designation (13) (190)/(520) TRPH Concentration (ug/L; from permanent well)
Bese/Neutral Extractable Compound Concentration (ug/L: from permanent well)/Acid Extractable Compound Concentration (up/L; from permanent well) Existing Permanent Shallow Monitoring Well Ф (ND) Permanent Monitoring Well Number QM21 [NS] O Temporary Monitoring Well Present Below Detection Umit (L)

Figure 3-20 TRPH, PAH — BASE/NEUTRAL EXTRACTABLE COMPOUND (EXCLUDING PHTHALATES), AND PHENOL — ACID EXTRACTABLE COMPOUND CONCENTRATIONS DETECTED IN GROUNDWATER SAMPLES FROM TEMPORARY AND PERMANENT MONITORING WELLS — NAS PENSAÇOLA SITE 3



SOURCE: U.S. Naval Air Station, Pensacola, Florida 1991; Ecology and Environment, Inc. 1991

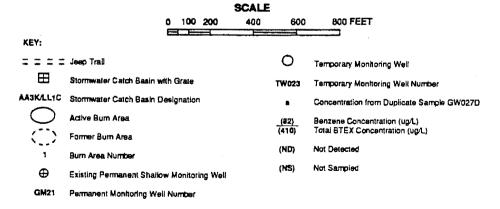



Figure 3-21 BENZENE AND TOTAL BTEX CONCENTRATIONS DETECTED IN GROUNDWATER SAMPLES FROM TEMPORARY AND PERMANENT MONITORING WELLS — NAS PENSACOLA SITE 3

Table 3-9

SUMMARY TAL/TCL ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES

(FROM PERMANENT MONITORING WELLS)

NAS PENSACOLA SITE 3

(All results in µg/L, unless noted)

|                             |                    | San                  | mple Number (        | Well Number)         |                     |                 |
|-----------------------------|--------------------|----------------------|----------------------|----------------------|---------------------|-----------------|
| Parameter                   | Detection<br>Limit | P03W021<br>(GM21)    | P03W023<br>(GM23)    | P03W024<br>(GM24)    | P03W025<br>(GM25)   | FPDWS,<br>FSDWS |
| Total Metals                |                    |                      | <u> </u>             |                      |                     |                 |
| Aluminum                    | 14                 | 306                  | 3,820                | 2,470                | 228                 |                 |
| Barium                      | 5                  | 20.7                 | 9.6                  | 5.7                  | 6.9                 | 1,000           |
| Cadmium                     | 3                  |                      | 3.9                  |                      | 3.4                 | 10              |
| Calcium                     | 95                 | 8,190                | 1,060                | 753                  | 2,940               |                 |
| Coba1t                      | 5                  | 6.4                  | 8.1                  | 7.6                  | 7.9                 |                 |
| Copper                      | 2                  | 2.8                  | 3.5                  | 3.0                  |                     | 1,000           |
| Iron                        | 5                  | 897(E)               | 643(E)               | 1,420(E)             | 619(E)              | 300             |
| Lead                        | 1                  | 2.3                  | 1.7                  | 8.7                  | 2.3                 | 50              |
| Magnesium                   | 108                | 1,700                | 730                  | 933                  | 955                 |                 |
| Manganese                   | 1                  | 11.3                 | 6.2                  | 13.3                 | 5.4                 | 50              |
| Nickel                      | 8                  | 12.7                 |                      |                      |                     |                 |
| Potassium                   | 268                | 3,060                | 1,120                |                      |                     |                 |
| Sodium                      | 74                 | 5,770                | 3,000                | 3,400                | 4,120               | 160,000         |
| Vanadium                    | 4                  | 5.4                  | 8.0                  | 6.2                  | 7.0                 | •               |
| Zinc                        | 3                  | 17.2                 | 17.6                 | 13.8                 | 10.2                | 5,000           |
| Dissolved Metals            |                    |                      |                      |                      |                     |                 |
| Aluminum                    | 14                 | 103                  | 158                  | 91.3                 | 142                 |                 |
| Antimony                    | 33                 | 52.6                 |                      |                      |                     |                 |
| Barium                      | 5                  | 20.2                 |                      | make with            |                     | 1,000           |
| Cadmium                     | 3                  |                      |                      |                      | 4.2                 | 10              |
| Calcium                     | 95                 | 8,510                | 1,060                | 762                  | 3,020               |                 |
| Chromium                    | 9                  | 14.3*                | 35.9*                | 63.9*                | 81.6*               | 50              |
| Cobalt                      | 5                  | 10.5                 | 9.5                  | 12.4                 | 11.0                |                 |
| Copper                      | 2                  | 15.2                 | 10001 30001          |                      |                     | 1,000           |
| Iron                        | 5                  | 621(E)               | 298(E)               | 283(E)               | 758(E)              | 300             |
| Lead                        | 1                  | (W)                  | 2.1                  | 2.7                  |                     | 50              |
| Magnesium                   | 108                | 1,790                | 659                  | 914                  | 978                 |                 |
| Manganese                   | 1                  | 14.4                 | 11.0                 | 18.3                 | 13.2                | 50              |
| Nickel                      | 8                  |                      | 14.5                 | 16.0                 | 17.7                |                 |
| Potassium                   | 263                | 4,190                | 1,410                | 1,140                | 920                 |                 |
| Sodium                      | 74                 | 6,280                | 3,100                | 3,290                | 4,230               | 160,000         |
| Vanadium                    | 4                  | 6.9                  | 7.2                  | 6.8                  | 7.7                 |                 |
| Zinc                        | 3                  | 19.4                 | 11.3                 | 4.3                  | 4.2                 | 5,000           |
| Methylene Chloride          | 5                  | 43,5J) b             | 5                    | 4(Ba,J)              | 4 (Ba,              | J)              |
| Acetone                     | 10                 | <u>-</u>             | 12                   | 8(B <sup>a</sup> ,J) | 17(B <sup>a</sup> ) |                 |
| Carbon Disulfide            | 5                  | 74b                  | 9                    | 5                    | 17                  |                 |
| Benzene                     | 5                  | 200~                 |                      |                      |                     | 1               |
| Ethylbenzene                | 5                  | д ү –                | 2(J)                 | 1(J)                 | 2(J)                |                 |
| Total Xylenes               | 5                  | 790 <sup>b</sup>     | 2(J)                 | 7                    | 10                  |                 |
| 2,4-Dimethylphenol          | 10                 | 6(J)                 |                      |                      |                     |                 |
| Naphthalene                 | 10                 | 35                   |                      | <del></del>          | 9(J)                |                 |
| 2-Methylnaphthalene         | 10                 | 7(J)                 | ***                  |                      | 6(J)                |                 |
| Di-N-Butyl-Phthalate        | 10                 | 1(J)                 | 1(J)                 | 1(J)                 | AND BOTH            |                 |
| Bis(2-Ethylhexyl) Phthalate | 10                 | 7(B <sup>a</sup> ,J) | 6(B <sup>a</sup> ,J) | 7(B <sup>a</sup> ,J) | 4 (B <sup>a</sup> , | T \             |

Table 3-9 (Cont.)

| Paraméter .                  |                    | Sample Number (Well Number) |                       |                       |                   |                 |
|------------------------------|--------------------|-----------------------------|-----------------------|-----------------------|-------------------|-----------------|
|                              | Detection<br>Limit | P03W021<br>(GM21)           | P03W0Z3<br>(GM23)     | P03W024<br>(GM24)     | P03W025<br>(GM25) | FPDWS,<br>FSDWS |
| Centatively Identified       |                    |                             |                       |                       |                   |                 |
| Compounds: * *               |                    |                             |                       |                       |                   |                 |
| Molecular Sulfur             |                    | 150(J)                      |                       |                       | 9.0(J)            |                 |
| Alkylated Benzene            |                    |                             |                       |                       |                   |                 |
| Isomer                       |                    | (3)502(J)                   |                       | Name Andre            | (2)18(J)          |                 |
| Dimethyl Benzene             |                    |                             |                       |                       |                   |                 |
| Isomer                       |                    | 140(J)                      |                       | Marke school          | ***               |                 |
| Ethyl Dimethyl               |                    |                             |                       |                       |                   |                 |
| Benzene Isomer               |                    | 22(J)                       |                       |                       | 6.0(J)            |                 |
| Ethyl Methyl                 |                    |                             |                       |                       |                   |                 |
| Benzene Isomer               |                    | 42(J)                       |                       |                       | NAME AND          |                 |
| Methyl Naphthalene           |                    |                             |                       |                       |                   |                 |
| Isomer                       |                    |                             |                       |                       | 5.0(1)            |                 |
| Trimethyl Benzene            |                    |                             |                       |                       |                   |                 |
| Isomer                       |                    | (2)67(J)                    |                       | A000 5000             |                   |                 |
| Unknown Acid                 |                    |                             | 27(J)                 |                       |                   |                 |
| Unknown Hydrocarbon          |                    | (2)19(J)                    | (5)30(J)              | (7)43(J)              | (3)15(J)          |                 |
| Unknown Polynuclear          |                    |                             |                       |                       |                   |                 |
| Aromatic Hydrocarbon         |                    | ***                         |                       | AND COM-              | 5(J)              |                 |
| Unknown Volatile             |                    |                             |                       |                       |                   |                 |
| Organic Compound             |                    | 60(J)                       | (3)32(J)              | 8.0(J)                | (3)28(J)          |                 |
| Unknown Extractable          |                    |                             |                       |                       |                   |                 |
| Organic Compound             | (                  | 11)223(J)                   | (9)226(J)             | (5)56(J)              | (4)31(J)          |                 |
| Unknown Extractable          |                    | _                           | 2                     | _                     |                   |                 |
| Organic Compound             |                    | 14(B <sup>a</sup> ,J)       | 49(B <sup>a</sup> ,J) | 23(B <sup>a</sup> ,J) |                   |                 |
| Cotal Alkalinity             |                    |                             |                       |                       |                   |                 |
| (mg/L as CaCo <sub>3</sub> ) |                    | 25                          | 1.0                   | Ange Name             | 4.5               |                 |
| Total Hardness               |                    |                             |                       |                       |                   |                 |
| (mg/L as CaCo <sub>3</sub> ) |                    | 47                          | 2.0                   | 6.0                   | 2.0               |                 |
| Total Organic                |                    |                             |                       |                       |                   |                 |
| Carbon (mg/L)                |                    | 32                          | 6.7                   | 1.1                   | 3.6               |                 |

Note: The number within parentheses preceding the listed concentration value represents the number of tentatively identified compounds (TICs) in this parameter group. The listed concentration represents the sum of the individual group-member concentration.

#### Key:

 $^{
m b}$  Detection limit for specified parameter increased by a factor of 10 in this sample.

FPDWS = Florida Primary Drinking Water Standard.

FSDWS = Florida Secondary Drinking Water Standard.

NA = Analyses not performed.

Dash (--) indicates compound not detected.

\*Duplicate analysis not within control limits.

- Qualifiers: (B<sup>a</sup>) = Present in method blank.
- (E) = Reported value is estimated because of the presence of interference.
- (J) = For non-TICs, estimated value; compound present but below detection limit. Also indicates that TIC concentrations are estimated because no detection limits were established for TICs.

Source: Ecology and Environment, Inc., 1991.

<sup>\*\*</sup>Values for TICs are estimated; no detection limits were established for TICs.

Table 3-10 SUMMARY TAL/TCL ANALYTICAL RESULTS FOR GROUNDWATER FIELD QA/QC SAMPLES (PROM PERMANENT MONITORING WELLS) HAS PENSACOLA SITE 3 (All results in  $\mu g/L$ , unless noted)

|                  |                    | Sample Number (Well Number/Type) |                                 |                                                 |                              |                                                          |                                                  |                 |  |
|------------------|--------------------|----------------------------------|---------------------------------|-------------------------------------------------|------------------------------|----------------------------------------------------------|--------------------------------------------------|-----------------|--|
|                  | Detection<br>Limit | P03W025<br>(GM25)                | P03W025D <sup>a</sup><br>(GM25) | P03WTB06 <sup>b</sup><br>(Bottle Trip<br>Blank) | P03WFB06<br>(Field<br>Blank) | P03WRB06 <sup>C</sup><br>(Sampling Equipment<br>Rinsate) | P03WTB06 <sup>d</sup><br>(Preservative<br>Blank) | FPDWS/<br>FSDWS |  |
| Total Metals     |                    |                                  |                                 |                                                 |                              |                                                          |                                                  |                 |  |
| Aluminum         | 14                 | 228                              | 224                             | NA                                              |                              |                                                          | 34.1                                             |                 |  |
| Barium           | 5.0                | 6.9                              | 5.6                             | NΑ                                              |                              |                                                          | 6.9                                              | 1,000           |  |
| Cadmium          | 3                  | 3.4                              | 4.0                             | NA                                              |                              |                                                          |                                                  | 10              |  |
| Calcium          | 95                 | 2,940                            | 2,790                           | NA                                              |                              |                                                          | 263                                              |                 |  |
| Chromium         | 9                  |                                  |                                 | NA                                              | 10.5*                        | -                                                        |                                                  | 50              |  |
| Cobalt           | 5                  | 7.9                              | °8.5                            | NA                                              | 11.1                         | 9.7                                                      | 12.1                                             |                 |  |
| Copper           | 2                  |                                  |                                 | NA                                              |                              |                                                          | 2.1                                              | 1,000           |  |
| Iron             | 5                  | 619(E)                           | 618(E)                          | NA                                              | 265(E)                       | 68.9(E)                                                  | 90.2(E)                                          | 300             |  |
| Lead             | 1                  | 2,3                              | 5.0(5)                          | NA.                                             |                              | (W)                                                      | 2.0(W)                                           | 50              |  |
| Magnesium        | 108                | 955                              | 978                             | NA.                                             |                              | - ,                                                      |                                                  |                 |  |
| Manganese        | 1                  | 5.4                              | 5.5                             | NA                                              | 3.1                          | 1.8                                                      | 2.2                                              | 50              |  |
| Nickel           | 8                  |                                  |                                 | N.A.                                            | 13.1                         |                                                          |                                                  |                 |  |
| Potassium        | 263                |                                  |                                 | NA                                              |                              |                                                          | 346                                              |                 |  |
| Sodium           | 74                 | 4,120                            | 3.920                           | NA                                              | 264                          | 182                                                      | 630                                              | 160,000         |  |
| Vanadium         | 4                  | 7.0                              | 5.3                             | NA                                              | 5.1                          | 4.9                                                      | 6.2                                              | ·               |  |
| Zinc             | 3                  | 10.2                             | 19.5                            | NA                                              | 17.4                         | 9.7                                                      |                                                  | 5,000           |  |
| Dissolved Metals |                    |                                  |                                 |                                                 |                              |                                                          |                                                  |                 |  |
| Aluminum         | 14                 | 142                              | 166                             | NA                                              | 20.1                         |                                                          | NA                                               |                 |  |
| Cadmium          | 3                  | 4.2                              | ~~~                             | NA                                              | 100 700                      |                                                          | AN                                               | 10              |  |
| Calcium          | 95                 | 3,020                            | 2,830                           | NA                                              | 114                          |                                                          | AN                                               |                 |  |
| Chromium         | 9                  | 81.6*                            | ·                               | NA                                              |                              |                                                          | AN                                               | 50              |  |
| Cobalt           | 5                  | 11.0                             |                                 | NA                                              | Village States               |                                                          | AN                                               |                 |  |
| Copper           | 1                  |                                  | dominan                         | NA                                              | 2.7                          | , many many                                              | AN                                               | 1,000           |  |
| Iron             | 5                  | 758(E)                           | 480(E)                          | NA                                              | 20.8(E)                      | 39.7(E)                                                  | AN                                               | 50              |  |
| Lead             | 1                  |                                  |                                 | NA                                              | (W)                          |                                                          | AN                                               | 50              |  |
| Magnesium        | 108                | 978                              | 985                             | , NA                                            |                              | <del></del>                                              | AN                                               |                 |  |
| Manganese        | 1                  | 13.2                             | 4.5                             | NA                                              | 2.0                          | 1.3                                                      | NА                                               | 50              |  |
| Nickel           | 8                  | 17.7                             |                                 | NA                                              |                              |                                                          | AN                                               |                 |  |
| Potassium        | 263                | 920                              |                                 | NΑ                                              |                              |                                                          | AN                                               |                 |  |
| Sodium           | 74                 | 4,230                            | 4,020                           | NA                                              | 403                          | 213                                                      | AN                                               | 160,000         |  |
| Vanadium         | 4                  | 7.7                              | ·                               | NA                                              |                              |                                                          | AN                                               |                 |  |
| Zinc             | 3                  | 4.2                              | 8.2                             | NА                                              | 4.7                          | 10.3                                                     | AN                                               | 5,000           |  |

Table 3-10 (Cont.)

| Parameter                                         | Detection<br>Limit | Sample Number (Well Number/Type) |                                 |                                                 |                                         |                                                        |                                                  |                 |
|---------------------------------------------------|--------------------|----------------------------------|---------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------------------|--------------------------------------------------|-----------------|
|                                                   |                    | P03W025<br>(GM25)                | P03W025D <sup>a</sup><br>(GM25) | P03WTB06 <sup>b</sup><br>(Bottle Trip<br>Blank) | P03WFB06<br>(Field<br>Blank)            | P03WRB06 <sup>C</sup><br>(Sampling Equipment<br>Blank) | P03WPB06 <sup>d</sup><br>(Preservative<br>Blank) | FPDWS/<br>FSDWS |
| Methylene Chloride                                | 5                  | 4(B <sup>a</sup> ,J)             | 2(J)                            | 28                                              | 21,000(E <sup>a</sup> )                 | 15 (B <sup>a</sup> )                                   | 25 (B <sup>a</sup> )                             |                 |
| Acetone                                           | 10                 | 17(B <sup>a</sup> )              | 13(B <sup>a</sup> )             | 21 (B <sup>a</sup> )                            | 130 (Ba)e                               | 12(B <sup>a</sup> )                                    | 19(B <sup>a</sup> )                              |                 |
| Carbon Disulfide                                  | 5                  | 17                               | 19                              | 23                                              |                                         |                                                        | -                                                |                 |
| Ethylbenzene                                      | 5                  | 2(J)                             | 2(J)                            |                                                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                        |                                                  |                 |
| Total Xylenes                                     | 5                  | 10                               | 11                              |                                                 |                                         |                                                        |                                                  |                 |
| Naphthalene                                       | 10                 | 9(J)                             | 4(J)                            | NA                                              |                                         | Militira Adminis                                       | NA                                               |                 |
| 2-Methylnaphthalene                               | 10                 | 6(J)                             | 2(J)<br>4(B <sup>a</sup> , 3    | NA                                              |                                         |                                                        | NA                                               |                 |
| Bis(2-Ethylhexyl)Phthalat                         | ę 10               | 4(B <sup>a</sup> ,J)             | 4 (B <sup>a</sup> , 3           | I) NA                                           |                                         | 5(B <sup>a</sup> ,J)                                   | AN                                               |                 |
| <pre>rentatively Identified    Compounds:**</pre> |                    |                                  |                                 |                                                 |                                         |                                                        |                                                  |                 |
| Molecular Sulfur                                  |                    | 9.0(J)                           | ***                             | ****                                            |                                         |                                                        |                                                  |                 |
| Alkylated Benzene Isom                            | er                 | (2)18(J)                         | (5)76(J)                        |                                                 |                                         |                                                        |                                                  |                 |
| Dihydro Methyl 1H-Inde                            | ne                 |                                  |                                 |                                                 |                                         |                                                        |                                                  |                 |
| Isomer                                            |                    |                                  | 6.Q(J)                          |                                                 |                                         |                                                        |                                                  |                 |
| Ethyl Dimethyl Benzene                            |                    |                                  |                                 |                                                 |                                         |                                                        |                                                  |                 |
| Isomer                                            |                    | 6.0(J)                           |                                 |                                                 |                                         |                                                        |                                                  |                 |
| Methyl Naphthalene                                |                    |                                  |                                 |                                                 |                                         |                                                        |                                                  |                 |
| Isomer                                            |                    | 5.0(J)                           | ****                            | ethin asses                                     |                                         |                                                        |                                                  |                 |
| Unknown Hydrocarbon                               |                    | (3)15(J)                         | (5)26(J)                        |                                                 | (4)24(J)                                | (4)26(J)                                               | ***                                              |                 |
| Unknown Polynuclear                               |                    |                                  |                                 |                                                 |                                         |                                                        |                                                  |                 |
| Aromatic Hydrocarbon                              |                    | 5.0(J)                           | 10(J)                           |                                                 | ****                                    |                                                        |                                                  |                 |
| Unknown Volatile Organ                            | ic                 |                                  |                                 |                                                 |                                         |                                                        |                                                  |                 |
| Compound                                          |                    | (3)28(J)                         | 5(J)                            | (2)29(J)                                        |                                         | (3)30(J)                                               | (3)26(J)                                         |                 |
| Unknown Extractable                               |                    |                                  |                                 |                                                 |                                         |                                                        |                                                  |                 |
| Organic Compound                                  |                    | (4)31(J)                         | (4)46(J)                        |                                                 | (2)19(J)                                | 8.0(J)                                                 |                                                  |                 |
| Unknown Extractable                               |                    |                                  |                                 |                                                 | _                                       | _                                                      |                                                  |                 |
| Organic Compound                                  |                    | and with                         |                                 |                                                 | 48(B <sup>a</sup> ,J)                   | 53(B <sup>a</sup> ,J)                                  | ~                                                |                 |
| Total Alkalinity (mg/L as                         | CaCo3)             | 4.5                              | 4.5                             | NA                                              | 1.5                                     | NA                                                     | NA                                               |                 |
| rotal Hardness (mg/L as C                         | aCo3)              | 2.0                              | 8.0                             | NA                                              | 2.0                                     | 3.0                                                    |                                                  |                 |
| otal Organic Carbon (mg/                          | L)                 | 3.6                              | 3.3                             | NA                                              |                                         | NΑ                                                     | NA                                               |                 |

#### Table 3-10 (Cont.)

Note: The number within parentheses preceding the listed concentration value represents the number of tentatively identified compounds (TICs) in this parameter group. The listed concentration represents the sum of the individual group-member concentrations.

#### Key:

FPDWS = Florida Primary Drinking Water Standard. FSDWS = Florida Secondary Drinking Water Standard. NA = Analyses not performed. Dash (--) indicates compound not detected.

\*Duplicate analysis not within control limits.

\*\*Values for TICs are estimated; no detection limits were established.

a Duplicate of sample P03W025.

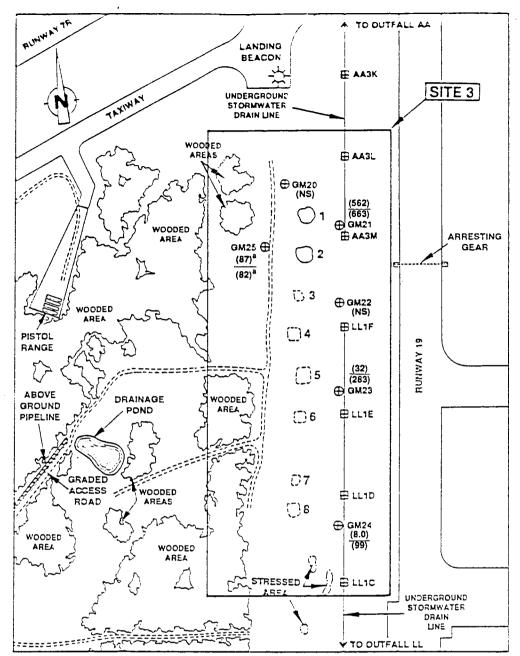
Analyzed for VOCs only.

Canalyzed for total metals, dissolved metals, TRPHs, cyanide, VOCs, BNAs, pesticides, PCBs, and hardness only.

Analyzed for total metals, TRPHs, cyanide, VOCs, and hardness only.

e Detection limit for specified parameter increased by a factor of 10 in this sample.

#### Oualifiers:


 $(B^a) = Present in method blank.$ 

(E) = Reported value is estimated because of the presence of interference.

(E<sup>a</sup>) = Identifies compounds with concentrations exceeding calibration range of the GC/MS instrument for the specific analysis.

- (J) = For non-TICs, estimated value; compound present but below detection limit. Also indicates that TIC concentrations are estimated because no detection limits were established for TICs.
- (S) = The reported value was determined by the method of standard additions.
- (W) = Post digestion spike for furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.

Source: Ecology and Environment, Inc., 1991.



SOURCE: U.S. Naval Air Stalion, Pensacola, Florida 1991; Ecology and Environment, Inc. 1991

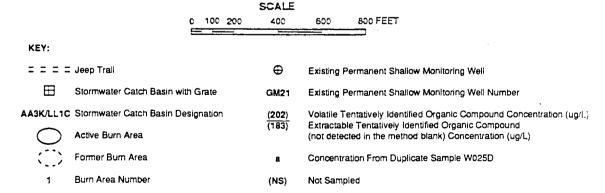



Figure 3-22 VOLATILE TENTATIVELY IDENTIFIED ORGANIC COMPOUND AND EXTRACTABLE TENTATIVELY IDENTIFIED ORGANIC COMPOUND CONCENTRATIONS DETECTED IN GROUNDWATER SAMPLES FROM PERMANENT MONITORING WELLS — NAS PENSACOLA SITE 3

concentrations below the FPDWS. Sodium was present in all samples at concentrations below the FPDWS.

With respect to the remaining metals, total (unfiltered) concentrations were generally higher than the dissolved (millipore-filtered) concentrations; however, dissolved (filtered) antimony, chromium, cobalt, manganese, nickel, and potassium concentrations, as shown in Table 3-9, were generally higher than the concentrations present in the total (unfiltered) metals samples. However, as illustrated on Figure 3-18, the highest (total or dissolved) screening group metals concentrations detected in the permanent well samples are only slightly above the lower range of metals concentrations detected in the temporary well samples.

Antimony was detected at a concentration (52.6  $\mu g/L$ ) above the FGGC of 29  $\mu g/L$  (FDER 1989) in the dissolved metals sample from well GM21. Cadmium was detected at a concentration well below the FPDWS of 10  $\mu g/L$  (FDER 1990a) in total metals samples W023 and W025 and in dissolved metals sample W025. Chromium was detected in dissolved metals samples W024 and W025 at concentrations (63.9  $\mu g/L$  and 81.6  $\mu g/L$ , respectively) above the FPDWS of 50  $\mu g/L$  (FDER 1990a).

Iron was detected in all total metals samples and all but two of the dissolved metals samples (W023 and W024) at concentrations exceeding the FSDWS of 300  $\mu$ g/L (FDER 1990a). In addition, lead was detected in all of the total metals samples and all but two of the dissolved metals samples (W021 and W025) at concentrations well below the FPDWS of 50  $\mu$ g/L.

On the basis of the data presented above, chromium and iron appear to be the only significant, potential (in terms of magnitude and frequency of occurrence) groundwater metal contaminants present in the Site 3 permanent well samples. However, the occurrences of chromium and iron in the permanent monitoring well samples do not exhibit any distinct distribution patterns. Furthermore, as noted in Section 3.8.4.2, and as will be discussed further in Section 3.9, Site 3 groundwater metals data may actually reflect metals contamination of aquifer matrix materials rather than actual groundwater contamination.

# V0Cs

Figure 3-21 shows the benzene and total BTEX concentrations detected in groundwater samples from the Site 3 permanent monitoring wells. Benzene was detected in permanent well sample W021 at a concentration of 200  $\mu g/L$ , significantly above the FPDWS of 1  $\mu g/L$  (FDER 1990a). In addition, the total BTEX concentration detected in permanent well sample W021 (1,073  $\mu g/L$ ) significantly exceeds the FGCS of 50  $\mu g/L$  (FDER 1990b).

Ethylbenzene was also detected in permanent well samples W023 and W025 at a concentration of 2  $\mu$ g/L (see Table 3-9). Total xylenes were detected in the remaining permanent well samples at concentrations between 2 and 10  $\mu$ g/L.

Carbon disulfide was detected in all permanent wells samples at concentrations ranging from 5  $\mu g/L$  to 74  $\mu g/L$  and is believed to be a laboratory artifact (see Section 3.10.2). Methylene chloride was detected at low concentrations in all samples, and acetone was detected at low concentrations in all samples except WO21. However, as will be discussed in Section 3.10, the presence of these commonly used laboratory solvents can be attributed to laboratory-derived contamination.

The above results are not consistent with the Geraghty and Miller (G & M; 1984) analytical results. G & M (1984) reported low levels of one or more of the volatile halocarbon compounds 1,1-dichloroethane; 1,2-dichloroethane; 1,1,1-trichloroethane; and methylene chloride in samples from permanent wells GM20, GM21, and GM23. In contrast, only low to slightly elevated concentrations ( $\leq 790~\mu g/L$ ) of purgeable aromatic hydrocarbons were detected in E & E's more recent samples from the Site 3 permanent wells, and no volatile halocarbons were detected in the samples.

In addition to the TCL VOCs discussed above, a number of volatile tentatively identified compounds (TICs) were detected in the permanent monitoring well samples. Figure 3-22 shows the distribution of VOC TICs detected in the permanent monitoring well samples. Table 3-9 lists all TICs detected in the VOC and BNA analyses. Appendix K identifies specific TICs associated with the VOC analyses. In general, samples that exhibited higher TCL VOC concentrations also exhibited higher VOC

TIC concentrations. The highest VOC TIC concentration (562  $\mu g/L$ ) was exhibited by permanent well sample WO21.

#### **BNAs**

Figure 3-20 shows the distribution of BNA concentrations detected in the permanent monitoring well samples. Naphthalene and 2-methylnaphthalene were detected in sample W021 (35  $\mu$ g/L and 7  $\mu$ g/L, respectively) and sample W025 (9  $\mu$ g/L and 6  $\mu$ g/L, respectively). These levels are considerably lower than the FGCS of 100  $\mu$ g/L for total naphthalenes (FDER 1990b.) Two phthalate compounds were detected in most of the samples (see Table 3-9). Because these compounds are common laboratory contaminants, the presence of these compounds in the samples can be attributed to laboratory-derived contamination (see Section 3.10.2).

As shown on Figure 3-20 and presented in Table 3-9, non-laboratory-derived BNA TICs were detected in all permanent well samples at total concentrations ranging from 82  $\mu g/L$  to 663  $\mu g/L$ . Appendix K identifies specific TICs associated with the BNA analyses.

# Remediation Parameters

The Site 3 permanent well groundwater samples were also analyzed for total alkalinity, total hardness, and total organic carbon to support subsequent remedial planning activities at Site 3, if required. Tables 3-9 and 3-10 present the analytical results for these remediation parameters. Overall, the concentrations of the above-listed remediation parameters exhibited a relatively low degree of variability in the permanent well groundwater samples. The highest concentrations of total alkalinity, total hardness, and total organic carbon (25 mg/L, 47 mg/L, and 32 mg/L, respectively) were exhibited by sample WO21.

For comparative purposes, regional (i.e., within southern Escambia County) values of these same parameters in the Sand-and-Gravel Aquifer are as follows: alkalinity (as mg/L of CaCO<sub>3</sub>) values range from <1.00 mg/L to 129.97 mg/L (Clemens et al. 1989); total hardness values range from 1.00 mg/L to 326.00 mg/L, with the majority being less than 50 mg/L (Johnson 1991); and total organic carbon values range from 2.88 mg/L to 24.41 mg/L (Clemens et al. 1989). The majority of Site 3 groundwater

samples exhibited values of alkalinity, hardness, and total organic carbon well within the reported ranges of regional values.

# 3.9 CONTAMINATION DISTRIBUTION/SOURCE DISCUSSION

All four media, surface water, sediment, soil, and groundwater, sampled on and in the vicinity of Site 3 exhibited at least trace levels of five of the contaminant groups (metals, TRPHs, VOCs, PAHs-base/neutral extractables, and phenols-acid extractables) included in the Phase I investigation. For the most part, the detected contamination appears to be clearly associated with and restricted to areas where burning activities were conducted on site. However, the Phase I results do not preclude the possible presence of additional ambient and/or local contaminant sources in the site vicinity. In the following sections, each of the sampled media will be discussed separately regarding the nature, distribution, and potential source(s) of contamination.

#### 3.9.1 Surface Water

The surface water samples (SW001 and SW003) collected from on-site stormwater catch basins LL1F and AA3M, respectively, were found to contain chromium (sample SW001 only), TRPHs (sample SW003 only), aromatic-type VOCs (BTEX, both samples), and phenols (sample SWO03 only). The detected chromium and phenol concentrations exceed the applicable (chromium) or potentially applicable (phenols) FDER Class III Surface Water Quality Standards/Fresh Water. Corresponding standards have not been established for TRPHs and the BTEX compounds. Given that these samples were collected at locations topographically downslope and hydraulically downgradient of the on-site burn areas and that elevated levels of the same contaminants were also detected in the burn area soil and groundwater samples, it appears clear that the detected surface water contamination in the on-site stormwater catch basins reflects contaminant migration from the burn areas via overland stormwater runoff and/or groundwater flow into the drainage swale which discharges into the catch basins.

No contaminants were detected in the surface water sample (SW004) collected from stormwater outfall AA located northwest of Site 3. In contrast, chromium and phenols were detected in duplicate surface water

sample SW002D collected from stormwater outfall LL located south of Site 3, and the detected phenol concentration exceeds the potentially applicable FDER Class III Surface Water Quality Standards/Fresh Water. Given the presence of chromium and phenols on Site 3, the detected presence of these analytes at outfall LL could reflect off-site migration. However, additional off-site and/or ambient sources cannot be discounted.

# 3.9.2 Sediment

The sediment samples (SD001 and SD003) collected from on-site stormwater catch basins LL1F and AA3M, respectively, were found to contain metals (primarily lead), TRPHs, xylenes, PAHs, and phenols (sample SD003 only). As discussed above with respect to the surface water samples, the downslope/downgradient position of these sampling locations with respect to the burn areas and the fact that burn area soil and groundwater samples contained elevated levels of the same contaminants clearly suggest that the detected sediment contamination in the on-site stormwater catch basins reflects contaminant migration from the burn areas via overland stormwater runoff and/or groundwater flow into the drainage swale which discharges into the catch basins.

Chromium, zinc, TPRHs, and PAHs (all at trace to low levels) were detected in sediment sample SD004, collected from stormwater outfall AA located northwest of Site 3. Zinc (low levels), lead (low level, duplicate sample only), and phenols (moderately elevated concentrations) were detected in sediment sample SD002, collected from stormwater outfall LL located south of Site 3. As discussed above with respect to the surface water samples, the detected presence of these analytes at the outfalls could reflect off-site migration, but additional off-site and/or ambient sources cannot be discounted.

# 3.9.3 Soil

The combined results of the soil headspace survey and analysis of soil samples clearly indicate that soil contamination on Site 3 is primarily restricted to burn areas 1 through 6 and adjacent areas (in particular, the drainage swale area located downslope from these burn areas). TRPHs, aromatic-type VOCs, PAHs, and phenols were the primary

contaminant species detected. The distribution and nature of the detected contamination clearly indicate that burning activities within the burn areas and overland runoff from the burn areas into the drainage swale are the primary sources of on-site soil contamination.

It should be noted that although soil headspace readings in the above-defined areas of soil contamination were above the FDER standard of 50 ppm for defining excessively contaminated soils, detected contaminant concentrations in the apparently most contaminated areas (based on headspace) were well below RCRA PCALs (where established). Consequently, even though waste oils or non-fuel materials might have been burned on Site 3, the 50 ppm headspace isopleth appears to be a fairly reliable indicator of the extent of on-site soil contamination.

It should also be noted that additional, localized areas of soil contamination were present on-site and that a number of soil samples collected outside the primary area of soil contamination described above exhibited slightly elevated TRPH concentrations. These data indicate the potential for additional, local sources of on-site contamination and for an ambient source of contamination in the site vicinity, respectively.

### 3.9.4 Groundwater

Similar to the extent of soil contamination on Site 3, groundwater contamination on Site 3 is primarily restricted to burn areas 1 through 6 and adjacent areas (in particular, the drainage swale area located downgradient of burn areas 1 and 2). Although no groundwater samples were collected in burn areas 4 and 6, the presence of soil contamination in these areas strongly suggests that, similar to burn areas 1 through 3 and 5, groundwater contamination is also present.

Metals (principally chromium, lead, cadmium, and iron), TRPHs, aromatic-type VOCs, PAHs-base/neutral extractables, and phenols-acid extractables) were the primary groundwater contaminant species detected. At one or more locations, the detected concentrations of one or more of these contamination species exceed the applicable or potentially applicable Florida groundwater standard: FPDWS (metals, benzene); FSDWS (iron); FGCS (TRPHs, total BTEX, PAHs); or FGGC (phenols).

As noted above, Site 3 groundwater contamination is restricted primarily to the vicinity of burn areas 1 through 6. However, samples collected along the northern site boundary (wells TWO23 and TWO30) exhibited chromium, lead, and/or cadmium concentrations exceeding the corresponding FPDWS; samples collected upgradient of burn area 2 (well GM25) and southeast of burn area 8 (well GM24) exhibited chromium and iron concentrations exceeding the corresponding FPDWS and FSDWS, respectively (both samples also exhibited low-level organic contamination); and the sample collected from the stressed area south of burn area 8, near the southern site boundary (well TW029), contained total xylenes (at a concentration exceeding the FGCS for total BTEX) and The occurrence of metals along the northern site boundary could reflect downgradient migration of contaminants from burn areas 1 and 2. However, overall, these data indicate the presence or potential presence of localized sources of contamination separate from the primary burn area contaminant sources.

It should be noted that detected metal concentrations in the temporary well groundwater samples may, at least in part, reflect leaching/dissolution of aquifer matrix sediments entrained in these turbid, unfiltered samples by the acid preservative. However, elevated dissolved metal concentrations (e.g., chromium and iron) were detected in one or more of the permanent well samples. Furthermore, total metal concentrations in the temporary well samples located east of the drainage swale (i.e., outside the identified on-site area of soil and groundwater contamination) were lower than total metal concentrations in the nearby permanent wells. Consequently, the very high total metal concentrations detected in the temporary well samples collected within the identified areas of on-site groundwater contamination (i.e., burn areas 1 through 3 and 5) appear to reflect actual groundwater contamination, or at least the presence of metals contamination of aquifer matrix sediments.

### 3.10 QA/QC

### 3.10.1 Field QA/QC Samples

### Analytical Screening Parameters

One surface water field duplicate sample, one sediment field

duplicate sample, two soil field duplicate samples, and one groundwater field duplicate sample were collected for the Site 3 analytical screening samples. The analytical screening results for the field duplicate samples are presented in the summary analytical tables for surface water, sediment, soils, and groundwater samples (see tables 3-4, 3-5, 3-6, and 3-8, respectively). The surface water duplicate sample (SW002D) exhibited a phenols concentration of 230 µg/L, but sample SW002 exhibited no detectable phenols. The samples can be considered in good agreement for the remaining analyses. The results for the duplicate sediment sample (SD002D), duplicate soil samples (S013AD and SD025AD), and duplicate groundwater sample (GW027D) are in overall good agreement, within acceptable limits, with the original samples.

### TAL/TCL Samples

One field duplicate sample, one bottle trip blank, one field blank, one sampling equipment rinsate blank, and one preservative blank were collected for the Site 3 TAL/TCL groundwater samples. The analytical results for Site 3 QA/QC samples are summarized in Table 3-10. Complete analytical results for the QA/QC samples are presented in Appendix K. The results for groundwater duplicate sample W025D are in overall good agreement, within acceptable limits, with the results for original sample WO25. Methylene chloride and acetone were detected in all of the groundwater field QA/QC samples. Carbon disulfide was detected in original sample WO25, duplicate sample WO25D, and trip blank TBO6. Bis(2-ethylhexyl)phthalate was detected in original sample WO25 duplicate sample W025D, and rinsate blank RB06. Cobalt, iron, manganese sodium, and vanadium were detected in all the blanks, except TBO6, which was analyzed for VOCs only. Zinc was detected in rinsate blank RBO6 and field blank FB06. Aluminum, calcium, and copper were detected in preservative blank PB06 and field blank FB06. Barium, lead, and potassium were also detected in preservative blank PBO6, and chromium and nickel were detected in field blank FBO6. Dissolved lead spike recoveries were not within control limits for rinsate blank RBO6, field blank FBO6, and sample WO21. In addition, total lead spike recoveries were not within control limits for rinsate sample RBO6 and preservative sample PB06. All spike recoveries for all remaining analyses are within control limits specified in Section 9.2 of the GQAPP. In addition, one or more TICs were detected in each of the field QA/QC blanks. The detected contaminants in each of the various blanks are of little significance given that: the detected contaminants were also present in the associated laboratory analytical method blanks and can therefore be attributed to laboratory-derived contamination; the detected contaminants do not represent significant on-site contaminants; and the detected contaminant levels were too low to significantly impact interpretation of the sample analytical results for each of the sampled media.

### 3.10.2 Laboratory QA/QC Samples

### Analytical Screening Samples

Zinc was detected in the surface water analytical method blank and in one groundwater analytical method blank. Because similar concentrations of zinc were detected in all but one of the surface water samples and in groundwater samples GW026, GW027, GW027D, GW028, GW029, and GW034, the presence of this metal in the surface water samples and the above-listed groundwater samples can be attributed to laboratory-derived contamination. In addition, a trace level of methylene chloride equal to the analytical method detection limit for this compound was detected in one soil sample (S003A; see Table 3-6), but no methylene chloride was detected in the associated analytical method blank. However, given that this common laboratory contaminant was detected at a trace level in only one sample, which exhibited no organic contaminants other than a low level of TRPHs, the occurrence of methlyene chloride detected in this sample can be attributed to laboratory-derived contamination. All spike recoveries for the screening analyses were within acceptable limits.

### TAL/TCL Samples

Methylene chloride, acetone, bis(2-ethylhexyl)phthalate, and a number of TICs (extractable unknown compounds) were each detected in one or more of the TAL/TCL groundwater samples and the associated method blanks. Therefore, the presence of these common laboratory-derived contaminants in the TAL/TCL groundwater samples can be attributed to laboratory-derived contamination. Carbon disulfide was detected at low

concentrations in all of the samples but in none of the analytical method blanks. However, upon reanalysis, no carbon disulfide was detected in any of the samples. Consequently, carbon disulfide detected in the permanent well samples probably represents a laboratory artifact not native to the permanent well samples. In addition, di-N-butyl phthalate was detected in most of the groundwater samples but in none of the analytical method blanks. The trace levels of di-N-butyl phthalate detected in the TAL/TCL groundwater samples can most likely be attributed to laboratory-derived contamination. Surrogate spike recovery criteria were not met for the BNA method blank. All other spike recoveries were within acceptable control limits as specified in Section 9.2 of the GQAPP. Additional laboratory QA/QC comments regarding the TAL/TCL samples analyses are presented in tables 3-9 and 3-10.

### 4. CONCLUSIONS

Surface water, sediment, soil, and surficial zone groundwater contamination are present on Site 3. Most of the detected contamination is restricted to and clearly associated with areas where burning activities were conducted on site and the adjacent areas. Furthermore, although the Phase I results also indicate the potential presence of localized on-site, additional off-site, and ambient sources of contamination, overall it appears that little off-site migration of contaminants has occurred. In particular, the presence of surface water and/or sediment contamination in samples collected from the stormwater outfalls located north and south of Site 3 could reflect off-site and/or ambient sources.

Metals (chromium, lead, cadmium, and iron), TRPHs, aromatic-type VOCs, PAHs-base/neutral extractables, and phenols-acid extractables are the primary on-site contaminants. On-site surface water (catch basins LL1F and AA3M) and groundwater samples contained one or more of these contaminant species at concentrations exceeding applicable or potentially applicable Florida water quality standards. Soil sample contaminant concentrations were well below RCRA PCALs, where established; however, soil headspace concentrations within and adjacent to burn areas 1 through 6 were well above the 50 ppm Florida criterion for excessively contaminated soils.

Additional assessment activities will be required at Site 3. Furthermore, Interim Remedial Measures should be implemented to address the presence of excessively contaminated soils in and adjacent to burn areas 1 through 6.

### 5. REFERENCES

- Barraclough, J. T., and O. T. Marsh, 1962, Aquifers and Quality of Ground Water along the Gulf Coast of Western Florida: Florida Bureau of Geology, Report of Investigations No. 29.
- Barraclough, J. T., 1967, Ground-water Features in Escambia and Santa Rosa Counties, Florida: Florida Geological Survey, Map Series No. 26.
- Brooks, H. K., 1981, Physiographic Divisions of Florida: Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, Gainesville, Florida.
- Carlisle, V. W., 1960, Soil Survey of Escambia County, Florida: Series 1955, No. 8, U.S. Department of Agriculture, Washington, D.C.
- Coe, C. J., 1979, Geology of the Plio-Pleistocene Sediments in Escambia and Santa Rosa Counties, Florida: Florida State University, Masters Thesis.
- Clemens, L., J. B. Dalton, and R. D. Fendick, 1989, Ambient Groundwater Quality in Northwest Florida: Northwest Florida Water Management District Water Resources Special Report 87-1; Revised Edition October, 1989.
- Coffin, J. E., 1982, Summary of Ground-water and Surface-water Data for City of Pensacola and Escambia County, Florida: U.S. Geological Survey Open-file Report 82-361.
- Cooke, C. W., 1939, Scenery of Florida Interpreted by a Geologist: Florida Geological Survey, Bulletin No. 17.
- \_\_\_\_\_\_, 1945, Geology of Florida: Florida Geological Survey, Bulletin No. 29.
- Cooley, N. R., 1978, An Inventory of Estuarine Fauna in the Vicinity of Pensacola, Florida: Florida Marine Research Publications No. 31, Florida Department of Natural Resources, Marine Research Laboratory, St. Petersburg, Florida.
- Driscoll, F. G., 1986, Groundwater and Wells, Second Edition: Johnson Division, St. Paul, Minnesota.

- Duel, W. 1973, Physicians' Guide to Air Pollution, American Medical Association.
- Ecology and Environment, Inc. (E & E), 1990a, Contamination Assessment/Remedial Activities Investigation Work Plan--Group J, Naval Air Station Pensacola, Pensacola, Florida.
- , 1990b, General Health and Safety Plan, Contamination
  Assessments and Remedial Activities, Naval Air Station Pensacola,
  Pensacola, Florida.
- \_\_\_\_\_\_\_, 1990c, Generic Project Management Plan, Contamination
  Assessments and Remedial Activities, Naval Air Station Pensacola,
  Pensacola, Florida.
- , 1990d, Generic Quality Assurance and Project Plan,
  Contamination Assessments and Remedial Activities, Naval Air
  Station Pensacola, Pensacola, Florida.
- , 1990e, Generic Site Management Plan, Contamination
  Assessments and Remedial Activities, Naval Air Station Pensacola,
  Pensacola, Florida.
- , 1991, Contamination Assessment/Remedial Activities
  Investigation, Sanitary Landfill (Site 1), Interim Data Report,
  Naval Air Station Pensacola, Pensacola, Florida.
- ERM-Southeast, Inc. (ERM), 1988, Draft Site Investigation Report NIRP Site 31 at Building 649, Naval Air Station, Pensacola, Florida.
- Flood and Associates, Inc, 1978, South Escambia and Santa Rosa counties. 201 Facilities Plan, City of Pensacola, Escambia and Santa Rosa counties, City of Gulf Breeze, Santa Rosa Island Authority, and Santa Rosa County Beach Administration.
- Florida Department of Environmental Regulation, 1988, Unpublished Marine Sediment Data from Pensacola Bay Sediment Study, 1985-1987, Tallahassee, Florida.
  - , 1989, Florida Ground Water Guidance Concentrations, February
  - , 1990a, Drinking Water Standards, Monitoring, and Reporting, Chapter 17-550, Florida Administrative Code.
  - , 1990b, Petroleum Contamination Cleanup Criteria, Chapter 17-770, Florida Administrative Code.
  - , 1990c, Surface Water Quality Standards, Chapter 17-302, Florida Administrative Code.
  - Florida Natural Areas Inventory, 1988a, Special Plants and Animals List, Escambia County, Florida. Tallahassee, Florida.

- , 1988b, Survey of Pensacola Naval Air Station and Outlying Bronson Field for Rare and Endangered Plants, Tallahassee, Florida.
- Geraghty and Miller, Inc. (G & M), 1984, Verification Study, Assessment of Potential Ground-water Pollution at Naval Air Station, Pensacola, Florida.
- , 1986, Characterization Study, Assessment of Potential Ground-water Pollution at Naval Air Station, Pensacola, Florida.
- \_\_\_\_\_\_, 1987a, Quarterly Report, Corrective Action Program, Wastewater Treatment Plant, NAS Pensacola, Florida.
- , 1987b, Lithologic Logs, NAS Pensacola Wastewater Treatment Facility, Pensacola, Florida.
- , 1988, Semi-Annual Report, Corrective-Action and Compliance-Monitoring Programs, Surge Pond Operation Permit, Wastewater Treatment Facility, Naval Air Station, Pensacola, Florida.
- Green, K. Michael, 1989, personal communication, Navy EIC.
- Heil, D. C., 1989, Personal Communication, Florida Department of Natural Resources, Tallahassee, Florida.
- Jacob, C. E., and H. H. Cooper, Jr., 1940, Report on the Ground-water Resources of the Pensacola Area in Escambia County, Florida: U.S. Geological Survey, Open-file Report 400001.
- Johnson, T., 1991, personal communication, Northwest Florida Water Management District, Havana, Florida.
- Kennedy, L. R., 1982, Rainfall Summary for the Northwest Florida Water Management District: Water Resources Special Report 82-3.
- Ketchen, H. G., and R. C. Staley, 1979, A Hydrographic Survey in Pensacola Bay: Florida State University, Department of Oceanography, Tallahassee, Florida.
- Lohman, S. W., 1972, Ground-Water Hydraulics: U.S. Geological Survey Professional Paper 708, Washington, D.C.
- Luckenbach, M. W., R. J. Diay, and L. C. Schaffner, 1988, Scientific Consultation and Analytical Services: Benthic Assessment Procedures, Project 5, Virginia Water Control Board, Gloucester Point, Virginia.
- Marsh, O. T., 1966, Geology of Escambia and Santa Rosa Counties, Western Florida Panhandle: Florida Geological Survey, Bulletin 46.

- Musgrove, R. H., J. T. Barraclough, and O. T. Marsh, 1961, Interim Report on the Water Resources of Escambia and Santa Rosa Counties, Florida: Florida Geological Survey, Information Circular No. 30.
- Musgrove, R. H., J. T. Barraclough, and R. G. Grantham, 1965, Water Resources of Escambia and Santa Rosa Counties, Florida: Florida Geological Survey, Report of Investigations No. 40.
- , 1966, Water Resources Records of Escambia and Santa Rosa
  Counties, Florida: Florida Geological Survey, Information Circular
  No. 50.
- Naval Energy and Environmental Support Activity (NEESA), 1983, Initial Assessment Study of Naval Air Station, Pensacola, Florida, NEESA 13-015.
- National Institute for Occupational Safety and Health Association, 1985, Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities.
- Northwest Florida Water Management District, 1981, Public Water Supply Systems in the Coastal Areas of Escambia, Santa Rosa, Bay, Okaloosa and Walton Counties: Northwest Florida Water Management District, Water Resources Special Report 81-3.
- Pike, E., 1989, personal communication, NAS Pensacola Public Works Department.
- Prickett, T. A., T. G. Naymik, and C. G. Lonnquist, 1981, A Random Walk Solute Transport Model for Selected Groundwater Quality Evaluations, Bulletin 654, Illinois State Water Survey, Champaign, Illinois.
- Schropp, S. J., and H. L. Windom, 1988, A Guide to the Interpretation of Metals Concentrations in Estuarine Sediments. Florida Department of Environmental Regulation, Coastal Zone Management Section, Tallahassee, Florida.
- Southeastern Geological Society (SEGS), 1986, Florida Hydrogeologic Units: Southeastern Geological Society Ad Hoc Committee on Florida Hydrostrategraphic Unit Definition (SEGS), Florida Geological Survey, Special Publication No. 28.
- Trapp, H., Jr., 1972, Availability of Ground Water for Public-Water Supply in the Pensacola Area, Florida Interim Report, June 1971: U. S. Geological Survey, Open-File Report FL72002.
- , 1973, Availability of Ground Water for Public-Water Supply in Central and Southern Escambia County, Florida Interim Report, July 1973; U.S. Geological Survey, Open-File Report FL72029.
- , 1975, Hydrology of the Sand-and-Gravel Aquifer in Central and Southern Escambia County, Florida Preliminary Report November 1973: U.S. Geological Survey, Open-File Report FL74027.

- , 1978, Preliminary Hydrologic Budget of the Sand-and-Gravel Aquifer under Unstressed Conditions, with a Section on Water Quality Monitoring, Pensacola, Florida: U.S. Geological Survey, Water-Resources Investigations 77-96.
- U.S. Environmental Protection Agency, 1984, Standard Operating Safety Guidelines.
- , 1985b, Guidance on Feasibility Studies under CERCLA: EPA, OSWER, OWPE, EPA report #540/G-85/003; NTIS ref #PB-85-238-590; OSWER Directive 9355.0-05c, U.S. EPA, Washington, D.C.
- , 1987a, Data Quality Objectives for Remedial Response Activities: OSWER Directive 9335.0-7B, U.S. EPA, Washington D.C.
- , 1987b, Compendium of Superfund Field Operations Methods: OSWER Directive 9355.0-14, EPA/540/P-87/00/a.
- , 1988a, CERCLA Compliance with Other Laws Manual, Draft: OSWER Directive 9234.1-01, U.S. EPA, Washington, D.C.
- , 1988b, Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, Draft: OSWER Directive 9355.3-01 OERR # 68-01-7090 and 68-W8-0098, U.S. EPA, Washington, D.C.
- , 1990, Corrective Action for Solid Waste Management Units at Hazardous Waste Management Facilities; Proposed Rule, 40 Code of Federal Regulations, Parts 264, 265, 270, and 271.
- U.S. Fish and Wildlife Service, 1987, Long Range Fish and Wildlife Section, Naval Air Station Pensacola and Outlying Field Bronson, Pensacola, Florida: USFWS Field Office, Panama City, Florida.
- U.S. Geological Survey, 1970a, 7 1/2 Minute Topographic Map, Fort Barrancas, Florida, Quadrangle.
- , 1970b, 7-1/2 Minute Topographic Map, West Pensacola, Florida, Quadrangle, Photorevised 1987.
- U.S. Navy, 1986, U.S. Navy Gulf Coast Strategic Homeporting Environmental Impact Statement, Appendix IV, Pensacola, Florida: Southern Division, Naval Facilities Engineering Command, Charleston, South Carolina.
- , 1987, General Development Map Nos. 1276829 to 1276839, U.S. Naval Air Station, Pensacola, Florida: Southern Division Naval Facilities Engineering Command, Charleston, South Carolina.

- Wagner, J. R., 1982, Hydrogeology of the Northwest Florida Water Management District: in Ground Water in Florida Proceedings of the First Annual Symposium on Florida Hydrogeology: Northwest Florida Water Management District, Public Information Bulletin 82-2.
- \_\_\_\_\_\_, 1989, Hydrogeologic Framework of the Northwest Florida Water Management District.
- Wagner, J. R., T. W. Allen, L. A. Clemens, and J. B. Dalton, 1984, Ambient Ground Water Monitoring Program - Phase 1: Northwest Florida Water Management District, DER Contract Number WM65.
- Walton, W. C., 1970, Ground Water Resource Evaluation: McGraw-Hill Book Co., New York.
- Water and Air Research, Inc. (WAR), 1986, Report of Collection and Analyses of Sediment, Water, and Elutriate Samples for Navy Gulf Coast Strategic Homeporting Project, Pensacola, Florida.
- Wilkins, K. T., J. R. Wagner, and T. W. Allen, 1985, Hydrogeologic Data for the Sand-and-Gravel Aquifer in Southern Escambia County, Florida: Northwest Florida Water Management District, Technical File Report 85-2.
- Wolfe, S. H., J. A. Reidenauer, and D. B. Means, 1988, An Ecological Characterization of the Florida Panhandle. USFWS Biological Report No. 88(12); Minerals Management Service OCS Study\MMS 88-0063.

### 6. FLORIDA PROFESSIONAL GEOLOGIST SEAL

I hereby affix my seal to the Interim Data Report for Crash Crew Training Area (Site 3), located at the Naval Air Station in Pensacola, Escambia County, Florida, in accordance with Chapter 492 of the Florida Statutes and applicable rules and regulations developed pursuant thereto:

Name:

Barry R. Levine

License Number:

P.G. No. 259

State:

Florida

Expiration Date:

July 31, 1994

Barry R. Jevine

Date

### APPENDIX A

BIRDS OBSERVED DURING HABITAT/BIOTA SURVEY

### Table A-1

## BIRDS OBSERVED DURING HABITAT/BIOTA SURVEY OCTOBER 1990

Mature pine forest, including grassy margins along dirt roads and thickets bordering forests.

Cardinal <u>Cardinalis cardinalis</u>
Bluejay <u>Cyanocitta cristata</u>
Gray Catbird Dumetella carolinensis

Northern Mockingbird Mimus polyglottos

Rufous-sided Towhee Pipilo erythrophthalmus

Boat-tailed Grackle

Common Grackle

Eastern Phoebe

Quiscalus major
Quiscalus quiscula
Sayornis phoebe

Carolina Wren Thryothorus ludovicianus

Brown Thrasher $\underline{\underline{Toxostoma}}$   $\underline{\underline{rufum}}$ House Wren $\underline{\underline{Troglodytes}}$   $\underline{\underline{aedon}}$ Yellow-throated Vireo $\underline{\underline{Vireo}}$   $\underline{\underline{flavifrons}}$ White-eyed Vireo $\underline{Vireo}$   $\underline{griseus}$ 

Mourning Dove Zenaida macroura

### Upland mature hardwood forest with some mix of pines.

Red-tailed Hawk <u>Buteo jamaicensis</u>

Bluejay <u>Cyanocitta cristata</u> Prairie Warbler <u>Dendroica discolor</u>

Mississippi Kite Ictinia mississippiensis

Northern Mockingbird Mimus polyglottos

Tufted Titmouse Parus bicolor

 $\begin{array}{cccc} \text{Carolina Chickadee} & & \underline{\text{Parus}} & \underline{\text{carolinensis}} \\ \text{Ruby Crowned Kinglet} & & \underline{\text{Regulus}} & \underline{\text{calendula}} \\ \end{array}$ 

Golden Crowned Kinglet Regulus satrapa

Ovenbird Seiurus aurocapillus

Neshville Warbler Vermivere ruficenilla

Nashville Warbler <u>Vermivora</u> <u>ruficapilla</u>

Mourning Dove Zenaida macroura

Beachfront, including shoreline along waterfront apron; Pensacola Bay open water; Bayou Grande open water; shoreline along dredge spoil fill area; interior mudflats of dredge spoil fill area; and primary dune/scrubby areas of beach.

Great Blue Heron

Ruddy Turnstone

Sanderling

Least Sandpiper

Semi-palmated Sandpiper

Willet

Belted Kingfisher

Semi-palmated Plover

Killdeer

Eastern Wood Pewee

Fish Crow

Bluejay

Little Blue Heron

Acadian Flycatcher

Herring Gull

Laughing Gull

Short-billed Dowitcher

Northern Mockingbird

0sprey

Brown Pelican

Double Crested Cormorant

Black-bellied Plover

Chipping Sparrow

Roseate Tern

Common Tern

Royal Tern

Forester's Tern

Sandwich Tern

Tree Swallow

House Wren

Mourning Dove

Ardea herodias

Arenaria interpres

Calidris alba

Calidris minutilla

Calidris pusilla

Catoptrophorus semipalmatus

Ceryle alcyon

Charadrius semipalmatus

Charadrius vociferus

Contopus borealis

Corvus ossifragus

Cyanocitta cristata

Egretta caerulea

Empidonax virescens

Larus argentatus

Larus atricilla

Limnodromus griseus

Mimus polyglottos

Pandion haliaetus

Pelecanus occidentalis

Phalacrocorax auritus

Pluvialis squatarola

Spizella passerina

Sterna dougallii

Sterna hirundo

Sterna maxima

Sterna porsteri

Sterna sandircensis

Tachycineta bicolor

Troglodytes aedon

Zenaida macroura

### Marshland, including emergent vegetation found along Bayou Grande, Pensacola Bay, and brackish-water ponds.

Red-winged Blackbird

Northern Shoveler

Green-winged Teal

Blue-winged Teal

Mottled Duck

Great Blue Heron

Lesser Scaup

Cardinal

Great Egret

Belted Kingfisher

Northern Flicker

Bluejay

Yellow-rumped Warbler

Little Blue Heron

Snowy Egret

Tricolored Heron

American Coot

Yellowthroat

Northern Mockingbird

0sprey

Rufous-sided Towhee

Pied-billed Grebe

Forester's Tern

House Wren

Mourning Dove

Agelaius phoeniceus

Anas clypeata

Anas crecea

Anas discors

Anas fulvigula

Ardea herodias

Aythya affinis

Cardinalis cardinalis

Casmerodius albus

Ceryle alcyon

Colaptes auratus

Cyanocitta cristata

Dendroica coronata

Egretta caerulea

Egretta thula

Egretta tricolor

Fulica americana

Geothlypis trichas

Mimus polyglottos

Pandion haliaetus

Pipilo erythrophthalmus

Podilymbus podiceps

Sterna forsteri

Troglodytes aedon

Zenaida macroura

## Forested wetland area, including mature hardwoods and thick undergrowth mixed with emergent vegetation such as cattails.

Cardinal

American Goldfinch

Marsh Wren

Northern Flicker

Bluejay

Prairie Warbler

Wood Thrush

Northern Mockingbird

Yellow-bellied Sapsucker

Brown Thrasher

Cardinalis cardinalis

Carduelis tristis

Cistothorus palustris

Colaptes auratus

Cyanocitta cristata

Dendroica discolor

Hylocichla mustelina

Mimus polyglottos

Sphyrapicus varius

Toxostoma rufum

# APPENDIX B SURFACE EMISSIONS DATA

| NITHSO W 6H30<br>Sheen present<br>In morshy area<br>7 ppm unfi-file                                                                                                     | 2008 or |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----|
|                                                                                                                                                                         | 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1     | L. |
| [unfiltered-filtered]                                                                                                                                                   | 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1     | ,  |
| B= burn aruq  W= wet area (marshy)  S= Sheen present  no plottedvalue = 0.0 ppm detected  W= Under water  D = Stormwater Drain  B = existing permanent  monitoring well | 6.1 0.1 0.2 0.1                             |    |
| Contoured at.<br>5 ppm                                                                                                                                                  | 1'= 200ft                                   |    |

| COORDINATE<br>LOCATION                                                                                                                                 | OVA<br>BACKGROUND<br>(ppm)                           | OVA ABOVE BACKGROUND (ppm)                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|
| N0+00W0+00<br>N0+00W0+50<br>N0+00W1+00<br>N0+00W1+50<br>N0+00W2+00<br>N0+00W2+50<br>N0+00W3+50                                                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               |
| N0+00W4+00<br>N0+00W4+50<br>N0+00W5+00<br>N0+00W5+50<br>N0+00W6+00<br>N0+00W6+50<br>N0+00W7+00<br>N0+00W7+50                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      |
| N0+00W8+00<br>N0+00W8+50<br>N0+50W0+00<br>N0+50W0+50<br>N0+50W1+00<br>N0+50W1+50<br>N0+50W2+00<br>N0+50W2+50<br>N0+50W3+00                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.3<br>0.3<br>0.3<br>0.4<br>0.3<br>0.3               |
| N0+50W3+50<br>N0+50W4+00<br>N0+50W4+50<br>N0+50W5+00<br>N0+50W5+50<br>N0+50W6+00<br>N0+50W6+50<br>N0+50W7+00                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      |
| N0+50W7+50<br>N0+50W8+00<br>N0+50W8+50<br>N1+00W0+00<br>N1+00W0+50<br>N1+00W1+00<br>N1+00W2+00<br>N1+00W2+50<br>N1+00W3+00<br>N1+00W3+50<br>N1+00W4+00 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.1<br>0.3<br>0.2<br>0.2<br>0.2<br>0.2<br>0.4<br>0.4<br>0.4 |

2

| COORDINATE<br>LOCATION     | OVA<br>BACKGROUND<br>(ppm) | OVA ABOVE BACKGROUND (ppm) |
|----------------------------|----------------------------|----------------------------|
|                            |                            |                            |
|                            |                            |                            |
| N1+00W4+50                 | 0.0                        | 0.4                        |
| N1+00W5+00                 | 0.0<br>0.0                 | 0.4<br>0.4                 |
| N1+00W5+50<br>N1+00W6+00   | 0.0                        | 0.4                        |
| N1+00W6+50                 | 0.0                        | 0.4                        |
| N1+00W7+00                 | 0.0                        | 0.4                        |
| N1 + 00W7 + 50             | 0.0                        | 0.3                        |
| N1+00W8+00                 | 0.0                        | 0.3                        |
| N1+00W8+50                 | 0.0                        | 0.3                        |
| N1+50W0+00                 | 0.0                        | 0.3                        |
| N1+50W0+50<br>N1+50W1+00   | 0.0<br>0.0                 | 0.2                        |
| N1+50W1+50                 | 0.0                        | 0.3                        |
| N1+50W2+00                 | 0.0                        | 0.2                        |
| N1+50W2+50                 | 0.0                        | 0.2                        |
| N1+50W3+00                 | 0.0                        | 0.2                        |
| N1+50W3+50                 | 0.0                        | 0.1                        |
| N1+50W4+00                 | 0.0                        | 0.0                        |
| N1+50W4+50                 | 0.0                        | 0.0                        |
| N1+50W5+00<br>N1+50W5+50   | 0.0<br>0.0                 | 0.1<br>0.2                 |
| N1+50W5+30                 | 0.0                        | 0.2                        |
| N1+50W6+50                 | 0.0                        | 0.2                        |
| N1+50W7+00                 | 0.0                        | 0.2                        |
| N1+50W7+50                 | 0.0                        | 0.3                        |
| N1+50W8+00                 | 0.0                        | 0.2                        |
| N1+50W8+50                 | 0.0                        | 0.2                        |
| N10+00W0+00<br>N10+00W0+50 | 0.0<br>0.0                 | 0.0<br>0.2                 |
| N10+00W0+30                | 0.0                        | 0.2                        |
| N10+00W1+50                | 0.0                        | 0.0                        |
| N10+00W2+00                | 0.0                        | 0.8                        |
| N10+00W2+50                | 0.0                        | 0.0                        |
| N10+00W3+00                | 0.0                        | 0.0                        |
| N10+00W3+50                | 0.0                        | 0.0                        |
| N10+00W4+00                | 0.0                        | 0.0                        |
| N10+00W4+50<br>N10+00W5+00 | 0.0<br>0.0                 | 0.0<br>0.0                 |
| N10+00W5+50                | 0.0                        | 0.0                        |
| N10+00W6+00                | 0.0                        | 0.0                        |
| N10+00W6+50                | 0.0                        | 0.0                        |
| N10+00W7+00                | 0.0                        | 0.0                        |
| N10+00W7+50                | 0.0                        | 0.0                        |
| N10+00W8+00                | 0.0                        | 0.0                        |
| N10+00W8+50                | 0.0                        | 0.0                        |

| COORDINATE<br>LOCATION                                                                                                                                                                                                        | OVA<br>BACKGROUND<br>(ppm)                                         | OVA ABOVE BACKGROUND (ppm)                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| N10+50W0+00<br>N10+50W0+50<br>N10+50W1+00<br>N10+50W1+50<br>N10+50W2+00<br>N10+50W2+50<br>N10+50W3+00<br>N10+50W3+50<br>N10+50W4+00<br>N10+50W4+50<br>N10+50W5+50<br>N10+50W5+50<br>N10+50W6+50<br>N10+50W6+50<br>N10+50W6+50 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.1<br>0.1<br>0.4<br>0.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| N10+50W7+50<br>N10+50W8+00<br>N10+50W8+50<br>N11+00W0+00<br>N11+00W0+50<br>N11+00W1+00<br>N11+00W2+00<br>N11+00W2+50<br>N11+00W3+50<br>N11+00W3+50<br>N11+00W4+00<br>N11+00W4+50<br>N11+00W5+50<br>N11+00W5+00                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      |
| N11+00W6+50<br>N11+00W7+00<br>N11+00W7+50<br>N11+00W8+00<br>N11+50W0+00<br>N11+50W0+50<br>N11+50W1+00<br>N11+50W1+50<br>N11+50W2+00<br>N11+50W2+50<br>N11+50W3+50<br>N11+50W3+50<br>N11+50W3+50<br>N11+50W3+50                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    |

| COORDINATE<br>LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OVA<br>BACKGROUND<br>(ppm)                   | OVA ABOVE BACKGROUND (ppm)                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|
| N11+50W4+50 N11+50W5+50 N11+50W6+00 N11+50W6+50 N11+50W7+00 N11+50W8+00 N11+50W8+50 N11+50W8+50 N12+00W0+50 N12+00W1+00 N12+00W1+50 N12+00W2+00 N12+00W2+50 N12+00W3+50 N12+00W3+50 N12+00W3+50 N12+00W3+50 N12+00W5+50 N12+00W5+50 N12+00W5+50 N12+00W6+50 N12+00W7+50 N12+00W7+50 N12+00W7+50 N12+00W8+50 N12+00W8+50 N12+50W1+50 N12+50W1+50 N12+50W1+50 N12+50W1+50 N12+50W3+50 N12+50W5+50 N12+50W6+50 N12+50W7+00 N12+50W7+50 | (ppm)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | (ppm)  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. |
| N12+50W8+00<br>N12+50W8+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0<br>0.0                            | 0.0<br>0.0<br>0.0                             |

| COORDINATE<br>LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                      | OVA<br>BACKGROUND<br>(ppm)                                         | OVA ABOVE BACKGROUND (ppm)                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| N13+00W0+00 N13+00W1+00 N13+00W1+50 N13+00W2+00 N13+00W2+50 N13+00W3+50 N13+00W3+50 N13+00W4+50 N13+00W5+00 N13+00W5+50 N13+00W5+50 N13+00W6+00 N13+00W6+50 N13+00W6+50 N13+00W7+00 N13+00W7+50 N13+00W7+50 N13+50W1+00 N13+50W1+50 N13+50W1+00 N13+50W1+00 N13+50W2+00 N13+50W2+00 N13+50W3+50 | BACKGROUND (ppm)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0            | ABOVE BACKGROUND (ppm)  0.0 0.0 0.1 0.1 90 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. |
| N13+50W4+50<br>N13+50W5+00<br>N13+50W6+00<br>N13+50W6+50<br>N13+50W7+00<br>N13+50W7+50<br>N13+50W8+00<br>N13+50W8+50<br>N13+50W8+50<br>N14+00W0+00<br>N14+00W1+00<br>N14+00W1+50<br>N14+00W2+00<br>N14+00W2+50<br>N14+00W3+50<br>N14+00W3+50<br>N14+00W3+50<br>N14+00W3+50<br>N14+00W4+00                                                                                                                                                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                              |

| COORDINATE | OVA        | OVA              |
|------------|------------|------------------|
| LOCATION   | BACKGROUND | ABOVE BACKGROUND |
|            | (ppm)      | (mgg)            |

|             | ( ppm ) |     |  |
|-------------|---------|-----|--|
| N14+00W4+50 | 0.0     | 0.0 |  |
| N14+00W4+30 | 0.0     | 0.0 |  |
| N14+00W5+00 | 0.0     | 0.0 |  |
| N14+00W5+30 | 0.0     | 0.0 |  |
| N14+00W6+50 | 0.0     | 0.0 |  |
| N14+00W7+00 | 0.0     | 0.0 |  |
| N14+00W7+50 | 0.0     | 0.0 |  |
| N14+00W8+00 | 0.0     | 0.0 |  |
| N14+00W8+50 | 0.0     | 0.0 |  |
| N14+50W0+00 | 0.0     | 0.0 |  |
| N14+50W0+50 | 0.0     | 0.0 |  |
| N14+50W1+00 | 0.0     | 0.0 |  |
| N14+50W1+50 | 0.0     | 0.0 |  |
| N14+50W2+00 | 0.0     | 2.2 |  |
| N14+50W2+50 | 0.0     | 1.6 |  |
| N14+50W3+00 | 0.0     | 2.6 |  |
| N14+50W3+50 | 0.0     | 0.0 |  |
| N14+50W4+00 | 0.0     | 0.0 |  |
| N14+50W4+50 | 0.0     | 0.0 |  |
| N14+50W5+00 | 0.0     | 0.0 |  |
| N14+50W5+50 | 0.0     | 0.0 |  |
| N14+50W6+00 | 0.0     | 0.0 |  |
| N14+50W6+50 | 0.0     | 0.0 |  |
| N14+50W7+00 | 0.0     | 0.0 |  |
| N14+50W7+50 | 0.0     | 0.0 |  |
| N14+50W8+00 | 0.0     | 0.0 |  |
| N14+50W8+50 | 0.0     | 0.0 |  |
| N15+00W0+00 | 0.0     | 0.0 |  |
| N15+00W0+50 | 0.0     | 0.0 |  |
| N15+00W1+00 | 0.0     | 0.0 |  |
| N15+00W1+50 | 0.0     | 0.1 |  |
| N15+00W2+00 | 0.0     | 24  |  |
| N15+00W2+50 | 0.0     | 6.0 |  |
| N15+00W3+00 | 0.0     | 9.6 |  |
| N15+00W3+50 | 0.0     | 1.9 |  |
| N15+00W4+00 | 0.0     | 0.1 |  |
| N15+00W4+50 | 0.0     | 0.0 |  |
| N15+00W5+00 | 0.0     | 0.0 |  |
| N15+00W5+50 | 0.0     | 0.0 |  |
| N15+00W6+00 | 0.0     | 0.0 |  |
| N15+00W6+50 | 0.0     | 0.0 |  |
| N15+00W7+00 | 0.0     | 0.0 |  |
| N15+00W7+50 | 0.0     | 0.0 |  |
| N15+00W8+00 | 0.0     | 0.0 |  |
| N15+00W8+50 | 0.0     | 0.0 |  |
|             |         |     |  |

| LOCATION BACKGROUND ABOVE BACKGRO (ppm) (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UND |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| N15+50W0+00 0.0 0.0 0.0 N15+50W0+50 0.0 0.0 N15+50W1+50 0.0 0.0 N15+50W2+00 0.0 110 N15+50W2+50 0.0 3.0 N15+50W3+50 0.0 0.0 N15+50W3+50 0.0 0.0 N15+50W5+00 0.0 0.0 N15+50W5+00 0.0 0.0 N15+50W5+00 0.0 0.0 N15+50W5+50 0.0 0.0 0.0 N15+50W7+00 0.0 0.0 N15+50W7+00 0.0 0.0 N15+50W7+50 0.0 0.0 N15+50W8+50 0.0 0.0 N15+50W8+50 0.0 0.0 N15+50W8+50 0.0 0.0 N16+00W0+50 0.0 0.0 N16+00W0+50 0.0 0.0 N16+00W2+50 0.0 0.0 N16+00W3+50 0.0 0.0 N16+50W3+50 0.0 0. |     |

| COORDINATE                 | OVA        | OVA              |
|----------------------------|------------|------------------|
| LOCATION                   |            | ABOVE BACKGROUND |
|                            | (ppm)      | (ppm)            |
|                            |            |                  |
|                            |            |                  |
| 371 C . F.O.774 . F.O.     | 0 0        | 0 0              |
| N16+50W4+50                | 0.0        | 0.0              |
| N16+50W5+00                | 0.0        | 0.0              |
| N16+50W5+50                | 0.0        | 0.0              |
| N16+50W6+00                | 0.0<br>0.0 | 0.0              |
| N16+50W6+50                |            | 0.0              |
| N16+50W7+00<br>N16+50W7+50 | 0.0<br>0.0 | 0.0<br>0.0       |
|                            | 0.0        | 0.0              |
| N16+50W8+00<br>N16+50W8+50 | 0.0        | 0.0              |
| N17+00W0+00                | 0.0        | 0.0              |
| N17+00W0+00                | 0.0        | 0.0              |
| N17+00W0+30                | 0.0        | 0.0              |
| N17+00W1+50                | 0.0        | 0.0              |
| N17+00W1+30                | 0.0        | 4.2              |
| N17+00W2+50                | 0.0        | 1.0              |
| N17+00W3+00                | 0.0        | 1.6              |
| N17+00W3+50                | 0.0        | 0.0              |
| N17+00W4+00                | 0.0        | 0.0              |
| N17+00W4+50                | 0.0        | 0.0              |
| N17+00W5+00                | 0.0        | 0.0              |
| N17+00W5+50                | 0.0        | 0.0              |
| N17+00W6+00                | 0.0        | 0.0              |
| N17+00W6+50                | 0.0        | 0.0              |
| N17+00W7+00                | 0.0        | 0.1              |
| N17+00W7+50                | 0.0        | 0.0              |
| N17+00W8+00                | 0.0        | 0.0              |
| N17+00W8+50                | 0.0        | 0.0              |
| N17+50W0+00                | 0.0        | 0.0              |
| N17+50W0+50                | 0.0        | 0.0              |
| N17+50W1+00                | 0.0        | 0.0              |
| N17+50W1+50                | 0.0        | 0.0              |
| N17+50W2+00                | 0.0        | 0.1              |
| N17+50W2+50                | 0.0        | 0.0              |
| N17+50W3+00                | 0.0        | 0.0              |
| N17+50W3+50                | 0.0        | 4.0              |
| N17+50W4+00                | 0.0        | 2.0              |
| N17+50W4+50                | 0.0        | 0.0              |
| N17+50W5+00                | 0.0        | 0.0              |
| N17+50W5+50<br>N17+50W6+00 | 0.0        | 0.0              |
| N17+50W6+00                | 0.0<br>0.0 | 0.0<br>NA        |
| N17+50W5+50                | 0.0        | NA<br>NA         |
| N17+50W7+00                | 0.0        | 0.0              |
| N17+50W7+30                | 0.0        | 0.0              |
| N17+50W8+50                | 0.0        | 0.0              |
| 111773040730               | 0.0        | <b>0.0</b>       |

9

| COORDINATE<br>LOCATION                                                                                | OVA<br>BACKGROUND<br>(ppm)             | OVA ABOVE BACKGROUND (ppm)                  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|
| N18+00W0+00<br>N18+00W0+50<br>N18+00W1+00<br>N18+00W1+50<br>N18+00W2+00<br>N18+00W2+50                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0<br>0.2             |
| N18+00W3+00<br>N18+00W3+50<br>N18+00W4+00<br>N18+00W4+50<br>N18+00W5+00<br>N18+00W5+50<br>N18+00W6+00 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.2<br>0.0<br>0.0<br>0.0      |
| N18+00W6+50<br>N18+00W7+00<br>N18+00W7+50<br>N18+00W8+00<br>N18+00W8+50<br>N18+50W0+00                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        | NA<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       |
| N18+50W0+50<br>N18+50W1+00<br>N18+50W1+50<br>N18+50W2+00<br>N18+50W2+50<br>N18+50W3+00<br>N18+50W3+50 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.1<br>0.4<br>0.0<br>0.0      |
| N18+50W4+00<br>N18+50W4+50<br>N18+50W5+00<br>N18+50W5+50<br>N18+50W6+00<br>N18+50W6+50<br>N18+50W7+00 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>NA<br>NA |
| N18+50W7+50<br>N18+50W8+00<br>N18+50W8+50<br>N19+00W0+00<br>N19+00W0+50<br>N19+00W1+00                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0             |
| N19+00W1+50<br>N19+00W2+00<br>N19+00W2+50<br>N19+00W3+00<br>N19+00W3+50<br>N19+00W4+00                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.1<br>0.4<br>1.8<br>0.0<br>0.0             |

| COORDINATE                                                                                                                                                                         | OVA<br>BACKGROUND<br>(ppm)                                  | OVA ABOVE BACKGROUND (ppm)                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|
| N19+00W4+50<br>N19+00W5+00<br>N19+00W5+50<br>N19+00W6+00<br>N19+00W6+50<br>N19+00W7+00                                                                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 0.0<br>0.1<br>0.0<br>0.0<br>NA<br>NA                                             |
| N19+00W7+50<br>N19+00W8+00<br>N19+00W8+50<br>N19+50W0+00<br>N19+50W0+50<br>N19+50W1+00<br>N19+50W1+50<br>N19+50W2+00                                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | NA<br>NA<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                      |
| N19+50W2+50<br>N19+50W3+00<br>N19+50W3+50<br>N19+50W4+00<br>N19+50W4+50<br>N19+50W5+00<br>N19+50W5+50                                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 0.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                           |
| N19+50W6+00<br>N19+50W6+50<br>N19+50W7+00<br>N19+50W7+50<br>N19+50W8+00<br>N19+50W8+50<br>N2+00W0+00                                                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 0.0<br>NA<br>NA<br>NA<br>NA<br>0.0                                               |
| N2+00W0+50<br>N2+00W1+00<br>N2+00W1+50<br>N2+00W2+00<br>N2+00W2+50<br>N2+00W3+00<br>N2+00W3+50                                                                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 0.4<br>0.4<br>0.5<br>1.0<br>0.5<br>0.4                                           |
| N2+00W4+50<br>N2+00W5+00<br>N2+00W5+50<br>N2+00W6+00<br>N2+00W6+50<br>N2+00W7+00<br>N2+00W7+50                                                                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 0.4<br>0.4<br>0.3<br>0.2<br>0.2                                                  |
| N2+00W0+50<br>N2+00W1+00<br>N2+00W1+50<br>N2+00W2+00<br>N2+00W3+50<br>N2+00W3+50<br>N2+00W4+00<br>N2+00W5+00<br>N2+00W5+00<br>N2+00W6+00<br>N2+00W6+50<br>N2+00W6+50<br>N2+00W7+00 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.4<br>0.5<br>1.0<br>0.5<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.5<br>0.2 |

| COORDINATE<br>LOCATION                                                                                                              | OVA<br>BACKGROUND<br>(ppm)                    | OVA ABOVE BACKGROUND (ppm)                    |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| N2+50W0+00<br>N2+50W0+50<br>N2+50W1+00<br>N2+50W1+50<br>N2+50W2+00<br>N2+50W2+50                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 0.0<br>0.1<br>0.0<br>0.0<br>9.0<br>0.1        |
| N2+50W3+00<br>N2+50W3+50<br>N2+50W4+00<br>N2+50W4+50<br>N2+50W5+00<br>N2+50W5+50<br>N2+50W6+00<br>N2+50W6+50                        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| N2+50W7+00<br>N2+50W7+50<br>N2+50W8+00<br>N2+50W8+50<br>N20+00W0+00<br>N20+00W0+50<br>N20+00W1+00                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0        |
| N20+00W1+50<br>N20+00W2+00<br>N20+00W2+50<br>N20+00W3+00<br>N20+00W3+50<br>N20+00W4+00<br>N20+00W4+50<br>N20+00W5+00                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        |
| N20+00W5+50<br>N20+00W6+00<br>N20+00W6+50<br>N20+00W7+00<br>N20+00W7+50<br>N20+00W8+00<br>N20+00W8+50                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>NA<br>NA<br>NA<br>NA     |
| N20+50W0+00<br>N20+50W0+50<br>N20+50W1+00<br>N20+50W1+50<br>N20+50W2+00<br>N20+50W2+50<br>N20+50W3+00<br>N20+50W3+50<br>N20+50W4+00 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |

SITE 3 SURFACE EMISSIONS SURVEY

| COORDINATE                                                                             | OVA BACKGROUND (ppm)            | OVA ABOVE BACKGROUND (ppm)             |
|----------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|
| N20+50W4+50<br>N20+50W5+00<br>N20+50W5+50<br>N20+50W6+00                               | 0.0<br>0.0<br>0.0               | 0.0<br>0.0<br>0.0<br>0.0               |
| N20+50W6+50<br>N20+50W7+00<br>N20+50W7+50<br>N20+50W8+00<br>N20+50W8+50                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.1<br>NA<br>NA<br>NA           |
| N21+00W0+00<br>N21+00W0+50<br>N21+00W1+00<br>N21+00W1+50<br>N21+00W2+00<br>N21+00W2+50 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| N21+00W3+00<br>N21+00W3+50<br>N21+00W4+00<br>N21+00W4+50<br>N21+00W5+00                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        |
| N21+00W5+50<br>N21+00W6+00<br>N21+00W6+50<br>N21+00W7+00<br>N21+00W7+50                | 0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        |
| N21+00W8+00<br>N21+00W8+50<br>N3+00W0+00<br>N3+00W0+50<br>N3+00W1+00<br>N3+00W1+50     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0 |
| N3+00W2+00<br>N3+00W2+50<br>N3+00W3+00<br>N3+00W3+50<br>N3+00W4+00                     | 0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.1<br>0.4               |
| N3+00W4+50<br>N3+00W5+00<br>N3+00W5+50<br>N3+00W6+00<br>N3+00W6+50                     | 0.0<br>0.0<br>0.0<br>0.0        | 0.1<br>0.1<br>0.1<br>0.0<br>0.1        |
| N3+00W7+00<br>N3+00W7+50<br>N3+00W8+00<br>N3+00W8+50                                   | 0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.1               |

| COORDINATE<br>LOCATION                               | OVA<br>BACKGROUND<br>(ppm) | OVA ABOVE BACKGROUND (ppm) |
|------------------------------------------------------|----------------------------|----------------------------|
|                                                      | BACKGROUND                 | ABOVE BACKGROUND           |
| N4+50W2+50<br>N4+50W3+00<br>N4+50W3+50<br>N4+50W4+00 | 0.0<br>0.0<br>0.0<br>0.0   | 0.1<br>0.0<br>0.0<br>0.0   |

| COORDINATE<br>LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OVA<br>BACKGROUND<br>(ppm) | OVA ABOVE BACKGROUND (ppm)                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------|
| N4+50W4+50<br>N4+50W5+50<br>N4+50W6+50<br>N4+50W6+50<br>N4+50W6+50<br>N4+50W8+50<br>N4+50W8+50<br>N4+50W8+50<br>N5+00W1+50<br>N5+00W1+50<br>N5+00W2+50<br>N5+00W3+50<br>N5+00W3+50<br>N5+00W3+50<br>N5+00W3+50<br>N5+00W5+50<br>N5+00W6+50<br>N5+00W6+50<br>N5+00W6+50<br>N5+00W7+50<br>N5+00W1+50<br>N5+50W1+50<br>N5+50W1+50<br>N5+50W1+50<br>N5+50W1+50<br>N5+50W3+50<br>N5+50W3+50<br>N5+50W3+50<br>N5+50W3+50<br>N5+50W3+50<br>N5+50W3+50<br>N5+50W3+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W4+50<br>N5+50W7+50<br>N5+50W7+50<br>N5+50W7+50 |                            | 0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| N5+50W8+00<br>N5+50W8+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0<br>0.0                 | 0.0<br>0.0                                           |

| COORDINATE<br>LOCATION                 | OVA<br>BACKGROUND<br>(ppm) | OVA ABOVE BACKGROUND (ppm) |
|----------------------------------------|----------------------------|----------------------------|
|                                        | BACKGROUND                 | ABOVE BACKGROUND           |
| N7+00W3+00<br>N7+00W3+50<br>N7+00W4+00 | 0.0<br>0.0<br>0.0          | 0.0<br>0.0<br>0.0          |

| LOCATION                                                                         | OVA<br>BACKGROUND<br>(ppm)      | OVA ABOVE BACKGROUND (ppm)      |
|----------------------------------------------------------------------------------|---------------------------------|---------------------------------|
| N7+00W4+50<br>N7+00W5+00<br>N7+00W5+50<br>N7+00W6+00                             | 0.0<br>0.0<br>0.0               | 0.0<br>0.0<br>0.0<br>0.0        |
| N7+00W6+50<br>N7+00W7+00<br>N7+00W7+50<br>N7+00W8+00<br>N7+00W8+50               | 0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| N7+50W0+00<br>N7+50W0+50<br>N7+50W1+00<br>N7+50W1+50<br>N7+50W2+00               | 0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.2<br>3.8 |
| N7+50W2+50<br>N7+50W3+00<br>N7+50W3+50<br>N7+50W4+00<br>N7+50W4+50               | 0.0<br>0.0<br>0.0<br>0.0        | 0.1<br>0.0<br>0.1<br>0.0<br>0.0 |
| N7+50W5+00<br>N7+50W5+50<br>N7+50W6+00<br>N7+50W6+50<br>N7+50W7+00               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.1<br>0.0<br>0.0<br>0.1<br>0.0 |
| N7+50W7+50<br>N7+50W8+00<br>N7+50W8+50<br>N8+00W0+00<br>N8+00W0+50               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| N8+00W1+00<br>N8+00W1+50<br>N8+00W2+00<br>N8+00W2+50<br>N8+00W3+00               | 0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>34<br>0.8<br>0.0<br>0.0  |
| N8+00W3+50<br>N8+00W4+00<br>N8+00W4+50<br>N8+00W5+00<br>N8+00W5+50               | 0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| N8+00W6+00<br>N8+00W6+50<br>N8+00W7+00<br>N8+00W7+50<br>N8+00W8+00<br>N8+00W8+50 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 |

### SITE 3 SURFACE EMISSIONS SURVEY

| COORDINATE<br>LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OVA BACKGROUND (ppm) | OVA ABOVE BACKGROUND (ppm) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|
| N8+50W0+50 N8+50W1+50 N8+50W1+50 N8+50W2+50 N8+50W2+50 N8+50W3+50 N8+50W3+50 N8+50W3+50 N8+50W5+50 N8+50W5+50 N8+50W5+50 N8+50W5+50 N8+50W6+50 N8+50W6+50 N8+50W7+50 N8+50W8+50 N8+50W8+50 N8+50W8+50 N8+50W8+50 N9+00W1+50 N9+00W1+50 N9+00W1+50 N9+00W3+50 N9+00W3+50 N9+00W3+50 N9+00W5+50 N9+50W1+50 N9+50W1+50 N9+50W1+50 N9+50W2+50 |                      |                            |
| N9+50W3+00<br>N9+50W3+50<br>N9+50W4+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0<br>0.0<br>0.0    | 0.0<br>0.0<br>0.0          |

N9+50W7+00

N9+50W7+50

N9+50W8+00 N9+50W8+50 18

0.0

0.0

0.0

0.0

| COORDINATE<br>LOCATION | OVA<br>BACKGROUND<br>(ppm) | OVA ABOVE BACKGROUND (ppm) |
|------------------------|----------------------------|----------------------------|
| N9+50W4+50             | 0.0                        | 0.1                        |
| N9+50W5+00             | 0.0                        | 0.0                        |
| N9+50W5+50             | 0.0                        | 0.0                        |
| N9+50W6+00             | 0.0                        | 0.0                        |
| N9 + 50W6 + 50         | 0.0                        | 0.1                        |

0.0

0.0 0.0

0.0

Key:

NA = Not Accessible.

# APPENDIX C

### PARTICULATE AIR SCREENING DATA

#### SITE 3

#### PARTICULATE AIR SCREENING DATA

Date: June 6, 1991

Wind Direction: East

Wind Velocity: 5 to 8 miles per hour

Upwind Location: Upwind location 1, geophysical survey grid point

N15+00, W0+00.

Measurement Duration: 5 minutes

Time Weighted Average Particulate Concentration: 0.00  $\mathrm{mg/m}^3$ 

Downwind Location: Downwind location 1, geophysical survey grid point,

N15+00, W5+50.

Measurement Duration: 5 minutes

Time Weighted Average Particulate Concentration:  $0.01~\mathrm{mg/m}^3$ 

Upwind/Downwind Difference: 0.01 mg/m<sup>3</sup>

#### SITE 3

### PARTICULATE AIR SCREENING DATA

Date: June 6, 1991

Wind Direction: East

Wind Velocity: 5 to 8 miles per hour

Upwind Location: Upwind location 2, geophysical survey grid point,

N5+00, W0+00.

Measurement Duration: 5 minutes

Time Weighted Average Particulate Concentration:  $0.01~\text{mg/m}^3$ 

Downwind Location: Downwind location 2, geophysical survey grid point,

N5+00, W6+50.

Measurement Duration: 5 minutes

Time Weighted Average Particulate Concentration:  $0.00~\text{mg/m}^3$ 

Upwind/Downwind Difference: 0.01 mg/m<sup>3</sup>

### APPENDIX D

MAGNETOMETER AND EM-31 DATA

72

plotted values = [500 - (actual reading inganamas)]

IND = no data (measurement not made because of standing water in area and lack of access)

2, 2, ą 220400 near 3 3 į 1100 5

1= 200 ft

#### NAS PENSACOLA SITE 3 HORIZONTAL DIPOLE MODE MAP .. D-2 EM-31 SURVEY, EAST-WEST ORIENTATION,

74 00'E 001

no data for hodgs without numeni values

hhith hall hithis his his his bis his risitsit h so h it is h h is h h is sit his is 0011 रोम मंद्र श्रेष्ट में के में हैं हैं है में डेमडें बड़े हैं है हैं है हैं है है है हैं है NE NE h L sis h sis h h sis & h 5 & sis h sin 8'5 0010 में मंह में ड्रीडॉर डे ड्रॉट में डे ड्रेंट रोर में ड्रेंट ड्रेंड ड्रेंड ड्रेंड ड्रेंड में रोह डोर है की ने डोह डोह डोम ने रोहिंडि है डोह डोह डोह डे में couth sie it sie in bill s sie sie in in eie zinsie in sie sie n s sie die hoinsie he be sie hen he sie sie sie sie sie hen he oots में बंद में क्षेत्र है इस देह में ड्रंड ड्रंस डेंड डेंड डेंड हैं है वे मेर हेर में प्रें में में हेर है है है में हेर है है में में में में cotq है मेर में में में में में में हे डेंड डेंट में केंद्र में में में hais the hit him is sis sis h sis h h 0018 हे रहि कोन केन कि है में हिंद है के हैं है में होन में डेंड हैं है है में हे बाह में वे बांग के डांग में है के वे डांगडांह डांग डांड डांगडें डांग हिना के महिना है हैं है है के कि के के कि है। है। है। 0011 दे में मह दे हैं है में होने में में दे में इस इस इस इस होत होंग हैं 明的 并对对 这种 点 并 方 字 之 500 27 计 字 51 分 的 书 色 outer sin h h sin की राज ने में में में रेड हैं दें हैं हैं हैं के ई s gig 88 nh sh sis tin h s sis n 9 9 5 50 h sin s outer on sie in him sh in oin sin sis in ale i in sin sin in sin 2'h his zin hin zin h zin sin s h h L A h sin s zit h 004th 8 to 1 hzinte hains \$ h 5 5 5 5 5 h h 5 6 5 के में में बीम ब्रोम के अंदर्श में दोष्ट्र में दार करें म इसे में में חצמר מרתנלות 00451 के में में में के दें हैं है हो होते होंगे होंगे में होंगे में में में हैं डें हैं हैं में के में डिंग डें के डेंग डें के में में डेंग डें डेंहें में 00491 वर्ग में ब्रांड केंस देंसे में इंस केंड डेम के कें कें कें इंस डेंड में HIN A B'E A L 9'S 5'S 5'5 5 H EX 5'Y 3 5 5'S 5 5 5 Bis is is 84 97 8 AL 80 00 57 55 5% 51 00+81 in the han is L 2 2 3 5 4 5 5 5 5 8 70 ih sin his in & i à à à à à à à à à à à à à à à à 00th 77 6 4 2 1 9 2 2 3 3 3 3 2 3 5 5 ain ki sin ain sin his sin sin i s En is in sin b --- on 

Jose

Contants at 10/15/20/40 makes/m

DIPOLES (Agus notwolds mE) Let nosin at

C-W Orignitation

(M/20dmm) 10 -14 -

5243

```
SITE 3 GEOPHYSICAL SULVEY [EM 31] RESULTS fundos/m)
          N-5 OFTENDATION, HORIZENTAL CEPENNAS [3 M EXPLURATION DEPTH]
          contours out
                        10,29.100
                                          mmhos/m
                                         3.6 4.2
                                                     21+00
                          4.5
                             4 4.2 5.4 9.5
                                         4-2 4.5
                                               3.6 3.6.
                                (3)
                             ŝ.
                                          4 44 36 42 19100
                          3
                                5.5
                   5.4 6
       ,,,,s
                                                     16100
                                                              near arresting
                                                     15100
                                                               Gear
        5
                                                  4.4.
                                       9
                                  4.5
                                4
                    (2)
             4.5 3.5
              4.5 3.5
        35 4 45 25 35
                                               .
ڊ
       3.5 3
             6 35 3
                          5 3.5
                             4
                               ND-nodata
```

D-3 EM-31 SURVEY, NORTH-SOUTH ORIENTATION, HORIZONTAL DIPOLE MODE MAP ---NAS PENSACOLA SITE 3

?

E-W orientation Vertical Dipoles (Em exploration depth) Contours at 10,15,20,30 mmhas/m

> 16 22 22 48 24 C'2 48 48 2 1 5 6 2 472 472 172 3 44 472 42 174 JHOO इं रंभ भंद हंग । में arresting Gea-6 10 22 11700 4.5 4.5 4.8 4.8 0.5 5 45 4.5 4.5 1.7 8 5.6 4.7 1.2 6 45 42 4 48 45 1.3 4 4.5 45 4.5 5 3.5 ! 3.4 4 4 4 3.4 4 6 4 3.5 40 8.6 4 3.4 4 5 4 3 3.8 6.8 0100

> > no data for nodes without numeric values

0 100 200 ft

Site 3 Geophysical Survey [Em31] Results mhas/m N-S orientation, Vertical Coplanar [6m exploration depth] Contours at 10, 20 mmhas/m

13 20 15 1500 - New arresting 15 12,700 ND-no data 200 Ft

| COORDINATE<br>LOCATION | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) |      | EM-31<br>HORZ E-W<br>(mmhos/m) | MAGNETOMETER (gammas) |
|------------------------|--------------------------------|--------------------------------|------|--------------------------------|-----------------------|
| N0+00W0+00             | 6.2                            | 6.8                            | 3.4  | 4.0                            | 50237                 |
| N0+00W0+50             | 4.0                            | 3.8                            | 3.6  | 3.4                            | 50263                 |
| N0+00W1+00             | 3.8                            | 3.0                            | 3.5  | 4.0                            | 50333                 |
| N0+00W1+50             | 4.0                            | 4.0                            | 4.0  | 4.0                            | 50294                 |
| N0+00W2+00             | 1.4                            | 5.0                            | 7.0  | 18.0                           | 51834                 |
| N0+00W2+50             | 4.0                            | 4.0                            | 4.0  | 4.0                            | 4805                  |
| N0+00W3+00             | 3.5                            | 3.4                            | 3.0  | 3.0                            | 4897                  |
| N0+00W3+50             | 3.5                            | 4.0                            | 4.0  | 4.0                            | 4804                  |
| N0+00W4+00             | 3.0                            | 4.0                            | 4.0  | 4.0                            | 50223                 |
| N0+00W4+50             | 4.0                            | 3.5                            | 3.5  | 4.5                            | 50248                 |
| N0+00W5+00             | 3.4                            | 3.4                            | 3.0  | 3.0                            | 50274                 |
| N0+00W5+50             | 4.4                            | 2.6                            | 3.8  | 5.0                            | 50102                 |
| N0+00W6+00             | 4.0                            | 4.0                            | 3.8  | 4.0                            | 50263                 |
| N0+00W6+50             | 4.0                            | 4.0                            | 6.0  | 7.0                            | 50325                 |
| N0+00W7+00             | 2.8                            | 4.2                            | 3.5  | 3.5                            | 50264                 |
| N0+00W7+50             | 4.0                            | 4.0                            | 4.0  | 4.0                            | 50315                 |
| N0+00W8+00             | 4.0                            | 4.0                            | 4.5  | 3.0                            | 50353                 |
| N0+00W8+50             | 4.0                            | 4.0                            | 3.0  | 5.0                            | 50333                 |
| N0+50W0+00             | 8.0                            | 8.6                            | 3.8  | 3.6                            | 50302                 |
| N0+50W0+50             | 4.0                            | 4.0                            | 3.0  | 3.2                            | 50251                 |
| N0+50W1+00             | 3.8                            | 3.8                            | 3.6  | 3.5                            | 50330                 |
| N0+50W1+50             | 4.0                            | 4.0                            | 4.0  | 4.0                            | 50288                 |
| N0+50W2+00             | 11.0                           | 6.0                            | 10.0 | 9.5                            | 50634                 |
| N0+50W2+50             | 4.0                            | 4.0                            | 3.5  | 4.0                            | 4794                  |
| N0+50W3+00             | 3.4                            | 3.4                            | 3.0  | 3.2                            | 4806                  |
| N0+50W3+50             | 3.5                            | 4.0                            | 3.5  | 3.0                            | 4797                  |
| N0+50W4+00             | 4.0                            | 4.0                            | 5.0  | 4.0                            | 50330                 |
| N0+50W4+50             | 4.0                            | 4.0                            | 4.0  | 4.0                            | 50279                 |
| N0+50W5+00             | 3.4                            | 3.4                            | 3.0  | 3.0                            | 50297                 |
| N0+50W5+50             | 4.4                            | 2.5                            | 3.5  | 4.0                            | 50298                 |
| N0+50W6+00             | 4.0                            | 4.0                            | 6.0  | 6.0                            | 50453                 |
| N0+50W6+50             | 4.0                            | 4.0                            | 3.0  | 5.0                            | 50346                 |
| N0+50W7+00             | 4.0                            | 4.0                            | 3.5  | 3.5                            | 50393                 |
| N0+50W7+50             | 4.0                            | 4.0                            | 4.0  | 4.0                            | 50261                 |
| N0+50W8+00             | 4.0                            | 4.0                            | 2.5  | 3.5                            | 50225                 |
| N0+50W8+50             | 4.0                            | 4.0                            | 5.0  | 5.0                            | 50268                 |
| N1+00W0+00             | 8.4                            | 9.2                            | 4.4  | 4.2                            | 50291                 |
| N1+00W0+50             | 4.2                            | 4.2                            | 3.8  | 3.4                            | 50207                 |
| N1+00W1+00             | 4.0                            | 4.2                            | 4.0  | 3.8                            | 50321                 |
| N1+00W1+50             | 4.0                            | 4.0                            | 4.0  | 4.0                            | 50352                 |
| N1+00W2+00             | 9.5                            | 6.0                            | 11.0 | 9.0                            | 50816                 |
| N1+00W2+50             | 4.0                            | 5.0                            | 4.0  | 4.0                            | 4864                  |
| N1+00W3+00             | 3.5                            | 3.5                            | 3.0  | 3.0                            | 4808                  |
| N1+00W3+50             | 4.0                            | 3.5                            | 3.5  | 3.5                            | 4795                  |
| N1+00W4+00             | 4.0                            | 4.0                            | 3.0  | 4.0                            | 50318                 |

| VERT N-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COORDINATE     | EM-31<br>VERT N-S | EM-31 | EM-31 | EM-31 | MAGNETOMETER |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|-------|-------|-------|--------------|
| N1+00W5+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCATION       |                   |       |       |       | (gammas)     |
| N1+00W5+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | <del></del>       | -     |       |       |              |
| N1+00W5+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1+00W4+50     | 4.0               | 4.0   | 5.0   | 4.5   | 50260        |
| N1+00W5+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1+00W5+00     | 3.4               |       |       |       | 50366        |
| N1+00W6+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+00W6+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1+00W6+00     |                   | 4.0   |       |       | 50437        |
| N1+00W7+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1 + 00W6 + 50 |                   | 4.0   |       |       | 50448        |
| N1+00W8+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1 + 00W7 + 00 | 4.0               | 4.2   | 3.5   | 3.5   | 50229        |
| N1+00W8+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1 + 00W7 + 50 | 4.0               | 4.0   | 4.0   | 4.0   | 50290        |
| N1+50W0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1+00W8+00     | 4.0               | 4.0   | 3.5   |       | 50270        |
| N1+50W0+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1+00W8+50     | 4.0               | 4.0   | 4.0   | 3.0   | 50246        |
| N1+50W1+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1+50W0+00     | 8.8               | 9.8   | 3.2   |       | 50305        |
| N1+50W1+50 6.0 3.0 1.5 7.0 50652 N1+50W2+00 9.5 6.0 11.0 8.5 50612 N1+50W2+50 4.0 3.8 3.4 4.0 4884 N1+50W3+00 3.5 3.5 3.0 3.5 4820 N1+50W3+50 4.0 3.5 4.0 4.0 4.794 N1+50W3+50 4.0 3.5 5.0 3.5 5.0 3.2 N1+50W3+50 4.0 4.0 4.0 4.0 5.0323 N1+50W4+00 4.0 4.0 4.0 3.5 5.0334 N1+50W5+00 3.6 3.8 3.5 3.0 50389 N1+50W5+00 3.6 3.8 3.5 3.0 50389 N1+50W5+00 4.0 4.0 4.0 5.0 50486 N1+50W5+50 4.0 4.0 4.0 5.0 50486 N1+50W6+00 4.0 4.0 3.5 3.5 50275 N1+50W7+00 4.2 4.0 3.5 3.5 50275 N1+50W7+00 4.2 4.0 3.5 3.5 50275 N1+50W7+50 4.0 4.0 4.0 4.0 5.0 50331 N1+50W8+50 4.0 4.0 4.0 4.0 5.0 50331 N1+50W8+50 4.0 4.0 4.0 5.0 50331 N1+50W8+50 4.0 6.0 5.0 5.0 50886 N1+50W8+50 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N1+50W0+50     |                   | 4.2   |       | 3.4   | 50244        |
| N1+50W2+00 9.5 6.0 11.0 8.5 50612 N1+50W3+50 4.0 3.8 3.4 4.0 4884 N1+50W3+50 4.0 3.5 3.5 3.0 3.5 4820 N1+50W3+50 4.0 3.5 4.0 4.0 4794 N1+50W4+00 4.0 4.0 4.0 4.0 50323 N1+50W5+50 4.0 4.0 4.0 3.5 50334 N1+50W5+50 4.0 4.0 4.0 50299 N1+50W5+50 4.0 4.0 4.0 50299 N1+50W5+50 4.0 4.0 4.0 50299 N1+50W6+00 4.0 4.0 3.0 50477 N1+50W7+00 4.2 4.0 3.5 50275 N1+50W7+50 4.0 4.0 3.5 50275 N1+50W7+50 4.0 4.0 4.0 50291 N1+50W8+00 4.0 4.0 4.0 50331 N1+50W8+00 4.0 4.0 4.0 50331 N1+50W8+00 4.0 4.0 4.0 50331 N1+50W8+50 4.0 4.0 5.0 5068 N1+50W8+50 5.0 5.0 5.0 5.0 50291 N10+00W0+00 7.2 7.8 4.8 4.4 50348 N10+00W0+00 7.2 7.8 4.8 4.4 50348 N10+00W1+50 6.0 6.0 5.0 5.0 5.0 50322 N10+00W2+00 9.0 7.0 9.0 8.0 5187 N10+00W2+00 9.0 7.0 9.0 8.0 5187 N10+00W2+50 7.5 8.0 5.0 4.5 4949 N10+00W3+50 6.5 6.5 5.0 5.0 4.795 N10+00W3+50 6.0 5.0 5.0 5.0 50332 N10+00W3+50 6.0 5.0 5.0 5.0 50347 N10+00W3+50 6.5 6.5 5.5 4.5 5.0 50305 N10+00W3+50 5.5 5.5 4.5 5.0 5.0 50305 N10+00W3+50 5.5 5.5 5.5 4.5 5.0 50305 N10+00W5+50 5.5 5.5 5.5 4.5 5.0 50305 N10+00W5+50 5.5 5.5 5.5 4.5 5.0 50305 N10+00W5+50 5.5 5.5 5.5 4.5 5.0 50305 N10+00W7+00 5.5 5.5 5.5 4.5 4.0 4.0 50280 N10+00W7+00 5.5 5.5 5.5 4.5 4.0 48238 N10+00W7+00 5.5 5.5 5.5 4.5 4.0 48238 N10+00W7+50 5.5 5.5 5.5 4.5 4.0 4.0 50240 |                |                   |       |       |       |              |
| N1+50W2+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50W3+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50W3+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50W4+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50W4+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50W5+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50W5+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50W6+00 4.0 4.0 3.0 5.0 50486 N1+50W6+50 4.0 4.0 3.0 3.0 50477 N1+50W7+00 4.2 4.0 3.5 3.5 50275 N1+50W7+50 4.0 4.0 4.0 4.0 50331 N1+50W8+00 4.0 4.0 4.0 5.0 5331 N1+50W8+50 4.0 4.0 5.0 3.8 50291 N10+00W0+00 7.2 7.8 4.8 4.4 50348 N10+00W0+50 11.0 6.8 5.0 4.0 50211 N10+00W1+00 5.8 5.8 4.5 4.0 50401 N10+00W1+50 6.0 6.0 6.0 5.0 5.0 50332 N10+00W2+00 9.0 7.0 9.0 8.0 5187 N10+00W2+50 7.5 8.0 5.0 4.5 4949 N10+00W3+50 6.5 6.5 6.5 5.0 5.0 4.9 N10+00W3+50 6.5 6.5 6.5 5.0 5.0 50347 N10+00W3+50 6.5 6.5 6.5 5.0 5.0 50347 N10+00W4+00 0.0 8.0 14.0 5.0 50347 N10+00W4+50 6.0 5.0 5.0 5.0 50347 N10+00W4+50 6.0 5.0 5.0 5.0 50347 N10+00W4+50 6.0 5.5 5.5 4.0 4.0 50293 N10+00W5+00 5.5 5.5 5.5 4.5 4.5 50182 N10+00W6+00 6.0 5.5 5.5 5.5 4.5 4.5 50182 N10+00W6+50 0.0 0.0 9.5 13.0 50688 N10+00W7+50 5.5 5.5 5.5 4.5 4.0 4.0 50280 N10+00W7+50 5.5 5.5 5.5 4.5 4.0 4.0 50280 N10+00W7+50 5.5 5.5 5.5 4.5 4.0 4.0 50280 N10+00W7+50 5.5 5.5 5.5 4.5 4.5 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                   |       |       |       |              |
| N1+50W6+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50W7+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50W7+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50w8+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |       |       |       |              |
| N1+50w8+50       4.0       4.0       5.0       3.8       50291         N10+00w0+00       7.2       7.8       4.8       4.4       50348         N10+00w0+50       11.0       6.8       5.0       4.0       50211         N10+00w1+00       5.8       5.8       4.5       4.0       50401         N10+00w1+50       6.0       6.0       5.0       5.0       50332         N10+00w2+00       9.0       7.0       9.0       8.0       5187         N10+00w2+50       7.5       8.0       5.0       4.5       4949         N10+00w3+00       17.0       17.0       8.0       5.0       4806         N10+00w3+50       6.5       6.5       5.0       5.0       4795         N10+00w4+00       0.0       8.0       14.0       5.0       50347         N10+00w4+50       6.0       5.0       5.0       4.0       50197         N10+00w5+00       5.5       5.5       4.5       4.5       50182         N10+00w6+00       6.0       5.5       4.5       5.0       50305         N10+00w6+50       0.0       0.0       9.5       13.0       50688         N10+00w7+50 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                          |                |                   |       |       |       |              |
| N10+00W0+00       7.2       7.8       4.8       4.4       50348         N10+00W0+50       11.0       6.8       5.0       4.0       50211         N10+00W1+00       5.8       5.8       4.5       4.0       50401         N10+00W1+50       6.0       6.0       5.0       5.0       50332         N10+00W2+00       9.0       7.0       9.0       8.0       5187         N10+00W2+50       7.5       8.0       5.0       4.5       4949         N10+00W3+00       17.0       17.0       8.0       5.0       4806         N10+00W3+50       6.5       6.5       5.0       5.0       4795         N10+00W4+00       0.0       8.0       14.0       5.0       50347         N10+00W4+50       6.0       5.0       5.0       4.0       50197         N10+00W5+00       5.5       5.5       4.5       4.5       50182         N10+00W6+00       6.0       5.5       4.5       4.5       50305         N10+00W7+00       5.5       5.8       4.0       4.0       50280         N10+00W7+50       5.5       5.5       4.5       4.0       402828         N10+00W8+00<                                                                                                                                                                                                                                                                                                                                                                                         |                |                   |       |       |       |              |
| N10+00W0+50 11.0 6.8 5.0 4.0 50211 N10+00W1+00 5.8 5.8 4.5 4.0 50401 N10+00W1+50 6.0 6.0 5.0 5.0 5.0 50332 N10+00W2+00 9.0 7.0 9.0 8.0 5187 N10+00W2+50 7.5 8.0 5.0 4.5 4949 N10+00W3+00 17.0 17.0 8.0 5.0 4806 N10+00W3+50 6.5 6.5 5.0 5.0 5.0 4795 N10+00W4+00 0.0 8.0 14.0 5.0 50347 N10+00W4+50 6.0 5.0 5.0 4.0 50197 N10+00W5+00 5.5 5.5 4.0 4.0 50293 N10+00W5+50 5.5 5.5 4.5 4.5 50182 N10+00W6+00 6.0 5.5 4.5 5.0 50305 N10+00W6+00 5.5 5.8 4.0 4.0 50280 N10+00W7+00 5.5 5.8 4.0 4.0 50280 N10+00W7+50 5.5 5.5 5.8 4.0 4.0 50280 N10+00W7+50 5.5 5.5 5.5 4.5 4.0 48238 N10+00W7+50 5.5 5.5 5.5 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                   |       |       |       |              |
| N10+00W1+00       5.8       5.8       4.5       4.0       50401         N10+00W1+50       6.0       6.0       5.0       5.0       50332         N10+00W2+00       9.0       7.0       9.0       8.0       5187         N10+00W2+50       7.5       8.0       5.0       4.5       4949         N10+00W3+00       17.0       17.0       8.0       5.0       4806         N10+00W3+50       6.5       6.5       5.0       5.0       4795         N10+00W4+00       0.0       8.0       14.0       5.0       50347         N10+00W4+50       6.0       5.0       5.0       4.0       50197         N10+00W5+00       5.5       5.5       4.0       4.0       50293         N10+00W6+00       6.0       5.5       4.5       5.0       50305         N10+00W6+50       0.0       0.0       9.5       13.0       50688         N10+00W7+00       5.5       5.5       4.5       4.0       48238         N10+00W8+00       5.0       5.0       4.5       4.0       50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                   |       |       |       |              |
| N10+00W1+50       6.0       6.0       5.0       5.0       50332         N10+00W2+00       9.0       7.0       9.0       8.0       5187         N10+00W2+50       7.5       8.0       5.0       4.5       4949         N10+00W3+00       17.0       17.0       8.0       5.0       4806         N10+00W3+50       6.5       6.5       5.0       5.0       4795         N10+00W4+00       0.0       8.0       14.0       5.0       50347         N10+00W4+50       6.0       5.0       5.0       4.0       50197         N10+00W5+00       5.5       5.5       4.0       4.0       50293         N10+00W5+50       5.5       5.5       4.5       4.5       50182         N10+00W6+00       6.0       5.5       4.5       5.0       50305         N10+00W6+50       0.0       0.0       9.5       13.0       50688         N10+00W7+00       5.5       5.5       4.5       4.0       48238         N10+00W8+00       5.0       5.0       4.5       4.0       50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                   |       |       |       |              |
| N10+00w2+00       9.0       7.0       9.0       8.0       5187         N10+00w2+50       7.5       8.0       5.0       4.5       4949         N10+00w3+00       17.0       17.0       8.0       5.0       4806         N10+00w3+50       6.5       6.5       5.0       5.0       4795         N10+00w4+00       0.0       8.0       14.0       5.0       50347         N10+00w4+50       6.0       5.0       5.0       4.0       50197         N10+00w5+00       5.5       5.5       4.0       4.0       50293         N10+00w5+50       5.5       5.5       4.5       4.5       50182         N10+00w6+00       6.0       5.5       4.5       5.0       50688         N10+00w7+00       5.5       5.8       4.0       4.0       50280         N10+00w7+50       5.5       5.5       4.5       4.0       48238         N10+00w8+00       5.0       5.0       4.5       4.0       50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |       |       |       |              |
| N10+00w2+50       7.5       8.0       5.0       4.5       4949         N10+00w3+00       17.0       17.0       8.0       5.0       4806         N10+00w3+50       6.5       6.5       5.0       5.0       4795         N10+00w4+00       0.0       8.0       14.0       5.0       50347         N10+00w4+50       6.0       5.0       5.0       4.0       50197         N10+00w5+00       5.5       5.5       4.0       4.0       50293         N10+00w5+50       5.5       5.5       4.5       4.5       50182         N10+00w6+00       6.0       5.5       4.5       5.0       50305         N10+00w6+50       0.0       0.0       9.5       13.0       50688         N10+00w7+00       5.5       5.5       4.5       4.0       48238         N10+00w8+00       5.0       5.0       4.5       4.0       50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                   |       |       |       |              |
| N10+00W3+00 17.0 17.0 8.0 5.0 4806<br>N10+00W3+50 6.5 6.5 5.0 5.0 4795<br>N10+00W4+00 0.0 8.0 14.0 5.0 50347<br>N10+00W4+50 6.0 5.0 5.0 4.0 50197<br>N10+00W5+00 5.5 5.5 4.0 4.0 50293<br>N10+00W5+50 5.5 5.5 4.5 4.5 50182<br>N10+00W6+00 6.0 5.5 4.5 5.0 50305<br>N10+00W6+50 0.0 0.0 9.5 13.0 50688<br>N10+00W7+00 5.5 5.8 4.0 4.0 50280<br>N10+00W7+50 5.5 5.5 4.5 4.0 48238<br>N10+00W8+00 5.0 5.0 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                   |       |       |       | 4949         |
| N10+00W3+50 6.5 6.5 5.0 5.0 4795 N10+00W4+00 0.0 8.0 14.0 5.0 50347 N10+00W4+50 6.0 5.0 5.0 4.0 50197 N10+00W5+00 5.5 5.5 4.0 4.0 50293 N10+00W5+50 5.5 5.5 4.5 4.5 50182 N10+00W6+00 6.0 5.5 4.5 5.0 50305 N10+00W6+50 0.0 0.0 9.5 13.0 50688 N10+00W7+00 5.5 5.8 4.0 4.0 50280 N10+00W7+50 5.5 5.5 4.5 4.0 48238 N10+00W8+00 5.0 5.0 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N10+00W3+00    | 17.0              |       |       |       | 4806         |
| N10+00W4+50       6.0       5.0       5.0       4.0       50197         N10+00W5+00       5.5       5.5       4.0       4.0       50293         N10+00W5+50       5.5       5.5       4.5       4.5       50182         N10+00W6+00       6.0       5.5       4.5       5.0       50305         N10+00W6+50       0.0       0.0       9.5       13.0       50688         N10+00W7+00       5.5       5.8       4.0       4.0       50280         N10+00W7+50       5.5       5.5       4.5       4.0       48238         N10+00W8+00       5.0       5.0       4.5       4.0       50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N10+00W3+50    | 6.5               | 6.5   |       |       |              |
| N10+00W5+00 5.5 5.5 4.0 4.0 50293<br>N10+00W5+50 5.5 5.5 4.5 4.5 50182<br>N10+00W6+00 6.0 5.5 4.5 5.0 50305<br>N10+00W6+50 0.0 0.0 9.5 13.0 50688<br>N10+00W7+00 5.5 5.8 4.0 4.0 50280<br>N10+00W7+50 5.5 5.5 4.5 4.0 48238<br>N10+00W8+00 5.0 5.0 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N10+00W4+00    | 0.0               | 8.0   | 14.0  | 5.0   | 50347        |
| N10+00W5+50 5.5 5.5 4.5 4.5 50182<br>N10+00W6+00 6.0 5.5 4.5 5.0 50305<br>N10+00W6+50 0.0 0.0 9.5 13.0 50688<br>N10+00W7+00 5.5 5.8 4.0 4.0 50280<br>N10+00W7+50 5.5 5.5 4.5 4.0 48238<br>N10+00W8+00 5.0 5.0 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N10+00W4+50    |                   | 5.0   | 5.0   | 4.0   | 50197        |
| N10+00W6+00 6.0 5.5 4.5 5.0 50305<br>N10+00W6+50 0.0 0.0 9.5 13.0 50688<br>N10+00W7+00 5.5 5.8 4.0 4.0 50280<br>N10+00W7+50 5.5 5.5 4.5 4.0 48238<br>N10+00W8+00 5.0 5.0 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N10+00W5+00    |                   |       |       | 4.0   | 50293        |
| N10+00W6+50 0.0 0.0 9.5 13.0 50688<br>N10+00W7+00 5.5 5.8 4.0 4.0 50280<br>N10+00W7+50 5.5 5.5 4.5 4.0 48238<br>N10+00W8+00 5.0 5.0 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                   |       |       |       |              |
| N10+00W7+00 5.5 5.8 4.0 4.0 50280<br>N10+00W7+50 5.5 5.5 4.5 4.0 48238<br>N10+00W8+00 5.0 5.0 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                   |       |       |       |              |
| N10+00W7+50 5.5 5.5 4.5 4.0 48238<br>N10+00W8+00 5.0 5.0 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |       |       |       |              |
| N10+00W8+00 5.0 5.0 4.5 4.0 50346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                   |       |       |       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                   |       |       |       |              |
| NIU+UUW8+5U 5.U 6.U 6.O 6.O 50353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                   |       |       |       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NTO+00M8+20    | 5.0               | 6.0   | 6.0   | 6.0   | 50353        |

| COORDINATE<br>LOCATION                                   | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) | EM-31<br>HORZ N-S<br>(mmhos/m) | EM-31<br>HORZ E-W<br>(mmhos/m) | MAGNETOMETER (gammas)            |
|----------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|
| N10+50W0+00                                              | 0.0                            | 13.0                           | 7.0                            | 42.0                           | 50456                            |
| N10+50W0+50                                              | 5.8                            | 12.0                           | 7.6                            | 40.0                           | 49280                            |
| N10+50W1+00                                              | 0.5                            | 12.0                           | 6.0                            | 36.0                           | 51443                            |
| N10+50W1+50                                              | 2.8                            | 9.0                            | 4.8                            | 27.0                           | 50633                            |
| N10+50W2+00                                              | 6.0                            | 10.0                           | 9.5                            | 28.0                           | 4758                             |
| N10+50W2+50                                              | 3.5                            | 5.5                            | 6.0                            | 27.0                           | 5430                             |
| N10+50W3+00                                              | 6.5                            | 12.0                           | 4.5                            | 22.0                           | 4804                             |
| N10+50W3+50                                              | 15.0                           | 19.0                           | 7.0                            | 21.0                           | 4796                             |
| N10+50W4+00                                              | 5.0                            | 9.0                            | 5.0                            | 20.0                           | 51287                            |
| N10+50W4+50                                              | 4.0                            | 11.5                           | 8.0                            | 29.0                           | 48634                            |
| N10+50W5+00                                              | 4.8                            | 9.0                            | 5.0                            | 28.0                           | 51635                            |
| N10+50W5+50                                              | 4.5                            | 12.0                           | 5.5                            | 26.0                           | 59774                            |
| N10+50W6+00                                              | 5.0                            | 11.0                           | 5.0                            | 21.0                           | 50084                            |
| N10+50W6+50                                              | 6.0                            | 10.5                           | 5.0                            | 22.0                           | 50549                            |
| N10+50W7+00                                              | 5.5                            | 9.5                            | 5.5                            | 18.0                           | 50014                            |
| N10+50W7+50                                              | 6.0                            | 10.0                           | 5.5                            | 18.0                           | 55967                            |
| N10+50W8+00                                              | 5.0                            | 8.0                            | 5.0                            | 16.0                           | 50784                            |
| N10+50W8+50                                              | 6.0                            | 9.0                            | 4.0                            | 19.0                           | 49926                            |
| N11+00W0+00                                              | 7.0                            | 72.0                           | 4.4                            | 5.0                            | 50321                            |
| N11+00W0+50                                              | 12.0                           | 10.0                           | 5.0                            | 4.0                            | 50360                            |
| N11+00W1+00                                              | 6.0                            | 6.0                            | 3.8                            | 3.6                            | 50337                            |
| N11+00W1+50                                              | 5.4                            | 5.6                            | 4.2                            | 5.0                            | 50308                            |
| N11+00W2+00                                              | 9.0                            | 7.5                            | 10.0                           | 8.0                            | 4765                             |
| N11+00W2+50                                              | 5.5                            | 5.5                            | 4.0                            | 4.5                            | 4780                             |
| N11+00W3+00                                              | 5.5                            | 5.5                            | 4.5                            | 4.5                            | 4802                             |
| N11+00W3+50                                              | 8.0                            | 8.0                            | 3.5                            | 4.0                            | 4795                             |
| N11+00W4+00                                              | 22.0                           | 22.0                           | 5.0                            | 4.0                            | 50333                            |
| N11+00W4+50                                              | 9.0                            | 9.0                            | 4.5                            | 7.0                            | 50338                            |
| N11+00W5+00                                              | 7.0                            | 9.0                            | 5.0                            | 4.0                            | 50326                            |
| N11+00W5+50                                              | 7.0                            | 7.0                            | 4.0                            | 4.5                            | 50610                            |
| N11+00W6+00                                              | 6.0                            | 7.0                            | 5.0                            | 3.5                            | 50515                            |
| N11+00W6+50                                              | 6.0                            | 5.0                            | 4.0                            | 4.5                            | 50120                            |
| N11+00W7+00                                              | 5.5                            | 5.8                            | 4.5                            | 4.8                            | 50301                            |
| N11+00W7+50<br>N11+00W8+00<br>N11+00W8+50<br>N11+50W0+00 | 5.5<br>5.0<br>5.5<br>6.4       | 5.5<br>5.5<br>5.6              | 4.5<br>4.8<br>4.0<br>5.0       | 4.5<br>4.5<br>3.0<br>4.6       | 52294<br>50288<br>50321<br>50321 |
| N11+50W0+50                                              | 12.5                           | 10.0                           | 5.0                            | 4.0                            | 50330                            |
| N11+50W1+00                                              | 5.4                            | 5.4                            | 4.0                            | 4.2                            | 50352                            |
| N11+50W1+50                                              | 4.8                            | 5.0                            | 4.0                            | 4.2                            | 50282                            |
| N11+50W2+00                                              | 8.0                            | 6.0                            | 9.0                            | 9.0                            | 5102                             |
| N11+50W2+50                                              | 5.0                            | 6.0                            | 5.0                            | 4.0                            | 5052                             |
| N11+50W2+50<br>N11+50W3+00<br>N11+50W3+50<br>N11+50W4+00 | 4.8<br>5.0<br>7.0              | 4.8<br>5.0<br>7.0              | 4.0<br>5.0<br>4.0              | 4.0<br>4.0<br>5.0<br>5.0       | 4810<br>4791<br>50335            |

| N11+50W4+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COORDINATE<br>LOCATION | EM-31<br>VERT N-S | EM-31<br>VERT E-W | EM-31<br>HORZ N-S | EM-31<br>HORZ E-W | MAGNETOMETER |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|-------------------|-------------------|-------------------|--------------|
| N11+50W5+00 22.0 22.0 4.0 6.5 50371 N11+50W6+50 7.0 35.0 4.5 22.0 50383 N11+50W6+50 5.5 5.0 4.0 5.0 404 N11+50W6+50 5.5 5.0 4.0 5.0 50423 N11+50W7+50 5.0 5.5 5.0 4.0 5.0 50297 N11+50W7+50 5.0 5.0 4.5 4.5 52297 N11+50W7+50 5.0 5.0 4.0 4.0 5.0295 N11+50W8+50 5.0 5.0 4.0 3.0 50332 N12+00W0+00 6.6 6.7 4.8 4.8 4.8 50319 N12+00W0+50 13.0 12.0 5.0 4.0 50315 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W2+50 5.0 4.5 4.5 5.2 5091 N12+00W3+00 4.6 4.8 4.4 4.8 50296 N12+00W3+50 4.6 4.8 4.4 4.8 50296 N12+00W3+50 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DOCATION               |                   |                   |                   |                   | (gammas)     |
| N11+50W5+00 22.0 22.0 4.0 6.5 50371 N11+50W6+50 7.0 35.0 4.5 22.0 50383 N11+50W6+50 5.5 5.0 4.0 5.0 404 N11+50W6+50 5.5 5.0 4.0 5.0 50423 N11+50W7+50 5.0 5.5 4.5 4.5 50297 N11+50W7+50 5.0 5.0 4.0 4.0 50295 N11+50W7+50 5.0 5.0 4.0 4.0 50295 N11+50W8+50 5.0 5.0 4.0 3.0 50332 N12+00W0+00 6.6 6.7 4.8 4.8 50319 N12+00W0+50 13.0 12.0 5.0 4.0 50315 N12+00W1+50 4.6 4.8 4.4 4.8 50319 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W2+50 9.0 9.0 10.0 10.0 4912 N12+00W2+50 5.0 4.5 4.5 5.2 5091 N12+00W3+50 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                   |                   |                   |                   |              |
| N11+50W6+50 7.0 35.0 4.5 22.0 50383 N11+50W6+50 0.0 0.0 32.0 4.0 50404 N11+50W6+50 5.5 5.0 4.0 5.0 50423 N11+50W7+00 5.0 5.5 4.5 4.5 50297 N11+50W7+50 5.0 5.0 4.5 4.5 53636 N11+50W8+50 5.0 5.0 4.0 4.0 50295 N11+50W8+50 5.0 5.0 4.0 4.0 50295 N11+50W8+50 5.0 5.0 4.0 3.0 50332 N12+00W0+00 6.6 6.7 4.8 4.8 50319 N12+00W0+50 13.0 12.0 5.0 4.0 50315 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W2+00 9.0 9.0 10.0 10.0 4912 N12+00W3+50 4.8 4.8 4.4 4.8 50296 N12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W3+50 0.0 0.0 23.0 52.0 50537 N12+00W4+00 6.5 6.5 4.5 4.0 50186 N12+00W4+50 0.0 0.0 23.0 52.0 50537 N12+00W4+50 0.0 0.0 23.0 52.0 50537 N12+00W4+50 0.0 0.0 23.0 52.0 50537 N12+00W6+50 3.5 5.4 4.0 3.8 50308 N12+00W6+50 5.5 5.4 4.0 5.0 50400 N12+00W6+50 5.5 5.5 5.4 4.0 5.0 50400 N12+00W6+50 5.5 5.5 5.4 4.0 5.0 50322 N12+00W7+00 5.0 5.0 4.5 5.0 5.0 50322 N12+00W8+50 6.0 6.0 5.0 5.0 5.0 5.0 50322 N12+00W8+50 6.0 6.0 5.0 5.0 4.5 5.0 50322 N12+00W8+50 6.0 6.0 5.0 5.0 4.5 4.5 4.5 4.6 50310 N12+00W6+50 5.5 5.5 5.5 5.0 5.0 5.0 50322 N12+00W8+50 6.0 6.0 6.0 5.0 5.0 50321 N12+00W8+50 6.0 6.0 5.0 5.0 4.5 4.5 4.5 4.6 3.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                   |                   |                   |                   |              |
| N11+50W6+00 0.0 0.0 32.0 4.0 50404 N11+50W6+50 5.5 5.0 4.0 5.0 50423 N11+50W7+50 5.0 5.5 4.5 4.5 53636 N11+50W7+50 5.0 5.0 4.0 4.0 50295 N11+50W8+00 5.0 5.0 4.0 3.0 50332 N12+50W6+00 6.6 6.7 4.8 4.8 50319 N12+00W0+00 6.6 6.7 4.8 4.8 50319 N12+00W1+00 5.0 5.4 4.0 4.0 50308 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W2+00 9.0 9.0 10.0 10.0 4912 N12+00W2+00 9.0 9.0 10.0 10.0 4912 N12+00W3+00 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.8 4.7 N12+00W3+50 4.8 4.8 5.0 4.8 4.9 N12+00W3+50 6.5 6.5 4.5 4.0 50186 N12+00W3+50 0.0 0.0 23.0 52.0 50537 N12+00W6+00 5.5 5.4 4.0 3.8 50308 N12+00W6+00 5.5 5.4 4.0 3.8 50308 N12+00W6+00 5.5 5.4 4.0 3.8 50308 N12+00W6+00 38.0 0.0 100.0 0.0 50542 N12+00W6+00 5.5 5.5 5.5 5.0 5.0 50302 N12+00W6+50 5.5 5.5 5.5 5.0 5.0 50322 N12+00W6+50 5.5 5.5 5.5 5.0 5.0 50322 N12+00W7+00 5.5 5.5 5.5 5.0 5.0 50322 N12+00W6+50 5.0 5.0 4.5 4.5 5.0 50322 N12+00W6+50 5.5 5.5 5.5 5.0 5.0 50322 N12+00W7+00 5.5 5.5 5.5 5.0 5.0 50322 N12+00W8+50 6.0 6.0 5.0 5.0 5.0 50338 N12+50W1+50 4.6 4.6 4.6 4.0 4.4 50325 N12+50W1+50 4.6 4.6 4.6 4.0 4.4 50325 N12+50W3+50 4.5 5.0 5.0 4.5 4.5 50310 N12+50W3+50 4.5 5.0 5.0 4.5 4.5 503308 N12+50W3+50 4.5 5.0 5.0 4.5 4.5 503308 N12+50W3+50 4.6 4.6 4.6 4.0 4.4 50325 N12+50W3+50 5.0 5.0 4.5 4.5 5.0 50338 N12+50W3+50 6.0 6.0 5.0 5.0 5.0 5.0 50338 N12+50W3+50 5.0 5.0 4.5 4.5 5.0 50338 N12+50W3+50 5.0 5.0 4.5 4.5 4.0 4.0 4.6 50325 N12+50W3+50 5.0 5.0 5.0 4.5 4.5 5.0 50338 N12+50W3+50 6.0 6.0 6.0 5.0 5.0 5.0 5.0 50338 N12+50W3+50 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5                                                                                                                                                                                                                                                                                                                                                                                              |                        |                   |                   |                   |                   |              |
| N11+50W6+50 5.5 5.0 4.0 5.0 50423 N11+50W7+50 5.0 5.5 4.5 4.5 50297 N11+50W7+50 5.0 5.0 5.0 4.5 4.5 50636 N11+50W8+00 5.0 5.0 4.0 4.0 50295 N11+50W8+50 5.0 5.0 4.0 3.0 50332 N12+00W0+50 13.0 12.0 5.0 4.0 50315 N12+00W1+00 5.0 5.4 4.0 4.0 50318 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W1+00 5.0 5.4 4.0 4.0 50308 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W2+00 9.0 9.0 10.0 10.0 4912 N12+00W3+00 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.8 4.9 12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W3+50 0.0 0.0 23.0 52.0 50537 N12+00W4+50 0.0 0.0 23.0 52.0 50537 N12+00W5+50 3.5 1.0 20.0 6.0 3.8 50308 N12+00W6+00 38.0 0.0 100.0 0.0 50542 N12+00W6+00 38.0 0.0 100.0 0.0 50542 N12+00W6+50 5.5 5.4 4.0 5.0 50400 N12+00W7+50 5.5 5.5 4.0 5.0 50400 N12+00W7+50 5.5 5.5 5.5 5.0 5.0 5.0 50322 N12+00W7+50 5.0 5.0 4.5 5.0 5.0 50322 N12+00W8+50 6.0 6.0 5.0 5.0 5.0 50317 N12+50W1+00 5.0 5.0 4.5 4.5 4.5 4.5 50326 N12+50W3+00 5.0 5.0 4.5 4.5 5.0 50322 N12+50W3+00 5.0 5.0 4.5 4.5 5.0 50322 N12+50W3+00 5.0 5.0 4.5 4.5 4.5 4.5 4.6 50325 N12+50W3+00 5.0 5.0 4.5 4.5 4.5 4.5 4.6 50325 N12+50W3+00 5.0 5.0 4.5 4.5 4.5 503308 N12+50W3+00 5.0 5.0 4.5 4.5 4.5 4.5 503308 N12+50W3+00 5.0 5.0 4.5 4.5 5.0 50338 N12+50W3+00 5.0 5.0 4.5 4.5 4.5 4.5 503308 N12+50W3+00 5.0 5.0 4.5 4.5 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                   |                   |                   |                   |              |
| N11+50W7+00 5.0 5.5 4.5 4.5 50297 N11+50W8+50 5.0 5.0 4.0 4.0 50295 N11+50W8+50 5.0 5.0 4.0 4.0 3.0 50332 N12+00W0+00 6.6 6.7 4.8 4.8 50319 N12+00W0+50 13.0 12.0 5.0 4.0 50315 N12+00W1+50 4.6 4.8 4.4 50296 N11+00W2+00 9.0 9.0 10.0 10.0 4912 N12+00W2+50 5.0 4.5 4.5 5.2 5091 N12+00W2+50 5.0 4.5 4.5 5.2 5091 N12+00W3+00 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                   |                   |                   |                   |              |
| N11+50W7+50 5.0 5.0 4.0 4.5 53636 N11+50W8+50 5.0 5.0 4.0 3.0 50332 N12+00W0+00 6.6 6.7 4.8 4.8 50319 N12+00W1+50 13.0 12.0 5.0 4.0 50335 N12+00W1+00 5.0 5.4 4.0 50308 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W2+00 9.0 9.0 10.0 10.0 4912 N12+00W2+50 5.0 4.5 4.5 5.2 5091 N12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W3+50 6.5 6.5 4.5 4.5 5.2 5091 N12+00W3+50 6.5 6.5 4.5 4.5 5.0 50368 N12+00W4+50 0.0 0.0 23.0 52.0 50537 N12+00W3+50 0.0 0.0 23.0 52.0 50537 N12+00W5+50 3.5 1.0 20.0 6.0 36939 N12+00W5+50 3.5 5.4 4.0 3.8 50308 N12+00W5+50 5.5 5.4 4.0 3.8 50308 N12+00W5+50 5.5 5.5 4.0 5.0 50400 N12+00W7+00 5.5 5.5 5.5 4.0 5.0 50400 N12+00W7+00 5.5 5.5 5.5 4.0 5.0 50400 N12+00W7+50 5.0 5.0 5.0 50322 N12+00W7+50 5.0 5.0 5.0 5.0 50322 N12+00W7+50 5.0 5.0 5.0 5.0 50322 N12+00W7+50 5.0 5.0 5.0 5.0 50321 N12+00W8+50 6.0 6.0 6.0 5.0 5.0 5.0 50317 N12+05W0+50 15.0 7.0 8.0 3.5 5.0 50321 N12+50W1+50 4.6 4.6 4.6 4.0 4.5 50310 N12+50W1+50 4.6 4.6 4.0 4.4 50325 N12+50W3+50 4.5 5.0 5.0 50321 N12+50W3+50 4.5 5.0 5.0 5.0 338 N12+50W3+50 4.5 5.0 5.0 5.0 338 N12+50W3+50 4.5 5.0 5.0 5.0 338 N12+50W3+50 4.5 4.5 4.0 4.0 4.6 7.0 4.0 4.5 50320 N12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 7.0 12+50W3+50 4.5 5.0 5.0 5.0 33.8 50338 N12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 7.0 12+50W3+50 4.5 5.0 5.0 5.0 33.8 50338 N12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 7.0 12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 7.0 12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 7.0 12+50W3+50 4.5 4.5 4.0 3.5 50320 N12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 7.0 12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 7.0 12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 7.0 12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 5.0 50315 N12+50W3+50 6.0 6.0 6.0 4.5 5.0 5.0 4.0 4.983 N12+50W3+50 5.0 5.0 5.0 5.0 4.0 4.0 4.5 50274 N12+50W3+50 5.0 5.0 5.0 5.0 4.0 4.0 4.5 50274 N12+50W3+5 |                        |                   | 5.0               |                   |                   |              |
| N11+50W8+00 5.0 5.0 4.0 3.0 50295 N11+50W8+50 5.0 5.0 4.0 3.0 50332 N12+00W0+00 6.6 6.7 4.8 4.8 4.8 50319 N12+00W0+50 13.0 12.0 5.0 4.0 50315 N12+00W1+50 4.6 4.8 4.4 4.0 50308 N12+00W1+50 4.6 4.8 4.4 4.0 50308 N12+00W2+00 9.0 9.0 10.0 10.0 4912 N12+00W3+50 5.0 4.5 4.5 5.2 5091 N12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W3+50 0.0 0.0 23.0 52.0 50537 N12+00W3+50 3.5 1.0 20.0 6.0 36939 N12+00W5+50 3.5 5.4 4.0 3.8 50308 N12+00W5+50 3.5 5.4 4.0 3.8 50308 N12+00W5+50 3.5 5.4 4.0 50186 N12+00W5+50 3.5 5.4 4.0 50186 N12+00W5+50 3.5 5.5 5.5 5.0 5.0 5.0 50342 N12+00W6+00 5.5 5.5 5.5 5.0 5.0 5.0 50322 N12+00W6+00 5.0 5.0 4.5 5.0 55782 N12+00W7+50 5.0 5.0 4.5 5.0 5.0 50310 N12+00W7+50 5.0 5.0 4.5 5.0 5.0 50310 N12+00W7+50 5.0 5.0 4.5 5.0 5.0 50311 N12+05W0+00 5.0 5.0 4.5 5.0 5.0 50311 N12+05W0+50 5.0 5.0 4.5 5.0 5.0 50311 N12+05W0+50 6.0 6.0 6.0 5.0 5.0 5.0 50321 N12+00W3+50 6.0 6.0 6.0 5.0 5.0 5.0 50321 N12+50W3+50 4.6 4.6 4.6 4.6 4.0 4.4 50325 N12+50W3+50 4.5 5.0 5.0 4.5 3.5 6238 N12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 50277 N12+50W3+50 4.5 5.0 5.0 5.0 5.0 50338 N12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1 4.0 7.1  |                        |                   |                   |                   |                   |              |
| N11+50W8+50 5.0 5.0 4.0 3.0 50332 N12+00W0+50 13.0 12.0 5.0 4.0 50315 N12+00W1+00 5.0 5.4 4.0 4.0 50308 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W2+00 9.0 9.0 10.0 10.0 4912 N12+00W2+50 5.0 4.5 4.5 5.2 5091 N12+00W3+50 4.6 4.6 4.6 4.6 4.6 4.6 4.8 4.9 4.9 12 N12+00W3+50 4.8 4.8 5.0 4.8 4.9 4.9 4.9 50186 N12+00W3+50 4.8 4.8 5.0 4.8 4.9 4.9 50186 N12+00W3+50 6.5 6.5 4.5 4.0 50186 N12+00W3+50 0.0 0.0 23.0 52.0 50537 N12+00W4+00 6.5 6.5 4.5 4.0 3.8 50308 N12+00W5+50 3.5 5.4 4.0 3.8 50308 N12+00W5+50 3.5 5.4 4.0 3.8 50308 N12+00W5+50 5.5 5.4 4.0 3.8 50308 N12+00W6+50 5.5 5.5 5.4 4.0 3.8 50308 N12+00W6+50 5.5 5.5 5.5 4.0 5.0 50400 N12+00W7+00 5.5 5.5 5.5 5.0 5.0 5.0 5.0 50322 N12+00W7+50 5.0 5.0 4.5 5.0 50322 N12+00W7+50 5.0 5.0 4.5 5.0 50322 N12+00W8+50 6.0 6.0 6.0 5.0 5.0 50317 N12+05W0+50 15.0 7.0 8.0 3.5 50321 N12+50W1+00 5.0 5.0 4.5 4.5 4.5 4.763 N12+50W1+50 4.6 4.6 4.6 4.0 4.4 50325 N12+50W1+50 5.0 5.0 4.5 4.5 4.5 4.763 N12+50W1+50 4.6 4.6 4.6 4.0 4.4 50325 N12+50W1+50 5.0 5.0 4.5 4.5 4.5 4.763 N12+50W2+50 4.5 5.0 5.0 4.5 4.5 4.763 N12+50W3+50 4.5 4.5 4.0 4.0 4.4 50325 N12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.807 N12+50W3+50 5.0 5.0 4.5 4.5 4.5 4.763 N12+50W3+50 5.0 5.0 4.5 4.5 4.0 4.0 4.0 4.0 4.0 7.2 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                   |                   |                   |                   |              |
| N12+00W0+00 6.6 6.7 4.8 4.8 50319 N12+00W1+00 5.0 13.0 12.0 5.0 4.0 50315 N12+00W1+00 5.0 5.4 4.0 4.0 503308 N12+00W1+50 4.6 4.8 4.4 4.8 50296 N12+00W2+50 5.0 4.5 4.5 5.2 5091 N12+00W3+50 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.8 4.9 4.9 4.9 50296 N12+00W3+50 4.8 4.8 5.0 4.8 4.9 4.9 50296 N12+00W3+50 0.0 0.0 0.0 23.0 52.0 50537 N12+00W4+00 6.5 6.5 4.5 4.0 50186 N12+00W4+50 0.0 0.0 23.0 52.0 50537 N12+00W5+50 3.5 5.4 4.0 3.8 50308 N12+00W5+00 5.5 5.4 4.0 3.8 50308 N12+00W5+00 5.5 5.4 4.0 3.8 50308 N12+00W6+00 38.0 0.0 100.0 0.0 50542 N12+00W6+00 38.0 0.0 100.0 0.0 50542 N12+00W6+00 5.5 5.5 5.5 4.0 5.0 50400 N12+00W7+50 5.5 5.5 5.5 5.0 5.0 5.0 50322 N12+00W7+50 5.0 5.0 4.5 5.0 50782 N12+00W8+00 5.0 5.0 4.5 5.0 50310 N12+00W8+00 5.0 6.0 6.0 5.0 5.0 50317 N12+00W8+50 6.0 6.0 5.0 5.0 5.0 50317 N12+50W0+00 6.8 6.8 4.8 5.0 50276 N12+50W1+00 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.763 N12+50W1+00 5.0 5.0 4.5 4.5 4.5 4.763 N12+50W2+00 5.0 5.0 4.5 5.0 50328 N12+50W3+00 6.0 6.8 6.8 4.8 5.0 50276 N12+50W3+00 5.0 5.0 4.5 4.5 4.763 N12+50W3+00 5.0 5.0 4.5 4.5 4.763 N12+50W3+50 4.5 5.0 4.5 4.0 4.0 4.4 50325 N12+50W3+50 4.5 5.0 4.5 4.0 4.0 4.4 50325 N12+50W3+50 4.5 5.0 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+00W0+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+00W1+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N12+00W0+50            | 13.0              |                   |                   |                   |              |
| N12+00W2+00 9.0 4.5 4.5 5.2 5091 N12+00W3+00 4.6 4.6 4.6 4.6 4.6 4.8 4792 N12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W4+00 6.5 6.5 4.5 4.0 50186 N12+00W4+50 0.0 0.0 23.0 52.0 50537 N12+00W5+00 5.5 5.4 4.0 3.8 50308 N12+00W5+50 3.5 1.0 20.0 6.0 36939 N12+00W6+50 38.0 0.0 100.0 0.0 50542 N12+00W6+50 5.5 5.5 4.0 5.0 5042 N12+00W7+00 5.5 5.5 5.5 4.0 5.0 50322 N12+00W7+50 5.0 5.0 4.5 5.0 50322 N12+00W7+50 5.0 5.0 4.5 5.0 50322 N12+00W7+50 5.0 5.0 4.5 5.0 50322 N12+00W8+50 6.0 6.0 5.0 4.0 4.5 50310 N12+00W8+50 6.0 6.0 5.0 5.0 5.0 50317 N12+05W0+50 15.0 7.0 8.0 3.5 50321 N12+50W1+00 5.0 5.0 4.6 4.8 5.0 50276 N12+50W1+00 5.0 5.0 4.5 4.5 4.5 4.763 N12+50W2+00 6.8 6.8 4.8 5.0 50276 N12+50W2+00 5.0 5.0 4.5 4.5 4.5 4.763 N12+50W3+50 4.5 4.5 4.0 4.0 4.4 50325 N12+50W3+50 4.5 5.0 5.0 4.5 4.5 4.763 N12+50W3+50 4.5 5.0 5.0 4.5 4.5 4.763 N12+50W3+50 5.0 5.0 5.0 4.5 4.5 4.763 N12+50W3+50 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                   |                   | 4.0               | 4.0               | 50308        |
| N12+00W2+50 5.0 4.5 4.5 5.2 5091 N12+00W3+00 4.6 4.6 4.6 4.6 4.6 4.8 4792 N12+00W3+50 4.8 4.8 5.0 4.8 4792 N12+00W4+00 6.5 6.5 4.5 4.0 50186 N12+00W4+50 0.0 0.0 23.0 52.0 50537 N12+00W5+50 3.5 1.0 20.0 6.0 36939 N12+00W5+50 3.5 1.0 20.0 6.0 36939 N12+00W6+00 38.0 0.0 100.0 0.0 50542 N12+00W6+50 5.5 5.5 4.0 5.0 50400 N12+00W7+50 5.5 5.5 5.5 4.0 5.0 50400 N12+00W7+50 5.5 5.5 5.5 5.0 5.0 5.0 50322 N12+00W7+50 5.0 5.0 4.5 5.0 5.0 50782 N12+00W8+50 6.0 6.0 6.0 5.0 5.0 5.0 50317 N12+00W8+50 6.0 6.0 6.0 5.0 5.0 5.0 50317 N12+00W8+50 6.0 6.0 6.0 5.0 5.0 5.0 50317 N12+00W8+50 6.0 6.0 6.0 5.0 5.0 5.0 50321 N12+50W1+00 6.8 6.8 4.8 5.0 50276 N12+50W1+00 5.0 5.0 3.8 3.8 50338 N12+50W1+50 4.6 4.6 4.0 4.4 50325 N12+50W2+00 5.0 5.0 4.5 4.5 4.5 4763 N12+50W2+50 4.5 5.0 4.5 3.5 6238 N12+50W3+00 4.2 4.2 4.2 4.2 4.2 4.797 N12+50W3+50 4.5 4.5 4.0 4.0 4807 N12+50W3+50 5.0 5.0 3.0 5.0 50338 N12+50W3+50 4.5 4.5 4.0 4.0 4807 N12+50W3+50 5.0 5.0 4.5 4.0 4.0 4807 N12+50W3+50 5.0 5.0 4.5 4.0 4.0 4807 N12+50W3+50 5.0 5.0 4.5 4.0 3.5 50320 N12+50W5+50 5.0 4.5 4.0 3.5 50320 N12+50W5+50 19.0 0.0 38.0 6.0 50319 N12+50W5+50 19.0 0.0 38.0 6.0 50319 N12+50W5+50 6.0 6.0 6.0 4.0 5.0 50344 N12+50W7+00 5.0 5.0 5.0 4.0 4.9 983 N12+50W7+00 5.0 5.0 5.0 4.0 4.9 983 N12+50W8+00 5.0 5.0 5.0 4.0 4.9 983 N12+50W8+00 5.0 5.0 5.0 4.0 4.9 983 N12+50W8+00 5.0 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                   |                   |                   |                   |              |
| N12+00W3+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+00W3+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+00W4+00 6.5 6.5 4.5 4.0 50186 N12+00W4+50 0.0 0.0 23.0 52.0 50537 N12+00W5+00 5.5 5.4 4.0 3.8 50308 N12+00W5+50 3.5 1.0 20.0 6.0 36939 N12+00W6+00 38.0 0.0 100.0 0.0 50542 N12+00W6+50 5.5 5.5 5.5 4.0 5.0 50400 N12+00W7+00 5.5 5.5 5.5 5.0 5.0 5.0 50322 N12+00W7+00 5.5 5.5 5.0 4.5 5.0 55782 N12+00W8+00 5.0 5.0 4.5 5.0 55782 N12+00W8+50 6.0 6.0 5.0 5.0 50310 N12+05W0+50 15.0 7.0 8.0 3.5 50321 N12+50W0+00 6.8 6.8 4.8 5.0 50276 N12+50W1+00 5.0 5.0 3.8 3.8 50338 N12+50W1+50 4.6 4.6 4.0 4.4 50325 N12+50W2+00 5.0 5.0 4.5 4.5 4763 N12+50W2+50 4.5 5.0 4.5 4.5 4763 N12+50W3+00 4.2 4.2 4.2 4.2 4.2 4.2 4.797 N12+50W3+00 4.2 4.2 4.2 4.2 4.2 4.797 N12+50W3+00 5.0 5.0 3.0 5.0 50338 N12+50W3+50 5.0 5.0 4.5 4.5 5.0 50338 N12+50W3+50 5.0 5.0 5.0 3.0 5.0 50338 N12+50W3+50 5.0 5.0 4.5 4.0 4.0 4807 N12+50W3+50 5.0 5.0 4.5 4.0 5.0 50378 N12+50W5+50 19.0 0.0 38.0 6.0 50078 N12+50W5+50 19.0 0.0 38.0 6.0 50078 N12+50W6+50 6.0 6.0 6.0 4.0 5.0 50344 N12+50W7+00 5.0 5.0 5.0 5.0 4.0 4.9983 N12+50W7+50 5.0 5.0 5.0 5.0 4.0 4.9983 N12+50W7+50 5.0 5.0 5.0 5.0 4.0 4.9983 N12+50W7+50 5.0 5.0 5.0 5.0 4.0 4.9983 N12+50W8+00 5.0 5.0 5.0 4.0 4.9983 N12+50W8+00 5.0 5.0 5.0 5.0 4.0 4.9983                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                   |                   |                   |                   |              |
| N12+00W4+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+00W5+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+00W5+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+00W6+00 38.0 0.0 100.0 0.0 50542<br>N12+00W7+00 5.5 5.5 5.5 4.0 5.0 50400<br>N12+00W7+50 5.0 5.5 5.5 5.0 5.0 5.0 50322<br>N12+00W8+00 5.0 5.0 4.5 5.0 55782<br>N12+00W8+50 6.0 6.0 5.0 5.0 5.0 50317<br>N12+05W0+50 15.0 7.0 8.0 3.5 50321<br>N12+50W0+00 6.8 6.8 4.8 5.0 50276<br>N12+50W1+00 5.0 5.0 3.8 3.8 50338<br>N12+50W1+50 4.6 4.6 4.0 4.4 50325<br>N12+50W2+00 5.0 5.0 4.5 4.5 4763<br>N12+50W2+50 4.5 5.0 4.5 3.5 6238<br>N12+50W3+00 4.2 4.2 4.2 4.2 4.797<br>N12+50W3+00 4.2 4.2 4.2 4.2 4.797<br>N12+50W3+50 4.5 5.0 3.0 5.0 50338<br>N12+50W3+50 4.5 4.5 4.0 4.0 4807<br>N12+50W3+50 5.0 5.0 3.0 5.0 50338<br>N12+50W3+50 5.0 5.0 4.5 4.0 50277<br>N12+50W5+00 5.0 5.0 4.5 4.0 50277<br>N12+50W5+50 19.0 0.0 38.0 6.0 50078<br>N12+50W6+50 6.0 6.0 4.0 50277<br>N12+50W6+50 6.0 6.0 5.0 5.0 4.9 4.9 83<br>N12+50W7+50 5.0 5.0 5.0 4.0 4.9 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                   |                   |                   |                   |              |
| N12+00W6+50 5.5 5.5 5.5 5.0 5.0 50400 N12+00W7+00 5.5 5.5 5.5 5.0 5.0 5.0 50322 N12+00W7+50 5.0 5.0 4.5 5.0 55782 N12+00W8+00 5.0 5.0 4.0 4.5 50310 N12+00W8+50 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                   |                   |                   |                   |              |
| N12+00W7+50       5.0       5.0       4.5       5.0       55782         N12+00W8+00       5.0       5.0       4.0       4.5       50310         N12+00W8+50       6.0       6.0       5.0       5.0       50317         N12+05W0+50       15.0       7.0       8.0       3.5       50321         N12+50W0+00       6.8       6.8       4.8       5.0       50276         N12+50W1+00       5.0       5.0       3.8       3.8       50338         N12+50W1+50       4.6       4.6       4.0       4.4       50325         N12+50W2+00       5.0       5.0       4.5       4.5       4763         N12+50W2+50       4.5       5.0       4.5       4.5       4763         N12+50W3+00       4.2       4.2       4.2       4.7       4797         N12+50W3+50       4.5       4.5       4.0       4807         N12+50W4+00       5.0       5.0       3.0       5.0       50338         N12+50W5+00       5.0       4.5       4.0       3.5       50320         N12+50W5+50       19.0       0.0       38.0       6.0       50078         N12+50W6+50       6.0 <td>N12+00W6+50</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N12+00W6+50            |                   |                   |                   |                   |              |
| N12+00W8+00 5.0 5.0 4.0 4.5 50310 N12+00W8+50 6.0 6.0 5.0 5.0 50317 N12+05W0+50 15.0 7.0 8.0 3.5 50321 N12+50W0+00 6.8 6.8 4.8 5.0 50276 N12+50W1+00 5.0 5.0 3.8 3.8 50338 N12+50W1+50 4.6 4.6 4.6 4.0 4.4 50325 N12+50W2+00 5.0 5.0 4.5 4.5 4.5 4763 N12+50W2+50 4.5 5.0 4.5 3.5 6238 N12+50W3+00 4.2 4.2 4.2 4.2 4.2 4.797 N12+50W3+50 4.5 4.5 4.0 4.0 4807 N12+50W3+00 5.0 5.0 3.0 5.0 50338 N12+50W4+00 5.0 5.0 3.0 5.0 50338 N12+50W4+50 5.0 4.5 4.0 5.0 50338 N12+50W5+50 19.0 0.0 38.0 6.0 50277 N12+50W5+50 19.0 0.0 38.0 6.0 50277 N12+50W5+50 19.0 0.0 38.0 6.0 50078 N12+50W6+50 6.0 6.0 4.0 5.0 50319 N12+50W6+50 6.0 6.0 6.0 4.0 5.0 50315 N12+50W7+50 5.0 5.0 5.0 4.0 4.9983 N12+50W7+50 5.0 5.0 5.0 4.0 4.9983 N12+50W8+00 5.0 5.0 4.0 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                   |                   |                   |                   |              |
| N12+00W8+50 6.0 6.0 5.0 5.0 50317 N12+05W0+50 15.0 7.0 8.0 3.5 50321 N12+50W0+00 6.8 6.8 4.8 5.0 50276 N12+50W1+00 5.0 5.0 3.8 3.8 50338 N12+50W1+50 4.6 4.6 4.0 4.4 50325 N12+50W2+00 5.0 5.0 4.5 4.5 4763 N12+50W2+50 4.5 5.0 4.5 3.5 6238 N12+50W3+00 4.2 4.2 4.2 4.2 4.2 4797 N12+50W3+50 4.5 4.5 4.0 4.0 4807 N12+50W3+50 5.0 5.0 3.0 5.0 50338 N12+50W4+00 5.0 5.0 3.0 5.0 50338 N12+50W4+50 5.0 4.5 4.0 3.5 50320 N12+50W5+00 5.0 5.0 4.5 4.0 3.5 50320 N12+50W5+50 19.0 0.0 38.0 6.0 50277 N12+50W5+50 19.0 0.0 38.0 6.0 50078 N12+50W6+00 26.0 0.0 145.0 6.0 50319 N12+50W6+50 6.0 6.0 4.0 5.0 50344 N12+50W7+00 5.0 5.0 5.0 4.0 4.9 983 N12+50W7+50 5.0 5.0 5.0 4.0 4.9 983 N12+50W8+00 5.0 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+05W0+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+50W0+00 6.8 6.8 4.8 5.0 50276<br>N12+50W1+00 5.0 5.0 3.8 3.8 50338<br>N12+50W1+50 4.6 4.6 4.0 4.4 50325<br>N12+50W2+00 5.0 5.0 4.5 4.5 4763<br>N12+50W2+50 4.5 5.0 4.5 3.5 6238<br>N12+50W3+00 4.2 4.2 4.2 4.2 4.2 4.797<br>N12+50W3+50 4.5 4.5 4.0 4.0 4807<br>N12+50W4+00 5.0 5.0 3.0 5.0 50338<br>N12+50W4+50 5.0 4.5 4.0 3.5 50320<br>N12+50W5+00 5.0 5.0 4.2 4.0 50277<br>N12+50W5+50 19.0 0.0 38.0 6.0 50078<br>N12+50W6+00 26.0 0.0 145.0 6.0 50319<br>N12+50W6+50 6.0 6.0 4.0 5.0 50344<br>N12+50W7+00 5.0 5.5 4.0 6.5 50315<br>N12+50W7+50 5.0 5.0 5.0 4.0 4.9983<br>N12+50W7+50 5.0 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                   |                   |                   |                   |              |
| N12+50W1+00       5.0       5.0       3.8       3.8       50338         N12+50W1+50       4.6       4.6       4.0       4.4       50325         N12+50W2+00       5.0       5.0       4.5       4.5       4763         N12+50W2+50       4.5       5.0       4.5       3.5       6238         N12+50W3+00       4.2       4.2       4.2       4.2       4797         N12+50W3+50       4.5       4.5       4.0       4.0       4807         N12+50W4+00       5.0       5.0       3.0       5.0       50338         N12+50W4+50       5.0       4.5       4.0       3.5       50320         N12+50W5+00       5.0       5.0       4.2       4.0       50277         N12+50W5+50       19.0       0.0       38.0       6.0       50078         N12+50W6+00       26.0       0.0       145.0       6.0       50319         N12+50W7+00       5.0       5.5       4.0       6.5       50315         N12+50W7+50       5.0       5.0       4.0       4.9       4.9         N12+50W8+00       5.0       5.0       4.0       4.5       50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                   |                   |                   |                   |              |
| N12+50W1+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+50W2+00 5.0 5.0 4.5 4.5 4763 N12+50W2+50 4.5 5.0 4.5 3.5 6238 N12+50W3+00 4.2 4.2 4.2 4.2 4.2 4.797 N12+50W3+50 4.5 4.5 4.0 4.0 4807 N12+50W4+00 5.0 5.0 3.0 5.0 50338 N12+50W4+50 5.0 4.5 4.0 3.5 50320 N12+50W5+00 5.0 5.0 4.2 4.0 50277 N12+50W5+50 19.0 0.0 38.0 6.0 50078 N12+50W6+00 26.0 0.0 145.0 6.0 50319 N12+50W6+50 6.0 6.0 4.0 5.0 50344 N12+50W7+00 5.0 5.5 4.0 6.5 50315 N12+50W7+50 5.0 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                   |                   |                   |                   |              |
| N12+50W2+50 4.5 5.0 4.5 3.5 6238<br>N12+50W3+00 4.2 4.2 4.2 4.2 4.797<br>N12+50W3+50 4.5 4.5 4.0 4.0 4807<br>N12+50W4+00 5.0 5.0 3.0 5.0 50338<br>N12+50W4+50 5.0 4.5 4.0 3.5 50320<br>N12+50W5+00 5.0 5.0 4.2 4.0 50277<br>N12+50W5+50 19.0 0.0 38.0 6.0 50078<br>N12+50W6+00 26.0 0.0 145.0 6.0 50319<br>N12+50W6+50 6.0 6.0 4.0 5.0 50344<br>N12+50W7+00 5.0 5.5 4.0 6.5 50315<br>N12+50W7+50 5.0 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                   |                   |                   |                   |              |
| N12+50W3+50 4.5 4.5 4.0 4.0 4807<br>N12+50W4+00 5.0 5.0 3.0 5.0 50338<br>N12+50W4+50 5.0 4.5 4.0 3.5 50320<br>N12+50W5+00 5.0 5.0 4.2 4.0 50277<br>N12+50W5+50 19.0 0.0 38.0 6.0 50078<br>N12+50W6+00 26.0 0.0 145.0 6.0 50319<br>N12+50W6+50 6.0 6.0 4.0 5.0 50344<br>N12+50W7+00 5.0 5.5 4.0 6.5 50315<br>N12+50W7+50 5.0 5.0 5.0 4.0 4.9983<br>N12+50W8+00 5.0 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N12+50W2+50            | 4.5               |                   |                   | 3.5               |              |
| N12+50W4+00       5.0       5.0       3.0       5.0       50338         N12+50W4+50       5.0       4.5       4.0       3.5       50320         N12+50W5+00       5.0       5.0       4.2       4.0       50277         N12+50W5+50       19.0       0.0       38.0       6.0       50078         N12+50W6+00       26.0       0.0       145.0       6.0       50319         N12+50W6+50       6.0       6.0       4.0       5.0       50344         N12+50W7+00       5.0       5.5       4.0       6.5       50315         N12+50W7+50       5.0       5.0       5.0       4.0       4.9983         N12+50W8+00       5.0       5.0       4.0       4.5       50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                   |                   | 4.2               |                   | 4797         |
| N12+50W4+50 5.0 4.5 4.0 3.5 50320<br>N12+50W5+00 5.0 5.0 4.2 4.0 50277<br>N12+50W5+50 19.0 0.0 38.0 6.0 50078<br>N12+50W6+00 26.0 0.0 145.0 6.0 50319<br>N12+50W6+50 6.0 6.0 4.0 5.0 50344<br>N12+50W7+00 5.0 5.5 4.0 6.5 50315<br>N12+50W7+50 5.0 5.0 5.0 4.0 49983<br>N12+50W8+00 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                   |                   |                   |                   |              |
| N12+50W5+00 5.0 5.0 4.2 4.0 50277<br>N12+50W5+50 19.0 0.0 38.0 6.0 50078<br>N12+50W6+00 26.0 0.0 145.0 6.0 50319<br>N12+50W6+50 6.0 6.0 4.0 5.0 50344<br>N12+50W7+00 5.0 5.5 4.0 6.5 50315<br>N12+50W7+50 5.0 5.0 5.0 4.0 49983<br>N12+50W8+00 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                   |                   |                   |                   |              |
| N12+50W5+50 19.0 0.0 38.0 6.0 50078<br>N12+50W6+00 26.0 0.0 145.0 6.0 50319<br>N12+50W6+50 6.0 6.0 4.0 5.0 50344<br>N12+50W7+00 5.0 5.5 4.0 6.5 50315<br>N12+50W7+50 5.0 5.0 5.0 4.0 49983<br>N12+50W8+00 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |                   |                   |                   |              |
| N12+50W6+00 26.0 0.0 145.0 6.0 50319<br>N12+50W6+50 6.0 6.0 4.0 5.0 50344<br>N12+50W7+00 5.0 5.5 4.0 6.5 50315<br>N12+50W7+50 5.0 5.0 5.0 4.0 49983<br>N12+50W8+00 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                   |                   |                   |                   |              |
| N12+50W6+50 6.0 6.0 4.0 5.0 50344<br>N12+50W7+00 5.0 5.5 4.0 6.5 50315<br>N12+50W7+50 5.0 5.0 5.0 4.0 49983<br>N12+50W8+00 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                   |                   |                   |                   |              |
| N12+50W7+00 5.0 5.5 4.0 6.5 50315<br>N12+50W7+50 5.0 5.0 5.0 4.0 49983<br>N12+50W8+00 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |                   |                   |                   |              |
| N12+50W7+50 5.0 5.0 5.0 4.0 49983<br>N12+50W8+00 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                   |                   |                   |                   |              |
| N12+50W8+00 5.0 5.0 4.0 4.5 50274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                   |                   |                   |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |                   |                   |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N12+50W8+50            | 5.0               | 6.0               | 5.0               | 5.0               | 50295        |

| COORDINATE<br>LOCATION     | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) | EM-31<br>HORZ N-S<br>(mmhos/m) | EM-31<br>HORZ E-W<br>(mmhos/m) | MAGNETOMETER (gammas) |
|----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------|
|                            |                                |                                |                                |                                | 4                     |
| N13+00W0+00<br>N13+00W0+50 | 7.0<br>16.0                    | 6.8<br>9.0                     | 4.4<br>8.0                     | 4.6<br>3.5                     | 50324<br>50331        |
| N13+00W0+30                | 5.0                            | 5.0                            | 3.8                            | 4.0                            | 50348                 |
| N13+00W1+50                | 4.8                            | 4.6                            | 4.0                            | 4.4                            | 50311                 |
| N13+00W2+00                | 5.0                            | 5.0                            | 4.0                            | 4.5                            | 4768                  |
| N13+00W2+50                | 5.0                            | 5.0                            | 4.0                            | 4.0                            | 4777                  |
| N13+00W3+00                | 4.4                            | 4.4                            | 4.6                            | 4.6                            | 4796                  |
| N13+00W3+50                | 4.5                            | 4.5                            | 4.0                            | 4.5                            | 4806                  |
| N13+00W4+00                | 4.5                            | 4.5                            | 4.5                            | 5.5                            | 50325                 |
| N13+00W4+50                | 4.5                            | 4.0                            | 4.5                            | 4.0                            | 50265                 |
| N13+00W5+00                | 4.5                            | 4.8                            | 4.5                            | 3.8                            | 50243                 |
| N13+00W5+50                | 20.0                           | 5.0                            | 12.0                           | 7.0                            | 49615                 |
| N13+00W6+00                | 22.0                           | 0.0                            | 135.0                          | 7.0                            | 50683                 |
| N13+00W6+50                | 5.0                            | 6.0                            | 4.0                            | 4.0                            | 50331                 |
| N13+00W7+00<br>N13+00W7+50 | 4.5                            | 5.0                            | 4.5                            | 4.5                            | 50313                 |
| N13+00W7+30                | 5.0<br>4.8                     | 5.0<br>4.8                     | 4.5<br>3.5                     | 4.5<br>4.0                     | 55862<br>50279        |
| N13+00W8+50                | 5.0                            | 6.0                            | 4.5                            | 4.5                            | 50257                 |
| N13+50W0+00                | 7.2                            | 7.5                            | 4.8                            | 4.2                            | 50310                 |
| N13+50W0+50                | 16.0                           | 9.0                            | 8.0                            | 3.4                            | 50264                 |
| N13+50W1+00                | 5.0                            | 5.2                            | 4.0                            | 4.2                            | 50346                 |
| N13+50W1+50                | 4.6                            | 4.6                            | 4.0                            | 4.4                            | 50352                 |
| N13+50W2+00                | 5.0                            | 5.0                            | 4.6                            | 4.2                            | 4768                  |
| N13+50W2+50                | 4.4                            | 4.5                            | 4.0                            | 4.0                            | 4783                  |
| N13+50W3+00                | 4.5                            | 4.5                            | 4.5                            | 4.2                            | 4798                  |
| N13+50W3+50                | 4.5                            | 4.5                            | 4.5                            | 4.5                            | 4799                  |
| N13+50W4+00                | 4.5                            | 4.5                            | 5.0                            | 5.0                            | 50259                 |
| N13+50W4+50                | 5.0                            | 4.5                            | 5.0                            | 4.0                            | 50259                 |
| N13+50W5+00                | 4.8                            | 4.8                            | 4.0                            | 4.0                            | 50307                 |
| N13+50W5+50<br>N13+50W6+00 | 5.5                            | 10.5                           | 12.0                           | 7.0                            | 49496                 |
| N13+50W6+00                | 0.0<br>6.0                     | 0.0<br>6.0                     | 60.0<br>5.0                    | 16.0<br>4.0                    | 51609<br>50388        |
| N13+50W0+30                | 5.0                            | 5.0                            | 4.8                            | 4.5                            | 50258                 |
| N13+50W7+50                | 5.0                            | 4.5                            | 5.0                            | 5.0                            | 58605                 |
| N13+50W8+00                | 4.8                            | 4.5                            | 5.0                            | 3.8                            | 50267                 |
| N13+50W8+50                | 5.0                            | 5.0                            | 4.0                            | 4.0                            | 50351                 |
| N14+00W0+00                | 20.0                           | 20.5                           | 5.0                            | 8.0                            | 50307                 |
| N14+00W0+50                | 17.0                           | 12.0                           | 7.0                            | 4.0                            | 50223                 |
| N14+00W1+00                | 5.0                            | 5.0                            | 3.8                            | 4.0                            | 50318                 |
| N14+00W1+50                | 4.6                            | 4.6                            | 4.6                            | 4.0                            | 50278                 |
| N14+00W2+00                | 5.0                            | 4.8                            | 4.8                            | 4.2                            | 4769                  |
| N14+00W2+50                | 4.4                            | 4.5                            | 4.0                            | 3.6                            | 4787                  |
| N14+00W3+00                | 4.6                            | 4.6                            | 4.2                            | 4.0                            | 4805                  |
| N14+00W3+50                | 4.5                            | 4.5                            | 4.5                            | 4.5                            | 4795                  |
| N14+00W4+00                | 5.0                            | 5.0                            | 5.0                            | 5.0                            | 50258                 |

| COORDINATE<br>LOCATION     | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) |                                         | EM-31<br>HORZ E-W<br>(mmhos/m) | MAGNETOMETER (gammas)                   |
|----------------------------|--------------------------------|--------------------------------|-----------------------------------------|--------------------------------|-----------------------------------------|
|                            |                                |                                | *************************************** | ·                              | *************************************** |
| N14+00W4+50                | 4.0                            | 5.0                            | 5.0                                     | 5.0                            | 50226                                   |
| N14+00W5+00<br>N14+00W5+50 | 4.8<br>14.5                    | 4.6<br>3.5                     | 4.0<br>4.5                              | 4.0<br>5.0                     | 50297<br>50071                          |
| N14+00W6+00                | 52.0                           | 0.0                            | 68.0                                    | 5.0                            | 50313                                   |
| N14+00W6+50                | 6.0                            | 6.0                            | 5.0                                     | 5.0                            | 50464                                   |
| N14+00W7+00                | 5.0                            | 5.0                            | 4.5                                     | 4.5                            | 50302                                   |
| N14+00W7+50                | 5.0                            | 5.0                            | 4.0                                     | 4.0                            | 48535                                   |
| N14+00W8+00                | 4.8                            | 4.5                            | 4.5                                     | 3.5                            | 50357                                   |
| N14+00W8+50                | 5.0                            | 5.0                            | 5.0                                     | 5.0                            | 50370                                   |
| N14+50W0+00                | 25.0                           | 25.0                           | 7.0                                     | 5.0                            | 50361                                   |
| N14+50W0+50                | 19.0                           | 11.0                           | 8.0                                     | 4.0                            | 50216                                   |
| N14+50W1+00                | 5.2                            | 5.2                            | 4.4                                     | 4.0                            | 50272                                   |
| N14+50W1+50                | 4.6                            | 4.6                            | 4.0                                     | 4.6                            | 50255                                   |
| N14+50W2+00                | 5.2                            | 5.0                            | 5.0                                     | 4.8                            | 4783                                    |
| N14+50W2+50                | 5.0                            | 4.8                            | 4.2                                     | 4.0                            | 4776                                    |
| N14+50W3+00<br>N14+50W3+50 | 4.6<br>4.5                     | 4.8<br>4.5                     | 4.0<br>4.5                              | 4.0<br>4.5                     | 4802<br>4794                            |
| N14+50W3+30                | 5.0                            | 5.0                            | 5.0                                     | 6.5                            | 50287                                   |
| N14+50W4+50                | 5.0                            | 4.5                            | 4.5                                     | 4.0                            | 50320                                   |
| N14+50W5+00                | 4.8                            | 4.8                            | 4.2                                     | 4.2                            | 50370                                   |
| N14+50W5+50                | 6.0                            | 6.0                            | 5.0                                     | 5.5                            | 50225                                   |
| N14+50W6+00                | 19.5                           | 0.0                            | 170.0                                   | 6.0                            | 50385                                   |
| N14+50W6+50                | 5.0                            | 6.5                            | 4.0                                     | 4.5                            | 50382                                   |
| N14+50W7+00                | 5.0                            | 5.0                            | 4.5                                     | 4.5                            | 50259                                   |
| N14+50W7+50                | 5.0                            | 5.0                            | 4.5                                     | 4.5                            | 54581                                   |
| N14+50W8+00                | 4.8                            | 5.0                            | 4.0                                     | 4.0                            | 50254                                   |
| N14+50W8+50                | 5.0                            | 5.0                            | 5.0                                     | 4.0                            | 50339                                   |
| N15+00W0+00                | 26.0                           | 28.0                           | 13.0                                    | 10.0                           | 50851                                   |
| N15+00W0+50                | 22.0                           | 14.0                           | 8.0                                     | 4.0                            | 47407                                   |
| N15+00W1+00<br>N15+00W1+50 | 5.4                            | 5.4                            | 4.0                                     | 4.0                            | 50251                                   |
| N15+00W1+50                | 4.6<br>5.4                     | 4.8<br>5.4                     | 4.0<br>5.0                              | 4.0<br>5.0                     | 50326<br>5213                           |
| N15+00W2+00                | 5.0                            | 5.0                            | 4.4                                     | 5.0                            | 5306                                    |
| N15+00W3+00                | 5.0                            | 5.0                            | 4.0                                     | 5.0                            | 4798                                    |
| N15+00W3+50                | 5.0                            | 5.0                            | 5.0                                     | 4.5                            | 4799                                    |
| N15+00W4+00                | 4.5                            | 4.5                            | 5.0                                     | 4.5                            | 50295                                   |
| N15+00W4+50                | 5.0                            | 5.0                            | 4.5                                     | 3.5                            | 50352                                   |
| N15+00W5+00                | 4.8                            | 4.8                            | 4.5                                     | 4.5                            | 50329                                   |
| N15+00W5+50                | 5.5                            | 5.5                            | 4.5                                     | 4.5                            | 50334                                   |
| N15+00W6+00                | 11.0                           | 0.0                            | 170.0                                   | 4.5                            | 50365                                   |
| N15+00W6+50                | 6.0                            | 5.0                            | 5.0                                     | 4.0                            | 50416                                   |
| N15+00W7+00                | 5.0                            | 5.5                            | 4.5                                     | 4.5                            | 50296                                   |
| N15+00W7+50                | 5.0                            | 5.0                            | 5.0                                     | 4.0                            | 51240                                   |
| N15+00W8+00                | 4.8                            | 4.5                            | 4.0                                     | 4.4                            | 50348                                   |
| N15+00W8+50                | 5.0                            | 5.0                            | 4.0                                     | 5.0                            | 50362                                   |

| COORDINATE<br>LOCATION     | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) |            | EM-31<br>HORZ E-W<br>(mmhos/m) | MAGNETOMETER   |
|----------------------------|--------------------------------|--------------------------------|------------|--------------------------------|----------------|
| N15+50W0+00                | 13.5                           | 13.0                           | 6.0        | 5.0                            | 50212          |
| N15+50W0+50<br>N15+50W1+00 | 13.0<br>5.4                    | 15.0<br>5.4                    | 6.0<br>4.0 | 5.0<br>3.8                     | 50326<br>50324 |
| N15+50W1+50                | 4.6                            | 4.6                            | 4.0        | 4.0                            | 50292          |
| N15+50W2+00                | 5.4                            | 5.4                            | 4.6        | 6.0                            | 4989           |
| N15+50W2+50                | 5.4                            | 5.2                            | 4.2        | 4.6                            | 4927           |
| N15+50W3+00                | 5.0                            | 5.0                            | 4.5        | 4.5                            | 4804           |
| N15+50W3+50<br>N15+50W4+00 | 5.4<br>9.0                     | 5.2<br>6.0                     | 5.4<br>8.0 | 5.0<br>8.0                     | 4803<br>50676  |
| N15+50W4+50                | 5.0                            | 5.0                            | 4.5        | 4.5                            | 50221          |
| N15+50W5+00                | 5.0                            | 5.0                            | 4.6        | 4.6                            | 50309          |
| N15+50W5+50                | 5.5                            | 6.0                            | 4.0        | 4.0                            | 50339          |
| N15+50W6+00                | 15.0                           | 0.0                            | 180.0      | 4.0                            | 50468          |
| N15+50W6+50<br>N15+50W7+00 | 5.5<br>5.0                     | 6.0<br>5.0                     | 5.0        | 4.0                            | 50390<br>50346 |
| N15+50W7+50                | 5.0                            | 5.0                            | 4.5<br>4.5 | 4.5<br>5.0                     | 50900          |
| N15+50W8+00                | 5.0                            | 5.0                            | 4.5        | 3.5                            | 50359          |
| N15+50W8+50                | 5.0                            | 4.0                            | 4.0        | 4.0                            | 50365          |
| N16+00W0+00                | 8.0                            | 8.4                            | 4.2        | 4.6                            | 50318          |
| N16+00W0+50                | 19.0                           | 14.0                           | 8.0        | 4.0                            | 50233          |
| N16+00W1+00<br>N16+00W1+50 | 5.4<br>4.6                     | 5.4<br>4.6                     | 3.8<br>4.0 | 3.8<br>4.6                     | 50304<br>50339 |
| N16+00W1+30                | 6.0                            | 6.0                            | 6.0        | 5.8                            | 5104           |
| N16+00W2+50                | 5.4                            | 5.4                            | 4.8        | 4.9                            | 4819           |
| N16+00W3+00                | 5.0                            | 5.2                            | 4.2        | 4.2                            | 4798           |
| N16+00W3+50                | 5.0                            | 5.2                            | 5.2        | 5.4                            | 4792           |
| N16+00W4+00<br>N16+00W4+50 | 5.0<br>5.0                     | 5.0<br>5.0                     | 4.5        | 4.5<br>5.0                     | 50343          |
| N16+00W4+30                | 5.4                            | 5.2                            | 4.0<br>4.4 | 4.5                            | 50344<br>50292 |
| N16+00W5+50                | 5.8                            | 5.8                            | 3.8        | 4.2                            | 50243          |
| N16+00W6+00                | 4.5                            | 0.0                            | 130.0      | 10.0                           | 50353          |
| N16+00W6+50                | 5.5                            | 6.0                            | 6.0        | 4.0                            | 50433          |
| N16+00W7+00<br>N16+00W7+50 | 5.5                            | 5.5                            | 4.5        | 4.5                            | 50273          |
| N16+00W7+30                | 5.0<br>5.0                     | 5.0<br>5.0                     | 5.0<br>4.5 | 5.0<br>5.0                     | 50165<br>50342 |
| N16+00W8+50                | 5.0                            | 5.0                            | 4.0        | 4.0                            | 50342          |
| N16+50W0+00                | 8.0                            | 8.0                            | 4.6        | 4.4                            | 50295          |
| N16+50W0+50                | 21.0                           | 8.6                            | 10.0       | 4.0                            | 50307          |
| N16+50W1+00                | 5.4                            | 5.4                            | 3.8        | 3.8                            | 50351          |
| N16+50W1+50<br>N16+50W2+00 | 4.6<br>7.2                     | 4.6<br>7.2                     | 4.0        | 4.0                            | 50304          |
| N16+50W2+50                | 6.0                            | 6.0                            | 6.2<br>5.6 | 7.0<br>5.6                     | 4926<br>4777   |
| N16+50W3+00                | 6.0                            | 6.0                            | 5.5        | 5.5                            | 4804           |
| N16+50W3+50                | 5.8                            | 5.8                            | 6.0        | 5.5                            | 4807           |
| N16+50W4+00                | 6.0                            | 6.0                            | 5.0        | 5.0                            | 50265          |

8

| COORDINATE<br>LOCATION     | EM-31<br>VERT N-S | EM-31<br>VERT E-W |              |            | MAGNETOMETER                            |
|----------------------------|-------------------|-------------------|--------------|------------|-----------------------------------------|
|                            | (mmhos/m)         | (mmhos/m)         | (mmhos/m)    | (mmhos/m)  | (gammas)                                |
| +                          |                   |                   |              |            | *************************************** |
| N16+50W4+50                | 5.0               | 5.0               | 4.0          | 4.0        | 50250                                   |
| N16+50W5+00                | 5.8               | 5.8               | 4.8          | 4.8        | 50274                                   |
| N16+50W5+50                | 14.0              | 25.0              | 5.5          | 1.5        | 49804                                   |
| N16+50W6+00                | 5.5               | 0.0               | 185.0        | 6.0        | 50171                                   |
| N16+50W6+50                | 6.0               | 6.0               | 5.0          | 5.0        | 50316                                   |
| N16+50W7+00                | 5.5               | 6.0               | 5.0          | 5.5        | 50323                                   |
| N16+50W7+50                | 5.5               | 5.5               | 5.0          | 5.0        | 50224                                   |
| N16+50W8+00                | 5.0               | 5.0               | 4.0          | 5.0        | 50268                                   |
| N16+50W8+50<br>N17+00W0+00 | 5.0<br>6.8        | 5.0<br>7.8        | 6.0          | 5.0<br>4.8 | 50359<br>50313                          |
| N17+00W0+00                | 22.0              | 6.6               | 5.0<br>13.0  | 4.8        | 50255                                   |
| N17+00W0+30                | 5.4               | 5.8               | 3.8          | 4.0        | 50341                                   |
| N17+00W1+50                | 4.6               | 4.8               | 4.0          | 3.8        | 50279                                   |
| N17+00W2+00                | 7.4               | 7.0               | 6.0          | 7.8        | 4842                                    |
| N17+00W2+50                | 7.0               | 7.0               | 8.0          | 6.0        | 5296                                    |
| N17+00W3+00                | 6.8               | 6.8               | 6.0          | 6.0        | 4798                                    |
| N17+00W3+50                | 6.2               | 6.2               | 5.5          | 5.6        | 4804                                    |
| N17+00W4+00                | 6.0               | 6.0               | 4.5          | 5.0        | 50325                                   |
| N17+00W4+50                | 5.0               | 5.0               | 4.0          | 4.0        | 50250                                   |
| N17+00W5+00                | 5.5               | 5.5               | 5.5          | 5.0        | 50247                                   |
| N17+00W5+50                | 6.5               | 6.5               | 5.5          | 5.5        | 50159                                   |
| N17+00W6+00                | 8.0               | 0.0               | 145.0        | 5.0        | 50476                                   |
| N17+00W6+50                | 6.5<br>5.5        | 6.5               | 5.0          | 5.0        | 50352                                   |
| N17+00W7+00<br>N17+00W7+50 | 5.5               | 6.0<br>5.5        | 5.0<br>5.0   | 5.5<br>5.5 | 50310<br>50290                          |
| N17+00W7+30                | 5.5               | 5.0               | 5.5          | 5.0        | 50329                                   |
| N17+00W8+50                | 5.5               | 5.0               | 5.0          | 6.0        | 50367                                   |
| N17+50W0+00                | 7.0               | 7.0               | 4.2          | 4.8        | 50357                                   |
| N17+50W0+50                | 19.0              | 11.0              | 7.0          | 4.0        | 50318                                   |
| N17+50W1+00                | 6.0               | 6.0               | 4.0          | 4.0        | 50326                                   |
| N17+50W1+50                | 4.6               | 4.6               | 3.8          | 4.8        | 50312                                   |
| N17+50W2+00                | 8.2               | 6.6               | 8.0          | 8.6        | 4782                                    |
| N17+50W2+50                | 8.0               | 8.0               | 6.0          | 8.0        | 5724                                    |
| N17+50W3+00                | 8.8               | 8.8               | 7.0          | 7.4        | 4798                                    |
| N17+50W3+50                | 9.2               | 9.2               | 11.0         | 10.0       | 4807                                    |
| N17+50W4+00                | 10.0              | 10.5              | 10.5         | 10.0       | 49211                                   |
| N17+50W4+50                | 6.0               | 6.5               | 5.5          | 6.5        | 50322                                   |
| N17+50W5+00<br>N17+50W5+50 | 6.4<br>6.5        | 6.4<br>6.0        | 6.0          | 5.5        | 50314                                   |
| N17+50W5+50                | 19.0              | 0.0               | 4.5<br>145.0 | 4.5        | 50137<br>50443                          |
| N17+50W6+50                | NA                | NA                | NA           | 15.0<br>NA | NA                                      |
| N17+50W0+30                | NA<br>NA          | NA<br>NA          | NA<br>NA     | NA<br>NA   | NA<br>NA                                |
| N17+50W7+50                | NA<br>NA          | NA<br>NA          | NA<br>NA     | NA<br>NA   | NA<br>NA                                |
| N17+50W8+00                | 5.0               | 5.5               | 4.0          | 6.0        | 50273                                   |
| N17+50W8+50                | 5.5               | 5.2               | 5.0          | 4.8        | 50359                                   |

| COORDINATE<br>LOCATION     | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) | EM-31<br>HORZ N-S<br>(mmhos/m) | EM-31<br>HORZ E-W<br>(mmhos/m) | MAGNETOMETER (gammas) |
|----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------|
|                            |                                |                                |                                |                                |                       |
| N1 0 . 0 0 110 . 0 0       |                                | 6 0                            | 4.6                            | 4 2                            | E0330                 |
| N18+00W0+00<br>N18+00W0+50 | 6.6<br>8.2                     | 6.0<br>8.2                     | 4.6<br>4.2                     | 4.2<br>4.6                     | 50320<br>50348        |
| N18+00W1+00                | 9.0                            | 9.2                            | 4.4                            | 4.0                            | 50346                 |
| N18+00W1+50                | 5.0                            | 5.2                            | 4.0                            | 4.2                            | 50286                 |
| N18+00W2+00                | 8.8                            | 8.0                            | 8.0                            | 8.4                            | 5241                  |
| N18+00W2+50                | 9.0                            | 7.0                            | 9.0                            | 7.0                            | 5587                  |
| N18+00W3+00                | 8.6                            | 8.5                            | 7.8                            | 7.0                            | 4805                  |
| N18+00W3+50                | 8.2                            | 8.2                            | 6.5                            | 7.0                            | 4795                  |
| N18+00W4+00                | 9.0                            | 9.0                            | 9.5                            | 10.5                           | 50343                 |
| N18+00W4+50                | 6.0                            | 6.5                            | 5.0                            | 4.5                            | 50308                 |
| N18+00W5+00<br>N18+00W5+50 | 6.4<br>7.0                     | 6.5<br>7.0                     | 5.5                            | 5.5<br>5.5                     | 50319<br>50286        |
| N18+00W5+50                | 7.0<br>5.0                     | 0.0                            | 5.5<br>110.0                   | 4.8                            | 50406                 |
| N18+00W6+50                | NA                             | NA                             | NA                             | NA                             | NA                    |
| N18+00W7+00                | NA                             | NA                             | NA                             | NA                             | NA                    |
| N18+00W7+50                | NA                             | NA                             | NA                             | NA                             | NA                    |
| N18+00W8+00                | 5.5                            | 5.0                            | 5.0                            | 5.0                            | 50349                 |
| N18+00W8+50                | 5.5                            | 6.0                            | 6.0                            | 6.0                            | 50305                 |
| N18+50W0+00                | 6.0                            | 6.4                            | 4.4                            | 4.8                            | 50341                 |
| N18+50W0+50                | 5.0                            | 5.0                            | 5.2                            | 4.8                            | 50334                 |
| N18+50W1+00                | 18.0                           | 18.0                           | 5.4                            | 8.4                            | 50339                 |
| N18+50W1+50                | 10.0                           | 9.5                            | 4.0                            | 4.0                            | 50287                 |
| N18+50W2+00<br>N18+50W2+50 | 10.5<br>7.0                    | 8.5<br>7.5                     | 8.0                            | 8.0                            | 5506<br>4914          |
| N18+50W2+50                | 7.0                            | 7.3                            | 6.0<br>6.2                     | 7.0<br>6.0                     | 4809                  |
| N18+50W3+50                | 6.5                            | 6.5                            | 6.0                            | 6.0                            | 4808                  |
| N18+50W4+00                | 7.0                            | 7.0                            | 7.0                            | 5.0                            | 50295                 |
| N18+50W4+50                | 6.0                            | 6.0                            | 6.0                            | 5.0                            | 50309                 |
| N18+50W5+00                | 6.4                            | 6.4                            | 5.4                            | 5.5                            | 50390                 |
| N18+50W5+50                | 6.6                            | 6.5                            | 5.5                            | 5.0                            | 50314                 |
| N18+50W6+00                | 20.0                           | 0.0                            | 95.0                           | 3.5                            | 50448                 |
| N18+50W6+50                | NA                             | NA                             | NA                             | NA                             | NA                    |
| N18+50W7+00                | NA                             | NA                             | NA                             | NA                             | NA                    |
| N18+50W7+50                | NA<br>C                        | NA<br>5                        | NA<br>4                        | NA<br>5                        | NA<br>50304           |
| N18+50W8+00<br>N18+50W8+50 | 5.0                            | 5.0<br>NA                      | 4.0                            | 5.0                            | 50304                 |
| N19+00W0+00                | NA<br>6.2                      | 6.4                            | NA<br>4.2                      | NA<br>4.2                      | NA<br>50304           |
| N19+00W0+50                | 4.4                            | 4.8                            | 3.8                            | 4.0                            | 50342                 |
| N19+00W1+00                | 5.2                            | 4.8                            | 4.4                            | 4.0                            | 50328                 |
| N19+00W1+50                | 10.0                           | 10.0                           | 4.0                            | 4.2                            | 50300                 |
| N19+00W2+00                | 22.0                           | 21.0                           | 10.0                           | 15.0                           | 5516                  |
| N19+00W2+50                | 10.0                           | 8.0                            | 7.0                            | 6.0                            | 4983                  |
| N19+00W3+00                | 6.8                            | 6.6                            | 5.8                            | 5.2                            | 4805                  |
| N19+00W3+50                | 6.2                            | 6.0                            | 5.0                            | 5.5                            | 4810                  |
| N19+00W4+00                | 6.0                            | 6.5                            | 3.0                            | 5.0                            | 50342                 |

| COORDINATE                 | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) | EM-31<br>HORZ N-S<br>(mmhos/m) | EM-31<br>HORZ E-W<br>(mmhos/m) | MAGNETOMETER (gammas) |
|----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------|
| N19+00W4+50<br>N19+00W5+00 | 6.0<br>5.8                     | 6.0<br>5.8                     | 6.0<br>5.4                     | 6.0<br>5.2                     | 50297<br>50378        |
| N19+00W5+50<br>N19+00W6+00 | 6.2<br>28.5                    | 6.2<br>0.0                     | 4.5                            | 5.0<br>5.0                     | 50311<br>50429        |
| N19+00W6+50                | NA                             | NA                             | NA                             | NA                             | NA                    |
| N19+00W7+00<br>N19+00W7+50 | NA<br>NA                       | NA<br>NA                       | NA<br>NA                       | NA<br>NA                       | NA<br>NA              |
| N19+00W7+30                | 4.8                            | 4.0                            | 3.0                            | 4.5                            | 50341                 |
| N19+00W8+50                | NA                             | NA                             | NA                             | NA                             | NA                    |
| N19+50W0+00<br>N19+50W0+50 | 6.2<br>4.8                     | 6.6<br>4.4                     | 3.8<br>3.6                     | 4.0<br>3.8                     | 50313<br>50295        |
| N19+50W1+00                | 4.8                            | 4.6                            | 4.6                            | 4.0                            | 50316                 |
| N19+50W1+50<br>N19+50W2+00 | 5.0<br>9.5                     | 5.0<br>6.8                     | 4.2<br>8.5                     | 4.2<br>9.0                     | 50333<br>5339         |
| N19+50W2+50                | 18.0                           | 16.0                           | 7.0                            | 6.5                            | 5070                  |
| N19+50W3+00                | 16.0                           | 21.0                           | 12.0                           | 8.0                            | 4798                  |
| N19+50W3+50<br>N19+50W4+00 | 7.5<br>7.0                     | 7.0<br>6.0                     | 5.0<br>7.0                     | 5.0<br>5.0                     | 4796<br>50351         |
| N19+50W4+50                | 6.0                            | 5.5                            | 5.0                            | 4.0                            | 50278                 |
| N19+50W5+00<br>N19+50W5+50 | 5.4<br>6.0                     | 5.4<br>5.6                     | 4.8<br>5.0                     | 4.5<br>4.5                     | 50296<br>50323        |
| N19+50W6+00                | 21.0                           | 0.0                            | 78.0                           | 0.0                            | 50356                 |
| N19+50W6+50<br>N19+50W7+00 | NA<br>NA                       | NA<br>NA                       | NA                             | NA                             | NA<br>NA              |
| N19+50W7+50                | NA<br>NA                       | NA<br>NA                       | NA<br>NA                       | NA<br>NA                       | NA<br>NA              |
| N19+50W8+00                | NA                             | NA                             | NA                             | NA                             | NA                    |
| N19+50W8+50<br>N2+00W0+00  | NA<br>9.0                      | NA<br>10.0                     | NA<br>3.0                      | NA<br>4.0                      | NA<br>50257           |
| N2 + 00W0 + 50             | 4.2                            | 4.0                            | 3.4                            | 3.4                            | 50311                 |
| N2+00W1+00<br>N2+00W1+50   | 4.2<br>150.0                   | 4.3<br>0.0                     | 3.8<br>120.0                   | 4.0<br>7.5                     | 50334<br>50354        |
| N2+00W1+30                 | 10.0                           | 6.5                            | 12.0                           | 9.5                            | 50469                 |
| N2+00W2+50<br>N2+00W3+00   | 4.0<br>3.8                     | 4.0                            | 4.0                            | 5.0                            | 6586                  |
| N2+00W3+00<br>N2+00W3+50   | 4.0                            | 3.8<br>4.0                     | 3.5<br>4.0                     | 3.5<br>4.0                     | 4808<br>4792          |
| N2+00W4+00                 | 4.0                            | 4.0                            | 4.0                            | 5.0                            | 50284                 |
| N2+00W4+50<br>N2+00W5+00   | 4.0<br>3.8                     | 4.0<br>3.8                     | 3.5<br>3.5                     | 3.5<br>3.2                     | 50273<br>50337        |
| N2+00W5+50                 | 4.0                            | 4.0                            | 3.8                            | 4.0                            | 50324                 |
| N2+00W6+00<br>N2+00W6+50   | 4.0<br>4.0                     | 4.0<br>4.0                     | 4.5<br>3.0                     | 3.5                            | 50496                 |
| N2+00W6+50<br>N2+00W7+00   | 3.7                            | 3.7                            | 3.0<br>3.5                     | 5.0<br>3.5                     | 50317<br>50301        |
| N2+00W7+50                 | 4.0                            | 4.0                            | 3.5                            | 3.5                            | 50332                 |
| N2+00W8+00<br>N2+00W8+50   | 4.0<br>4.0                     | 4.0<br>4.0                     | 4.0<br>3.0                     | 3.5<br>4.0                     | 50372<br>50285        |

| COORDINATE<br>LOCATION                  | EM-31<br>VERT N-S | EM-31<br>VERT E-W | EM-31<br>HORZ N-S<br>(mmhos/m) |                 | MAGNETOMETER   |
|-----------------------------------------|-------------------|-------------------|--------------------------------|-----------------|----------------|
|                                         | ( mmiros/ m)      | (mmilos/m)        | ( mm110 S/ m )                 | (111111105/111) | (gaimias)      |
| *************************************** |                   |                   |                                |                 |                |
|                                         |                   |                   |                                |                 | 5000           |
| N2+50W0+00                              | 9.0               | 10.0              | 4.0                            | 4.0             | 50290          |
| N2+50W0+50                              | 4.4               | 4.2<br>4.2        | 3.8                            | 3.6             | 50221          |
| N2+50W1+00<br>N2+50W1+50                | 4.2<br>38.0       | 0.0               | 4.0                            | 4.0             | 50324<br>50322 |
| N2+50W1+50<br>N2+50W2+00                | 10.0              | 6.0               | 55.0<br>12.0                   | 8.0<br>10.0     | 50144          |
| N2+50W2+50                              | 4.5               | 5.0               | 5.0                            | 3.5             | 5481           |
| N2+50W2+30                              | 3.8               | 4.0               | 3.2                            | 3.5             | 4806           |
| N2+50W3+50                              | 4.0               | 4.0               | 3.5                            | 4.0             | 4805           |
| N2+50W4+00                              | 4.0               | 4.0               | 5.0                            | 5.5             | 50315          |
| N2+50W4+50                              | 4.0               | 4.0               | 4.5                            | 3.5             | 50264          |
| N2+50W5+00                              | 3.8               | 3.8               | 3.4                            | 3.2             | 50310          |
| N2+50W5+50                              | 4.5               | 4.5               | 4.0                            | 4.5             | 50584          |
| N2+50W6+00                              | 3.8               | 4.0               | 4.5                            | 5.0             | 50549          |
| N2+50W6+50                              | 4.0               | 4.0               | 3.0                            | 4.0             | 50351          |
| N2+50W7+00                              | 3.5               | 3.6               | 3.5                            | 3.5             | 50290          |
| N2+50W7+50                              | 4.0               | 4.0               | 3.5                            | 4.0             | 50332          |
| N2+50W8+00                              | 3.5               | 3.5               | 3.5                            | 3.5             | 50308          |
| N2+50W8+50                              | 4.0               | 4.0               | 4.0                            | 4.0             | 50341          |
| N20+00W0+00                             | 6.6               | 6.8               | 4.4                            | 4.0             | 50279          |
| N20+00W0+50                             | 0.0               | 5.2               | 20.0                           | 4.6             | 50227          |
| N20+00W1+00                             | 5.0               | 4.8               | 4.0                            | 4.8             | 50273          |
| N20+00W1+50                             | 4.8               | 4.8               | 4.2                            | 4.0             | 50308          |
| N20+00W2+00                             | 8.0               | 0.0               | 8.0                            | 18.0            | 5368           |
| N20+00W2+50<br>N20+00W3+00              | 4.8               | 4.8               | 4.2                            | 4.8             | 5929           |
| N20+00W3+00                             | 6.2<br>10.0       | 6.2<br>10.0       | 4.2<br>5.0                     | 4.5             | 4802<br>4794   |
| N20+00W3+30                             | 0.0               | 3.0               | 10.0                           | 5.0<br>38.0     | 50345          |
| N20+00W4+50                             | 7.0               | 7.0               | 4.4                            | 5.0             | 50335          |
| N20+00W5+00                             | 5.5               | 5.5               | 4.5                            | 4.0             | 50323          |
| N20+00W5+50                             |                   | 5.5               | 4.5                            | 4.5             | 50347          |
| N20+00W6+00                             |                   | 12.0              | 4.0                            | 4.0             | 50398          |
| N20+00W6+50                             | NA                | NA                | NA                             | NA              | NA             |
| N20+00W7+00                             | 18.0              | 22.0              | 12.0                           | 13.0            | 49827          |
| N20+00W7+50                             | NA                | NA                | NA                             | NA              | NA             |
| N20+00W8+00                             | NA                | NA                | NA                             | NA              | NA             |
| N20+00W8+50                             | NA                | NA                | NA                             | NA              | NA             |
| N20+50W0+00                             | 6.8               | 7.0               | 4.6                            | 4.6             | 50336          |
| N20+50W0+50                             | 4.8               | 5.0               | 3.6                            | 3.8             | 50309          |
| N20+50W1+00                             | 4.5               | 4.5               | 4.5                            | 4.5             | 50266          |
| N20+50W1+50                             | 4.8               | 4.8               | 4.2                            | 4.6             | 50336          |
| N20+50W2+00                             | 9.0               | 6.5               | 9.5                            | 10.5            | 5233           |
| N20+50W2+50                             | 5.4               | 5.4               | 5.4                            | 5.4             | 5169           |
| N20+50W3+00<br>N20+50W3+50              | 4.8               | 4.8               | 4.2                            | 4.5             | 4790           |
| N20+50W3+50<br>N20+50W4+00              | 5.5<br>6.0        | 5.5               | 4.0                            | 4.5             | 4804           |
| MZUT3UW4+UU                             | 0.0               | 5.5               | 4.5                            | 6.0             | 50246          |

| COORDINATE<br>LOCATION     | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) |            | EM-31<br>HORZ E-W<br>(mmhos/m) | MAGNETOMETER   |
|----------------------------|--------------------------------|--------------------------------|------------|--------------------------------|----------------|
|                            | (                              | (                              | (          | (                              | ( 3 )          |
|                            |                                |                                |            |                                |                |
| N20+50W4+50                | 9.5                            | 10.0                           | 6.0        | 5.0                            | 50286          |
| N20+50W5+00                | 0.0                            | 8.0                            | 7.5        | 17.0                           | 50299          |
| N20+50W5+50                | 7.0                            | 6.5                            | 4.0        | 3.5                            | 50331          |
| N20+50W6+00                | 11.0                           | 11.0                           | 6.0        | 4.0                            | 50305          |
| N20+50W6+50                | 24.0                           | 32.0                           | 15.0       | 6.5                            | 50411          |
| N20+50W7+00                | 12.0                           | 12.0                           | 7.0        | 8.0                            | 50227          |
| N20+50W7+50                | NA                             | NA                             | NA         | NA                             | NA             |
| N20+50W8+00                | NA                             | NA                             | NA         | NA                             | NA             |
| N20+50W8+50<br>N21+00W0+00 | NA<br>7.2                      | NA<br>7.4                      | NA<br>5.0  | NA<br>5.4                      | NA<br>50259    |
| N21+00W0+50                | 4.8                            | 4.8                            | 4.0        | 4.6                            | 50236          |
| N21+00W1+00                | 4.5                            | 4.5                            | 4.2        | 4.5                            | 50322          |
| N21+00W1+50                | 4.4                            | 4.4                            | 3.8        | 4.0                            | 50311          |
| N21+00W2+00                | 8.0                            | 7.0                            | 8.5        | 9.0                            | 5032           |
| N21+00W2+50                | 4.5                            | 4.5                            | 4.5        | 4.0                            | 4892           |
| N21+00W3+00                | 4.4                            | 4.5                            | 4.0        | 4.0                            | 4797           |
| N21+00W3+50                | 4.5                            | 4.5                            | 4.2        | 4.5                            | 4799           |
| N21+00W4+00                | 5.0                            | 5.0                            | 5.0        | 4.0                            | 50329          |
| N21+00W4+50                | 6.0                            | 6.0                            | 5.0        | 4.0                            | 50343          |
| N21+00W5+00                | 8.5                            | 8.2                            | 3.5        | 4.2                            | 50354          |
| N21+00W5+50                | 2.5<br>12.0                    | 9.0                            | 5.5        | 18.0                           | 50314          |
| N21+00W6+00<br>N21+00W6+50 | 11.0                           | 12.0<br>10.0                   | 4.0<br>4.0 | 19.0<br>6.0                    | 50395<br>50424 |
| N21+00W0+30                | 0.0                            | 0.0                            | 12.0       | 40.0                           | 50256          |
| N21+00W7+50                | 12.0                           | 12.0                           | 8.0        | 11.0                           | 49937          |
| N21+00W8+00                | 8.5                            | 8.5                            | 4.5        | 4.0                            | 50237          |
| N21+00W8+50                | 0.0                            | 0.0                            | 4.0        | 80.0                           | 50168          |
| 00+00W0+00                 | 9.0                            | 9.0                            | 4.0        | 3.5                            | 50301          |
| N3+00W0+50                 | 4.2                            | 4.2                            | 2.8        | 3.2                            | 50244          |
| N3+00W1+00                 | 4.2                            | 4.1                            | 3.8        | 3.8                            | 50347          |
| N3+00W1+50                 | 30.0                           | 0.0                            | 9.0        | 7.0                            | 50205          |
| N3+00W2+00                 | 10.0                           | 6.5                            | 12.0       | 10.0                           | 50414          |
| N3+00W2+50<br>N3+00W3+00   | 4.5<br>4.0                     | 4.5<br>3.8                     | 4.5<br>3.5 | 3.0<br>3.5                     | 5135<br>4799   |
| N3+00W3+00                 | 4.0                            | 4.0                            | 4.0        | 4.0                            | 4791           |
| N3+00W3+30                 | 4.0                            | 4.0                            | 3.0        | 4.0                            | 50310          |
| N3+00W4+50                 | 4.0                            | 4.0                            | 5.0        | 3.0                            | 50359          |
| N3+00W5+00                 | 3.8                            | 3.8                            | 3.2        | 3.5                            | 50272          |
| N3+00W5+50                 | 10.5                           | 0.0                            | 0.0        | 15.0                           | 50068          |
| N3 + 00W6 + 00             | 4.0                            | 3.5                            | 4.5        | 4.0                            | 50299          |
| N3+00W6+50                 | 4.0                            | 4.0                            | 5.0        | 3.5                            | 50376          |
| N3+00W7+00                 | 3.7                            | 3.8                            | 3.5        | 3.5                            | 50288          |
| N3+00W7+50                 | 4.0                            | 4.0                            | 3.5        | 3.5                            | 50331          |
| N3+00W8+00                 | 3.5                            | 3.5                            | 3.5        | 3.0                            | 50350          |
| N3+00W8+50                 | 4.0                            | 4.0                            | 2.0        | 3.5                            | 50343          |

| COORDINATE<br>LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EM-31<br>VERT N-S                      | EM-31<br>VERT E-W | EM-31<br>HORZ N-S                      | EM-31<br>HORZ E-W | MAGNETOMETER                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|----------------------------------------|-------------------|----------------------------------------|
| 200112011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (mmhos/m)                              |                   | (mmhos/m)                              |                   | (gammas)                               |
| Wile and the second sec | ************************************** |                   | ************************************** |                   | ************************************** |
| N3+50W0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0                                    | 9.0               | 4.0                                    | 4.0               | 50320                                  |
| N3+50W0+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.2                                    | 3.2               | 50237                                  |
| N3+50W1+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.5                                    | 3.5               | 50313                                  |
| N3+50W1+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                    | 3.0               | 8.0                                    | 7.0               | 49748                                  |
| N3+50W2+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0                                   | 6.0               | 13.0                                   | 10.0              | 50686                                  |
| N3+50W2+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5                                    | 4.5               | 4.5                                    | 6.0               | 4932                                   |
| N3+50W3+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.5                                    | 3.5               | 4795                                   |
| N3+50W3+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.0                                    | 3.5               | 4799                                   |
| N3+50W4+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 4.0                                    | 4.5               | 50291                                  |
| N3+50W4+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 4.0                                    | 6.0               | 50252                                  |
| N3+50W5+00<br>N3+50W5+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.8                                    | 3.8               | 3.8                                    | 3.2               | 50276<br>59484                         |
| N3+50W5+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.0<br>4.0                            | 0.0<br>4.0        | 1.5<br>3.0                             | 15.0<br>3.0       | 50345                                  |
| N3+50W6+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 4.5                                    | 3.5               | 50428                                  |
| N3+50W0+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8                                    | 4.0               | 3.5                                    | 3.5               | 50310                                  |
| N3+50W7+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.5                                    | 3.5               | 50327                                  |
| N3+50W8+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.5                                    | 3.0               | 3.5                                    | 5.0               | 50288                                  |
| N3+50W8+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 2.5                                    | 4.0               | 50255                                  |
| N4+00W0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0                                    | 9.0               | 4.0                                    | 3.5               | 50306                                  |
| N4+00W0+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.4                                    | 4.0               | 3.8                                    | 3.8               | 50243                                  |
| N4+00W1+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.5                                    | 3.5               | 50325                                  |
| N4+00W1+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.6                                    | 4.6               | 4.6                                    | 4.6               | 50337                                  |
| N4+00W2+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.0                                    | 8.0               | 10.0                                   | 14.5              | 50906                                  |
| N4+00W2+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5                                    | 4.5               | 5.0                                    | 5.0               | 4908                                   |
| N4+00W3+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.5                                    | 3.5               | 4796                                   |
| N4+00W3+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.0                                    | 3.5               | 4802                                   |
| N4+00W4+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.0                                    | 4.0               | 50328<br>502 <b>9</b> 0                |
| N4+00W4+50<br>N4+00W5+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0<br>3.8                             | 4.0<br>3.8        | 5.0<br>3.8                             | 4.0<br>3.8        | 50309                                  |
| N4+00W5+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8                                    | 1.8               | 2.5                                    | 4.2               | 50333                                  |
| N4+00W6+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 4.5                                    | 3.5               | 50438                                  |
| N4+00W6+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 4.0                                    | 4.0               | 50378                                  |
| N4+00W7+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.5                                    | 3.5               | 50353                                  |
| N4+00W7+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.5                                    | 3.5               | 50330                                  |
| N4+00W8+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8                                    | 3.8               | 3.5                                    | 4.0               | 50334                                  |
| N4+00W8+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0                                    | 4.5               | 3.0                                    | 5.0               | 50361                                  |
| N4+50W0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0                                    | 9.0               | 3.5                                    | 3.5               | 50294                                  |
| N4+50W0+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.2                                    | 4.0               | 3.0                                    | 3.6               | 50238                                  |
| N4+50W1+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.2                                    | 4.2               | 4.0                                    | 4.0               | 50369                                  |
| N4+50W1+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.6                                    | 4.6               | 4.6                                    | 4.6               | 50281                                  |
| N4+50W2+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.5                                    | 5.5               | 12.0                                   | 9.5               | 50325                                  |
| N4+50W2+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5                                    | 4.5               | 4.0                                    | 4.0               | 4781                                   |
| N4+50W3+00<br>N4+50W3+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0<br>4.0                             | 3.8<br>4.0        | 3.8                                    | 3.8<br>3.5        | 4802                                   |
| N4+50W3+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                    | 4.0               | 3.5<br>4.5                             | 4.0               | 4795<br>50340                          |
| OOLEMOCLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.0                                    | <b>4.</b> 0       | 4.5                                    | 4.0               | 30340                                  |

| COORDINATE<br>LOCATION                               | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) | EM-31<br>HORZ N-S<br>(mmhos/m) |                          | MAGNETOMETER (gammas)                     |
|------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------|-------------------------------------------|
| N4+50W4+50<br>N4+50W5+00<br>N4+50W5+50               | 4.0<br>3.8<br>4.0              | 4.0                            | 4.5<br>4.0<br>3.5              | 4.0<br>3.5<br>3.5        | 50355<br>50302                            |
| N4+50W5+50<br>N4+50W6+50<br>N4+50W7+00<br>N4+50W7+50 | 4.0<br>4.0<br>4.0<br>4.0       | 4.0<br>4.0<br>4.0<br>4.0       | 4.5<br>4.0<br>3.5<br>4.0       | 3.5<br>3.5<br>3.5<br>4.0 | 50290<br>50474<br>50381<br>50301<br>50339 |
| N4+50W8+00                                           | 4.0                            | 4.0                            | 3.0                            | 4.0                      | 50319                                     |
| N4+50W8+50                                           | 5.0                            | 4.0                            | 2.0                            | 4.0                      | 50364                                     |
| N5+00W0+00                                           | 9.0                            | 4.0                            | 9.0                            | 4.0                      | 50268                                     |
| N5+00W0+50                                           | 4.2                            | 4.0                            | 4.6                            | 3.6                      | 50259                                     |
| N5+00W1+00                                           | 4.2                            | 4.2                            | 3.8                            | 4.0                      | 50340                                     |
| N5+00W1+50                                           | 4.6                            | 4.2                            | 4.6                            | 4.8                      | 50353                                     |
| N5+00W2+00                                           | 9.0                            | 5.0                            | 11.0                           | 9.0                      | 50456                                     |
| N5+00W2+50                                           | 4.0                            | 4.5                            | 4.0                            | 4.5                      | 4780                                      |
| N5+00W3+00                                           | 4.0                            | 4.0                            | 4.0                            | 3.5                      | 4813                                      |
| N5+00W3+50                                           | 4.0                            | 4.0                            | 3.5                            | 4.0                      | 4791                                      |
| N5+00W4+00                                           | 4.0                            | 4.5                            | 4.0                            | 3.5                      | 50311                                     |
| N5+00W4+50                                           | 5.0                            | 5.0                            | 4.0                            | 4.5                      | 50271                                     |
| N5+00W5+00                                           | 4.0                            | 4.0                            | 3.8                            | 3.5                      | 50337                                     |
| N5+00W5+50                                           | 4.0                            | 4.0                            | 3.5                            | 3.5                      | 50334                                     |
| N5+00W6+00                                           | 4.0                            | 4.0                            | 3.0                            | 3.5                      | 50412                                     |
| N5+00W6+50                                           | 4.0                            | 4.0                            | 5.0                            | 5.0                      | 50476                                     |
| N5+00W7+00                                           | 4.0                            | 4.0                            | 3.5                            | 3.5                      | 50300                                     |
| N5+00W7+50                                           | 4.0                            | 4.0                            | 3.8                            | 4.0                      | 50304                                     |
| N5+00W8+00                                           | 4.0                            | 4.0                            | 3.5                            | 3.0                      | 50261                                     |
| N5+00W8+50                                           | 4.5                            | 4.5                            | 2.0                            | 6.0                      | 50306                                     |
| N5+50W0+00                                           | 9.5                            | 8.5                            | 4.0                            | 4.0                      | 50338                                     |
| N5+50W0+50                                           | 4.2                            | 4.2                            | 2.8                            | 3.2                      | 50339                                     |
| N5+50W1+00                                           | 3.8                            | 4.2                            | 4.2                            | 3.5                      | 50354                                     |
| N5+50W1+50                                           | 4.4                            | 4.0                            | 5.0                            | 4.6                      | 50288                                     |
| N5+50W2+00                                           | 9.5                            | 5.5                            | 12.5                           | 9.5                      | 50440                                     |
| N5+50W2+50                                           | 4.0                            | 4.0                            | 4.0                            | 4.0                      | 4780                                      |
| N5+50W3+00                                           | 4.0                            | 4.0                            | 4.0                            | 4.0                      | 4797                                      |
| N5+50W3+50                                           | 4.0                            | 4.0                            | 4.5                            | 3.5                      | 4800                                      |
| N5+50W4+00                                           | 4.0                            | 4.0                            | 3.0                            | 6.0                      | 50333                                     |
| N5+50W4+50                                           | 4.0                            | 4.0                            | 3.0                            | 3.5                      | 50304                                     |
| N5+50W5+00                                           | 2.5                            | 3.0                            | 3.0                            | 4.0                      | 50469                                     |
| N5+50W5+50                                           | 4.0                            | 4.0                            | 3.5                            | 3.5                      | 50322                                     |
| N5+50W6+00                                           | 4.0                            | 4.0                            | 4.5                            | 3.5                      | 50399                                     |
| N5+50W6+50                                           | 4.5                            | 4.2                            | 3.0                            | 4.0                      | 50396                                     |
| N5+50W7+00                                           | 4.2                            | 4.2                            | 3.6                            | 3.6                      | 50279                                     |
| N5+50W7+50                                           | 4.5                            | 4.2                            | 4.0                            | 4.0                      | 50320                                     |
| N5+50W8+00                                           | 4.0                            | 4.0                            | 3.0                            | 4.0                      | 50337                                     |
| N5+50W8+50                                           | 4.0                            | 3.5                            | 3.0                            | 4.0                      | 50259                                     |

| COORDINATE<br>LOCATION   | EM-31<br>VERT N-S | EM-31<br>VERT E-W |            |            | MAGNETOMETER   |
|--------------------------|-------------------|-------------------|------------|------------|----------------|
|                          | (mmhos/m)         | (mmnos/m)         | (mmhos/m)  | (mmnos/m)  | (gammas)       |
|                          |                   |                   |            |            |                |
| N6+00W0+00               | 8.0               | 4.0               | 9.5        | 3.0        | 50348          |
| N6+00W0+50               | 4.2               | 4.2               | 3.8        | 3.4        | 50303          |
| N6+00W1+00               | 4.2               | 4.0               | 4.0        | 4.0        | 50358          |
| N6 + 00W1 + 50           | 4.6               | 4.6               | 4.6        | 4.6        | 50315          |
| N6+00W2+00               | 9.5               | 6.0               | 11.0       | 9.5        | 50286          |
| N6 + 00W2 + 50           | 4.0               | 4.5               | 3.5        | 4.0        | 4781           |
| N6 + 00W3 + 00           | 4.0               | 4.0               | 4.0        | 4.0        | 4803           |
| N6+00W3+50               | 4.0               | 4.0               | 3.5        | 4.0        | 4798           |
| N6 + 00W4 + 00           | 4.0               | 4.0               | 5.0        | 4.0        | 50313          |
| N6+00W4+50               | 4.0               | 4.0               | 4.0        | 4.0        | 50342          |
| N6+00W5+00               | 0.3               | 3.5               | 12.0       | 5.0        | 22228          |
| N6+00W5+50               | 4.2               | 4.2               | 4.0        | 3.8        | 50315          |
| N6+00W6+00               | 4.5               | 4.5               | 5.0        | 3.5        | 50385          |
| N6+00W6+50<br>N6+00W7+00 | 4.5               | 4.0               | 3.0        | 4.0        | 50460          |
| N6+00W7+00<br>N6+00W7+50 | 4.2<br>4.2        | 4.3<br>4.2        | 3.6        | 3.6        | 50303<br>50327 |
| N6+00W7+30               | 4.2               | 4.2               | 3.8<br>4.0 | 4.0<br>4.0 | 50326          |
| N6+00W8+50               | 4.0               | 4.0               | 3.5        | 4.0        | 50344          |
| N6+50W0+30               | 8.5               | 4.0               | 8.5        | 5.0        | 50323          |
| N6+50W0+50               | 4.2               | 4.2               | 3.6        | 4.8        | 50274          |
| N6+50W1+00               | 4.2               | 4.2               | 3.5        | 3.8        | 50350          |
| N6+50W1+50               | 4.6               | 4.6               | 4.0        | 4.6        | 50291          |
| N6+50W2+00               | 8.5               | 5.0               | 11.0       | 10.0       | 49944          |
| N6+50W2+50               | 4.5               | 4.5               | 4.0        | 3.5        | 5285           |
| N6+50W3+00               | 4.0               | 4.0               | 3.5        | 4.0        | 4802           |
| N6+50W3+50               | 4.0               | 4.0               | 3.5        | 3.5        | 4790           |
| N6+50W4+00               | 4.5               | 4.5               | 3.0        | 3.0        | 50318          |
| N6+50W4+50               | 4.5               | 4.0               | 5.0        | 3.5        | 50268          |
| N6+50W5+00               | 0.0               | 3.4               | 10.0       | 5.0        | 6143           |
| N6+50W5+50               | 4.2               | 4.2               | 4.0        | 4.0        | 50314          |
| N6+50W6+00               | 4.5               | 4.5               | 5.0        | 3.2        | 50434          |
| N6+50W6+50               | 4.5               | 4.8               | 4.0        | 7.0        | 50372          |
| N6+50W7+00               | 4.2               | 4.2               | 3.5        | 3.5        | 50287          |
| N6+50W7+50               | 4.2               | 4.2               | 3.8        | 3.8        | 50335          |
| N6+50W8+00               | 4.0               | 4.0               | 4.0        | 5.0        | 50270          |
| N6+50W8+50               | 4.0               | 4.0               | 3.5        | 3.0        | 50292          |
| N7+00W0+00<br>N7+00W0+50 | 9.0<br>4.0        | 8.5<br>4.2        | 7.0        | 6.0        | 50580          |
| N7+00W0+30               | 4.2               |                   | 2.4        | 5.0        | 50255          |
| N7+00W1+00<br>N7+00W1+50 | 4.2               | 4.2<br>4.8        | 3.8<br>4.4 | 3.8<br>5.0 | 50329<br>50328 |
| N7+00W1+30               | 10.0              | 5.5               | 12.5       | 10.0       | 4909           |
| N7+00W2+50               | 4.5               | 4.5               | 4.5        | 3.5        | 4787           |
| N7+00W2+00               | 4.0               | 4.0               | 3.5        | 3.5        | 4799           |
| N7+00W3+50               | 4.2               | 4.2               | 4.0        | 4.0        | 4790           |
| N7+00W4+00               | 4.5               | 4.0               | 7.0        | 6.0        | 50297          |
|                          | <del>-</del>      | - • <del>-</del>  |            | -,-        | ·              |

| COORDINATE<br>LOCATION                                                                         | EM-31<br>VERT N-S<br>(mmhos/m)                | EM-31<br>VERT E-W<br>(mmhos/m)         | EM-31<br>HORZ N-S<br>(mmhos/m)                |                                               | MAGNETOMETER (gammas)                                       |
|------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|
| N7+00W4+50<br>N7+00W5+00<br>N7+00W5+50<br>N7+00W6+00<br>N7+00W6+50                             | 4.0<br>0.0<br>4.5<br>4.5<br>3.5               | 4.5<br>3.8<br>4.5<br>5.0               | 5.5<br>9.0<br>4.5<br>3.8<br>7.0               | 4.0<br>5.5<br>4.0<br>5.0                      | 50343<br>8924<br>50298<br>50465<br>50469                    |
| N7+00W7+00<br>N7+00W7+50<br>N7+00W8+00<br>N7+00W8+50<br>N7+50W0+00<br>N7+50W0+50               | 4.2<br>4.2<br>4.0<br>4.0<br>6.5<br>3.8        | 4.2<br>4.0<br>4.5<br>7.5<br>3.8        | 3.4<br>3.5<br>3.5<br>4.5<br>4.0<br>4.0        | 3.6<br>3.6<br>5.0<br>4.0<br>4.0<br>3.8        | 50270<br>50288<br>50314<br>50275<br>50254<br>50255          |
| N7+50W1+00<br>N7+50W1+50<br>N7+50W2+00<br>N7+50W2+50<br>N7+50W3+00<br>N7+50W3+50               | 4.2<br>4.6<br>10.5<br>4.5<br>4.2<br>4.2       | 4.6<br>4.6<br>5.0<br>4.5<br>4.2        | 4.0<br>4.6<br>13.0<br>4.5<br>4.0              | 4.2<br>4.0<br>12.0<br>4.4<br>4.0<br>4.2       | 50322<br>50329<br>5069<br>4833<br>4807<br>4974              |
| N7+50W4+00<br>N7+50W4+50<br>N7+50W5+00<br>N7+50W5+50<br>N7+50W6+00<br>N7+50W6+50<br>N7+50W7+00 | 4.5<br>4.0<br>4.2<br>4.5<br>4.5<br>4.8<br>4.2 | 4.5<br>4.2<br>4.5<br>4.5<br>4.5<br>4.3 | 3.5<br>5.0<br>4.0<br>4.0<br>3.5<br>5.0<br>3.8 | 3.0<br>3.5<br>3.8<br>4.0<br>3.5<br>5.0<br>4.0 | 50316<br>50307<br>50291<br>50275<br>50468<br>50413<br>50303 |
| N7+50W7+50<br>N7+50W8+00<br>N7+50W8+50<br>N8+00W0+00<br>N8+00W0+50<br>N8+00W1+00               | 4.2<br>4.0<br>4.0<br>5.5<br>5.0<br>2.5        | 4.2<br>4.0<br>4.0<br>6.0<br>4.8<br>1.8 | 3.5<br>2.5<br>4.0<br>4.0<br>3.6<br>5.2        | 3.5<br>4.0<br>4.0<br>5.0<br>3.2<br>4.4        | 50285<br>50327<br>50253<br>50321<br>50335<br>50337          |
| N8+00W1+50<br>N8+00W2+00<br>N8+00W2+50<br>N8+00W3+00<br>N8+00W3+50<br>N8+00W4+00               | 5.0<br>0.0<br>4.5<br>4.5<br>4.4<br>4.5        | 5.0<br>0.0<br>4.5<br>4.5<br>4.4<br>4.5 | 4.0<br>20.0<br>4.5<br>4.0<br>4.0              | 4.6<br>21.0<br>5.0<br>4.0<br>3.8<br>4.5       | 50276<br>4762<br>5946<br>4800<br>4790<br>50311              |
| N8+00W4+50<br>N8+00W5+00<br>N8+00W5+50<br>N8+00W6+00<br>N8+00W6+50<br>N8+00W7+00               | 4.0<br>4.5<br>4.5<br>4.5<br>2.0<br>4.2        | 4.0<br>4.5<br>4.5<br>4.5<br>4.5<br>4.2 | 4.5<br>4.5<br>4.5<br>4.0<br>5.0<br>3.5        | 3.5<br>4.0<br>4.5<br>4.0<br>3.5               | 50280<br>49517<br>50240<br>50512<br>50402<br>50292          |
| N8+00W7+50<br>N8+00W8+00<br>N8+00W8+50                                                         | 4.5<br>4.0<br>3.5                             | 4.0<br>4.0<br>4.0                      | 3.5<br>4.0<br>4.0                             | 3.5<br>3.0<br>4.0                             | 50332<br>50315<br>50264                                     |

| COORDINATE<br>LOCATION   | EM-31<br>VERT N-S<br>(mmhos/m) | EM-31<br>VERT E-W<br>(mmhos/m) | EM-31<br>HORZ N-S<br>(mmhos/m) |            | MAGNETOMETER (gammas)                   |
|--------------------------|--------------------------------|--------------------------------|--------------------------------|------------|-----------------------------------------|
|                          | ,,                             | (,                             | (                              | ( = , ,    | ( 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
|                          |                                |                                |                                |            |                                         |
| N8+50W0+00               | 5.5                            | 5.5                            | 4.0                            | 5.0        | 50343                                   |
| N8+50W0+50               | 5.8                            | 3.0                            | 10.0                           | 3.6        | 50287                                   |
| N8+50W1+00               | 5.0                            | 5.0                            | 4.0                            | 4.0        | 50334                                   |
| N8+50W1+50               | 1.5                            | 1.0                            | 7.8                            | 6.0        | 50325                                   |
| N8 + 50W2 + 00           | 7.5                            | 3.5                            | 12.0                           | 11.0       | 5045                                    |
| N8 + 50W2 + 50           | 5.0                            | 5.0                            | 4.0                            | 5.0        | 4891                                    |
| N8+50W3+00               | 4.5                            | 4.5                            | 4.5                            | 4.5        | 4798                                    |
| N8+50W3+50               | 4.2                            | 4.5                            | 4.2                            | 4.0        | 4803                                    |
| N8+50W4+00               | 0.0                            | 4.5                            | 15.0                           | 3.0        | 49832                                   |
| N8+50W4+50               | 4.5                            | 4.0                            | 5.0                            | 5.0        | 50321                                   |
| N8+50W5+00<br>N8+50W5+50 | 9.0<br>4.8                     | 1.3<br>4.5                     | 9.0                            | 6.0        | 49545                                   |
| N8+50W5+30               | 4.8                            | 4.8                            | 4.5<br>3.5                     | 4.5<br>3.5 | 50357<br>50363                          |
| N8+50W6+50               | 4.2                            | 4.0                            | 4.8                            | 4.5        | 29977                                   |
| N8+50W7+00               | 4.2                            | 4.2                            | 3.8                            | 3.8        | 50269                                   |
| N8+50W7+50               | 4.5                            | 4.5                            | 4.0                            | 4.5        | 50259                                   |
| N8+50W8+00               | 4.0                            | 4.0                            | 7.0                            | 5.0        | 50265                                   |
| N8+50W8+50               | 4.5                            | 4.5                            | 3.0                            | 4.5        | 50348                                   |
| N9+00W0+00               | 5.6                            | 6.0                            | 4.2                            | 4.0        | 50366                                   |
| N9+00W0+50               | 5.6                            | 1.2                            | 4.2                            | 3.4        | 50229                                   |
| N9+00W1+00               | 5.0                            | 4.8                            | 4.0                            | 4.0        | 50333                                   |
| N9+00W1+50               | 5.4                            | 5.6                            | 4.2                            | 4.8        | 50304                                   |
| N9+00W2+00               | 13.5                           | 8.0                            | 15.0                           | 11.5       | 4764                                    |
| N9+00W2+50<br>N9+00W3+00 | 6.0<br>4.6                     | 11.0<br>4.5                    | 1.5                            | 5.0        | 5884                                    |
| N9+00W3+00               | 4.5                            | 4.5                            | 4.5<br>4.0                     | 4.5<br>3.8 | 4799<br>4794                            |
| N9+00W3+30               | 4.0                            | 4.5                            | 6.0                            | 5.0        | 50341                                   |
| N9+00W4+50               | 4.5                            | 5.0                            | 4.0                            | 6.0        | 50345                                   |
| N9+00W5+00               | 8.0                            | 0.5                            | 27.0                           | 5.0        | 50266                                   |
| N9+00W5+50               | 5.0                            | 4.8                            | 5.0                            | 4.5        | 50336                                   |
| N9+00W6+00               | 4.8                            | 4.5                            | 4.8                            | 4.0        | 50401                                   |
| N9+00W6+50               | 5.0                            | 4.5                            | 4.0                            | 4.5        | 50415                                   |
| N9+00W7+00               | 4.4                            | 4.5                            | 3.8                            | 4.0        | 50322                                   |
| N9+00W7+50               | 4.0                            | 4.0                            | 4.0                            | 4.0        | 43263                                   |
| N9+00W8+00               | 4.0                            | 4.0                            | 3.5                            | 4.0        | 50294                                   |
| N9+00W8+50<br>N9+50W0+00 | 4.0<br>6.0                     | 4.0                            | 4.0                            | 4.0        | 50373                                   |
| N9+50W0+00               | 8.4                            | 6.2<br>2.6                     | 5.2<br>7.2                     | 4.2<br>3.2 | 50344<br>50232                          |
| N9+50W0+30               | 5.0                            | 5.0                            | 4.2                            | 4.2        | 50325                                   |
| N9+50W1+50               | 5.2                            | 5.2                            | 4.8                            | 5.2        | 50291                                   |
| N9+50W2+00               | 10.0                           | 7.0                            | 10.0                           | 10.0       | 4762                                    |
| N9+50W2+50               | 13.0                           | 13.0                           | 5.0                            | 5.0        | 4889                                    |
| N9+50W3+00               | 5.2                            | 5.2                            | 4.2                            | 4.2        | 4805                                    |
| N9+50W3+50               | 5.0                            | 4.8                            | 4.0                            | 4.8        | 4799                                    |
| N9+50W4+00               | 4.0                            | 4.0                            | 2.0                            | 5.0        | 50342                                   |

| COORDINATE LOCATION | EM-31<br>VERT N-S | EM-31<br>VERT E-W | EM-31<br>HORZ N-S | EM-31<br>HORZ E-W | MAGNETOMETER |
|---------------------|-------------------|-------------------|-------------------|-------------------|--------------|
|                     | (mmhos/m)         | (mmhos/m)         | (mmhos/m)         | (mmhos/m)         | (gammas)     |
|                     |                   |                   |                   |                   |              |
| N9+50W4+50          | 5.0               | 4.0               | 4.0               | 5.0               | 50308        |
| N9+50W5+00          | 7.5               | 3.5               | 4.0               | 5.0               | 50547        |
| N9+50W5+50          | 5.0               | 5.0               | 4.0               | 4.0               | 50381        |
| N9+50W6+00          | 4.8               | 4.8               | 4.0               | 3.5               | 50352        |
| N9+50W6+50          | 5.0               | 4.5               | 5.0               | 4.0               | 50451        |
| N9+50W7+00          | 4.5               | 4.4               | 4.0               | 3.8               | 50329        |
| N9+50W7+50          | 4.5               | 4.5               | 4.5               | 4.5               | 46768        |
| N9+50W8+00          | 4.5               | 4.5               | 4.0               | 3.5               | 50327        |
| N9+50W8+50          | 4.0               | 4.0               | 4.5               | 4.0               | 50365        |

Key:

NA = Not accessible.

### APPENDIX E

SOIL HEADSPACE DATA

# E-1 SOIL HEADSPACE SURVEY MAP --NAS PENSACOLA SITE 3

7,000 0041 0016 0015 00+9 oott . 8,00 € 6m23 OCTO! ġε 001/1 197400 00181 EC 1119 -> 00151 00111 18490 00161 20400

is bounding.

105,052,100,000

When water water of a constant of a const

note: if [unhiltered-Kiltered] Hurn value

First Headspace:
Inon-methane organic vapor concentration]

Å

### SITE 3 SOIL HEADSPACE SURVEY

| COORDINATE                 | DEPTH                                     | OVA              | OVA               |
|----------------------------|-------------------------------------------|------------------|-------------------|
| LOCATION                   | (feet)                                    | UNFILTERED (ppm) | FILTERED<br>(ppm) |
|                            |                                           |                  |                   |
| N0+00W0+00                 | 5.0<br>5.0                                | 0.0<br>0.0       | 0.0               |
| N0+00W1+00<br>N0+00W2+00   | 2.5                                       | 0.0              | 0.0<br>1.2        |
| N0+00W2+00                 | 3.5                                       | 0.0              | 0.0               |
| N0+00W4+00                 | 5.0                                       | 0.0              | 0.0               |
| N0+00W5+00                 | 5.0                                       | 0.0              | 0.0               |
| N0+00W6+00<br>N0+00W7+00   | 5.0<br>3.0                                | 0.0<br>1.0       | 0.0<br>0.0        |
| N0+00W7+00                 | 3.5                                       | 0.0              | 0.0               |
| N1+00W0+00                 | 5.0                                       | 0.0              | 0.0               |
| N1+00W1+00                 | 4.0                                       | 0.0              | 0.0               |
| N1+00W2+00                 | 1.0                                       | 0.0              | 0.0               |
| N1+00W3+00<br>N1+00W4+00   | 2.5<br>4.5                                | 0.0<br>0.0       | 0.0<br>0.0        |
| N1+00W5+00                 | 4.0                                       | 0.0              | 0.0               |
| N1+00W6+00                 | 4.5                                       | 0.0              | 0.0               |
| N1+00W7+00                 | 3.5                                       | 1.2              | 0.0               |
| N1+00W8+00<br>N10+00W0+00  | 3.0<br>3.0                                | 0.5<br>0.0       | 0.0<br>0.0        |
| N10+00W0+00                | 1.0                                       | 0.0              | 0.0               |
| N10+00W2+00                | 0.5                                       | 72               | 42                |
| N10+00W3+00                | 2.0                                       | 51               | 0.5               |
| N10+00W4+00                | 2.3                                       | >1000            | 1.0               |
| N10+00W5+00<br>N10+00W6+00 | 2.1<br>3.5                                | 0.0<br>0.0       | 0.0<br>0.0        |
| N10+00W7+00                | 2.0                                       | 0.2              | 0.0               |
| N10+00W8+00                | 2.5                                       | 3.0              | 0.0               |
| N11+00W0+00                | 3.5                                       | 0.0              | 0.0               |
| N11+00W1+00<br>N11+00W2+00 | 1.0<br>1.0                                | 0.0<br>0.7       | 0.0<br>0.7        |
| N11+00W2+00                | 2.0                                       | 0.2              | 0.0               |
| N11+00W4+00                | 1.8                                       | 0.4              | 0.2               |
| N11+00W5+00                | 2.3                                       | 0.1              | 0.0               |
| N11+00W6+00<br>N11+00W7+00 | 1.0<br>1.0                                | 0.0<br>0.0       | 0.0<br>0.0        |
| N11+00W7+00                | 1.0                                       | 0.0              | 0.0               |
| N12+00W0+00                | 2.0                                       | 0.0              | 0.0               |
| N12+00W1+00                | 2.0                                       | 0.0              | 0.0               |
| N12+00W2+00                | 0.5                                       | 0.0              | 0.0               |
| N12+00W3+00<br>N12+00W4+00 | $\begin{array}{c} 1.4 \\ 1.9 \end{array}$ | 0.0<br>>1000     | 0.0<br>8.0        |
| N12+00W4+00                | 1.7                                       | 0.8              | 0.0               |
| N12+00W6+00                | 2.0                                       | 0.0              | 0.0               |
| N12+00W7+00                | NA                                        | NA               | NA                |
| N12+00W8+00                | NA                                        | AN               | NA                |

# SITE 3 SOIL HEADSPACE SURVEY

| COORDINATE<br>LOCATION     | DEPTH       | OVA<br>UNFILTERED | OVA              |
|----------------------------|-------------|-------------------|------------------|
| LOCATION                   | (feet)      | (ppm)             | (ppm)            |
| 4                          |             |                   |                  |
| N13+00W0+00<br>N13+00W1+00 | 2.0<br>1.5  | 0.0               | 0.0<br>0.0       |
| N13+00W1+00                | 0.33        | 1.9               | 0.6              |
| N13+00W3+00                | 1.25        | >1000             | 3.0              |
| N13+00W4+00                | 1.9         | 0.2               | 0.0              |
| N13+00W5+00                | 1.8         | 0.0               | 0.0              |
| N13+00W6+00                | 2.0         | 0.0               | 0.0              |
| N13+00W7+00<br>N13+00W8+00 | NA<br>NA    | NA<br>NA          | NA<br>NA         |
| N14+00W0+00                | 2.0         | 0.0               | 0.0              |
| N14+00W1+00                | 2.0         | 0.0               | 0.0              |
| N14+00W2+00                | 0.33        | 99                | 76               |
| N14+00W3+00                | 1.48        | 820               | 5.0              |
| N14+00W4+00                | 1.6         | >1000             | 2.0              |
| N14+00W5+00<br>N14+00W6+00 | 2.27<br>1.0 | 0.4<br>0.0        | 0.2<br>0.0       |
| N14+00W6+00                | NA          | NA                | NA               |
| N14+00W8+00                | 1.0         | 0.0               | 0.0              |
| N15+00W0+00                | 2.0         | 0.0               | 0.0              |
| N15+00W1+00                | 1.5         | 0.0               | 0.0              |
| N15+00W2+00                | 0.33        | 5.4               | 4.2              |
| N15+00W3+00<br>N15+00W4+00 | 0.6<br>1.9  | 78<br>>1000       | 1.2              |
| N15+00W4+00                | 2.3         | 0.2               | 3.0<br>0.0       |
| N15+00W6+00                | 1.5         | 0.0               | 0.0              |
| N15+00W7+00                | 1.5         | 1.8               | 0.0              |
| N15+00W8+00                | 1.2         | 0.0               | 0.0              |
| N16+00W0+00                | 3.0         | 0.0               | 0.0              |
| N16+00W1+00<br>N16+00W2+00 | 1.5<br>0.33 | 0.0<br>420        | 0.0<br>400       |
| N16+00W2+00                | 1.1         | >1000             | 7.0              |
| N16+00W4+00                | 1.5         | 20                | 0.2              |
| N16+00W5+00                | 2.5         | >1000             | 0.2              |
| N16+00W6+00                | 1.5         | 0.3               | 0.0              |
| N16+00W7+00                | 1.0         | 0.0               | 0.0              |
| N16+00W8+00<br>N17+00W0+00 | 1.0<br>3.0  | 0.0<br>0.0        | 0.0<br>0.0       |
| N17+00W0+00                | 1.5         | 0.0               | 0.0              |
| N17+00W2+00                | 0.33        | 19                | 12               |
| N17+00W3+00                | 0.9         | >1000             | 3.5              |
| N17+00W4+00                | 1.1         | 350               | 300              |
| N17+00W5+00                | 2.9         | >1000             | 0.2              |
| N17+00W6+00<br>N17+00W7+00 | 1.5         | 0.0               | 0.0              |
| N17+00W7+00<br>N17+00W8+00 | NA<br>1.0   | NA<br>0.3         | <b>NA</b><br>0.0 |
| ,                          |             | <b>.</b>          | 0.0              |

### SITE 3 SOIL HEADSPACE SURVEY

| COORDINATE<br>LOCATION     | DEPTH       | OVA<br>UNFILTERED | OVA                                     |
|----------------------------|-------------|-------------------|-----------------------------------------|
| LOCATION                   | (feet)      | (bbw)             | (ppm)                                   |
|                            |             |                   | *************************************** |
| N18+00W0+00                | 2.5         | 0.0               | 0.0                                     |
| N18+00W1+00<br>N18+00W2+00 | 1.5<br>0.5  | 0.0<br>3.8        | 0.0<br>3.2                              |
| N18+00W3+00                | 0.5         | 220               | 35                                      |
| N18+00W4+00                | 0.5         | >1000             | 26                                      |
| N18+00W5+00                | 1.8         | 110               | 3.8                                     |
| N18+00W6+00                | 1.0         | 0.2               | 0.0                                     |
| N18+00W7+00                | NA          | NA                | NA                                      |
| N18+00W8+00                | 1.0         | 0.0               | 0.0                                     |
| N19+00W0+00                | 2.5         | 0.0               | 0.0                                     |
| N19+00W1+00                | 1.5         | 0.0               | 0.0                                     |
| N19+00W2+00                | 0.5         | 2.0               | 0.5                                     |
| N19+00W3+00<br>N19+00W4+00 | 0.63<br>1.3 | 65<br>12          | 25<br>12                                |
| N19+00W4+00                | 1.6         | 6.2               | 5.0                                     |
| N19+00W6+00                | 1.5         | 0.3               | 0.0                                     |
| N19+00W7+00                | NA          | NA                | NA                                      |
| N19+00W8+00                | NA          | NA                | NA                                      |
| N2+00W0+00                 | 5.0         | 0.0               | 0.0                                     |
| N2+00W1+00                 | 3.5         | 0.0               | 0.0                                     |
| N2+00W2+00                 | 1.0         | 20                | 52                                      |
| N2+00W3+00                 | 2.0         | 1.0               | 0.0                                     |
| N2+00W4+00                 | 3.0<br>3.5  | 0.3               | 0.0<br>0.0                              |
| N2+00W5+00<br>N2+00W6+00   | 4.5         | 0.0<br>0.0        | 0.0                                     |
| N2+00W0+00                 | 5.0         | 10.0              | 0.0                                     |
| N2+00W8+00                 | 5.0         | 3.2               | 0.0                                     |
| N20+00W0+00                |             | 0.0               | 0.0                                     |
| N20+00W1+00                | 1.4         | 0.0               | 0.2                                     |
| N20+00W2+00                | 0.7         | 1.6               | 1.0                                     |
| N20+00W3+00                | 0.6         | 0.0               | 0.0                                     |
| N20+00W4+00                | 1.4         | 0.2               | 0.0                                     |
| N20+00W5+00                | 1.6<br>2.0  | 0.0               | 0.0                                     |
| N20+00W6+00<br>N20+00W7+00 | NA          | 0.4<br>NA         | 0.0<br>NA                               |
| N20+00W/+00                | NA          | NA<br>NA          | NA<br>NA                                |
| N21+00W0+00                | 3.0         | 1.2               | 2.2                                     |
| N21+00W1+00                | 0.7         | 0.0               | 0.0                                     |
| N21+00W2+00                | 0.9         | 0.4               | 0.2                                     |
| N21+00W3+00                | 0.95        | 0.4               | 0.0                                     |
| N21+00W4+00                | 1.05        | 0.4               | 0.2                                     |
| N21+00W5+00                | 1.6         | 0.0               | 0.0                                     |
| N21+00W6+00                | 1.5         | 0.0               | 0.0                                     |
| N21+00W7+00                | NA<br>NA    | NA<br>NA          | NA<br>NA                                |
| N21+00W8+00                | NA          | AN                | NA                                      |

|  | SITE 3 | POIL | HEADSPACE | POKAFI |
|--|--------|------|-----------|--------|
|--|--------|------|-----------|--------|

| COORDINATE<br>LOCATION                                                           | DEPTH<br>(feet)                        | OVA<br>UNFILTERED<br>(ppm)            | OVA<br>FILTERED<br>(ppm)        |
|----------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------|
|                                                                                  |                                        | P. C. W.                              |                                 |
| N3+00W0+00<br>N3+00W1+00<br>N3+00W2+00<br>N3+00W3+00<br>N3+00W4+00<br>N3+00W5+00 | 5.0<br>2.0<br>0.7<br>2.5<br>3.5<br>2.5 | 0.0<br>0.3<br>220<br>58<br>0.3<br>0.0 | 0.0<br>0.0<br>220<br>0.4<br>0.0 |
| N3+00W6+00<br>N3+00W7+00<br>N3+00W8+00<br>N4+00W0+00                             | 4.0<br>4.5<br>4.7<br>4.0               | 0.0<br>0.5<br>6.0<br>0.0              | 0.0<br>0.0<br>0.0               |
| N4+00W1+00<br>N4+00W2+00<br>N4+00W3+00                                           | 2.5<br>1.0<br>2.0                      | 0.0<br>95<br>0.0                      | 0.0<br>98<br>0.0                |
| N4+00W4+00<br>N4+00W5+00<br>N4+00W6+00<br>N4+00W7+00                             | 3.5<br>3.0<br>4.5<br>5.0               | 0.0<br>3.0<br>0.0<br>0.3              | 0.0<br>0.0<br>0.0<br>0.4        |
| N4+00W8+00<br>N5+00W0+00<br>N5+00W1+00<br>N5+00W2+00                             | 5.0<br>4.5<br>2.0<br>1.0               | 0.7<br>0.0<br>0.0<br>300              | 0.0<br>0.0<br>0.0<br>300        |
| N5+00W3+00<br>N5+00W4+00<br>N5+00W5+00<br>N5+00W6+00                             | 2.0<br>2.5<br>3.0<br>3.5               | 0.0<br>0.0<br>0.0<br>0.0              | 0.0<br>0.0<br>0.0<br>0.0        |
| N5+00W7+00<br>N5+00W8+00<br>N6+00W0+00                                           | 3.0<br>3.5<br>3.5<br>2.0               | 0.0<br>0.1<br>0.0                     | 0.0<br>0.0<br>0.0               |
| N6+00W1+00<br>N6+00W2+00<br>N6+00W3+00<br>N6+00W4+00<br>N6+00W5+00               | 1.0<br>2.0<br>2.5<br>3.0               | NR<br>19<br>0.0<br>0.0                | NR<br>10.0<br>0.0<br>0.0        |
| N6+00W6+00<br>N6+00W7+00<br>N6+00W8+00<br>N7+00W0+00<br>N7+00W1+00               | 2.5<br>3.0<br>3.0<br>3.5<br>1.5        | 0.0<br>0.0<br>0.0<br>0.0<br>0.3       | 0.0<br>0.0<br>0.0<br>0.0        |
| N7+00W2+00<br>N7+00W3+00<br>N7+00W4+00<br>N7+00W5+00                             | 0.5<br>2.0<br>2.5<br>3.0               | 50<br>19<br>0.0<br>0.0                | 21<br>22<br>0.0<br>0.0          |
| N7+00W6+00<br>N7+00W7+00<br>N7+00W8+00                                           | 3.0<br>2.5<br>2.5                      | 0.0<br>0.0<br>0.0                     | 0.0<br>0.0<br>0.0               |

5

SITE 3 SOIL HEADSPACE SURVEY

| COORDINATE LOCATION | DEPTH  | OVA<br>UNFILTERED                      | OVA<br>FILTERED |
|---------------------|--------|----------------------------------------|-----------------|
|                     | (feet) | (ppm)                                  | (ppm)           |
|                     |        | ************************************** |                 |
| 00+0W0+8N           | 3.0    | 0.0                                    | 0.0             |
| N8+00W1+00          | 1.0    | 0.0                                    | 0.0             |
| N8+00W2+00          | 0.5    | 10.0                                   | 10.0            |
| 00+EW00+8N          | 1.0    | 0.0                                    | 0.0             |
| N8+00W4+00          | 3.8    | >1000                                  | 4.0             |
| N8+00W5+00          | 3.8    | 0.2                                    | 0.0             |
| N8+00W6+00          | 3.8    | 0.0                                    | 0.0             |
| N8+00W7+00          | 3.0    | 0.0                                    | 0.0             |
| 00+8W00+8N          | 2.5    | 0.3                                    | 0.0             |
| N9+00W0+00          | 3.0    | 0.0                                    | 0.0             |
| N9+00W1+00          | 1.0    | 0.5                                    | 0.2             |
| N9+00W2+00          | 0.33   | 25                                     | 44              |
| N9 + 00W3 + 00      | 2.0    | 0.2                                    | 0.0             |
| N9+00W4+00          | 2.5    | 0.6                                    | 0.2             |
| N9+00W5+00          | 2.5    | 0.0                                    | 0.0             |
| N9 + 00W6 + 00      | 3.8    | 0.0                                    | 0.0             |
| N9+00W7+00          | 2.5    | 0.4                                    | 0.0             |
| N9+00W8+00          | 2.5    | 0.0                                    | 0.0             |

Key:

NA = Not accessible.

NR = Not recorded.

# APPENDIX F

# TEMPORARY MONITORING WELL, SOIL BORING, AND LITHOLOGIC INFORMATION

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO01
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/25/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 2.3
- 8) Depth to water in borehole (BLS): 2.3
- 9) Highest open-borehole OVA/HNu reading (ppm): 0.5
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings
- 22) Comments:

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                           |
|-----------------------|---------------------------------------------------------------------------------|
| 0- 0.7                | Dark grey to black organic rich sand, coarse grained with roots and vegetation. |
| 0.7- 2.3              | Medium grey to tan sand, coarse grained. Wet at 2.3 ft.                         |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3B002
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/26/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 1.5
- 8) Depth to water in borehole (BLS): 1.5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0.2
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                    |
|-----------------------|------------------------------------------------------------------------------------------|
| 0- 1                  | Dark grey sand, medium to medium coarse grained.<br>Abundant organic material and roots. |
| 1- 1.5                | Reddish brown to grey sand, peaty, fine to medium grained. Wet at 1.5 ft.                |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B003
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/26/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 1.7
- 8) Depth to water in borehole (BLS): 1.7
- 9) Highest open-borehole OVA/HNu reading (ppm): 0.6
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

#### BOREHOLE LITHOLOGIC LOG

| Sample      | Sample                                                                      |
|-------------|-----------------------------------------------------------------------------|
| Depth (BLS) | Description                                                                 |
| 0- 1.7      | Dark grey, organic rich (peaty) sand, medium coarse grained. Wet at 1.7 ft. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable
SSA = solid stem auger
HA = hand auger
NR = No Reading
BLS = below land surface
TOC = top of casing
BTOC = below top of casing

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO04
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method:
- 5) Date drilled/installed: 07/24/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 4.5
- 8) Depth to water in borehole (BLS): 4.5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                              |
|-----------------------|----------------------------------------------------|
| 0- 0.5                | Pale tan sand, medium to medium coarse grained.    |
| 0.5- 3.8              | Medium tan-yellow sand, medium-coarse grained.     |
| 3.8- 4.5              | Pale tan-grey sand, coarse grained. Wet at 4.5 ft. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B005
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/26/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 4.5
- 8) Depth to water in borehole (BLS): 4.5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                             |
|-----------------------|-----------------------------------------------------------------------------------|
| 0- 3.5                | Medium yellow-tan sand, medium coarse to coarse grained, roots in upper 4 inches. |
| 3.5- 4.5              | Pale grey sand coarse grained. Wet at 4.5 ft.                                     |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger NR = No Reading

- 1) Site no : 03
- 2) Boring no./Well no.: PO3BO06
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/23/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 6.5
- 8) Depth to water in borehole (BLS): 6.5
- 9) Highest open-borehole OVA/HNu reading (ppm): NA
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                         |
|-----------------------|-------------------------------------------------------------------------------|
| 0- 5.5                | Pale tan sand, medium-coarse grained with leaves and roots in upper 2 inches. |
| 5.5- 6.5              | Pale tan sand, medium to coarse grained. Wet at 6.5 ft.                       |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO07
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/25/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 2.8
- 8) Depth to water in borehole (BLS): 2.8
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

| BOREHOLE LITHOLOGIC LOG |                                                                                           |
|-------------------------|-------------------------------------------------------------------------------------------|
| Sample<br>Depth (BLS)   | Sample<br>Description                                                                     |
| 0- 0.5                  | Medium grey, organic rich sand, medium coarse grained with abundant vegetation and roots. |
| 0.5- 1.5                | Medium tan sand, medium coarse grained.                                                   |
| 1.5- 2.8                | Dark grey to black, soft silty, peaty sand, fine grained. Wet at 2.8 ft.                  |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO08
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/26/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 2.5
- 8) Depth to water in borehole (BLS): 2.5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                 |
|-----------------------|---------------------------------------------------------------------------------------|
| 0- 1.3                | Dark grey, organic rich sand, medium to coarse grained. Vegetation and roots present. |
| 1.3- 2.0              | Medium brown sand, medium coarse grained.                                             |
| 2.0- 2.5              | Pale grey sand, coarse grained. Wet at 2.5 ft.                                        |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3B009
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/24/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 3.5
- 8) Depth to water in borehole (BLS): 3.5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                  |
|-----------------------|------------------------------------------------------------------------|
| 0- 2.0                | Dark grey to black organic rich sand, medium coarse grained.           |
| 2.0- 2.3              | Medium grey sand, coarse grained, some organic material.               |
| 2.3- 3.0              | Light grey sand, medium coarse grained.                                |
| 3.0- 3.5              | Light grey with orange mottling, medium coarse grained. Wet at 3.5 ft. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

BLS = below land surface TOC = top of casing BTOC = below top of casing NA = not applicable SSA = solid stem auger HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO10
- Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/24/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 3.7
- 8) Depth to water in borehole (BLS): 3.7
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                   |
|-----------------------|---------------------------------------------------------|
| 0- 1.2                | Pale tan to grey sand, medium to medium-coarse grained. |
| 1.2- 3.0              | Medium tan-yellow sand, medium-coarse grained.          |
| 3.0- 3.7              | Pale grey sand, coarse grained. Wet at 3.7 ft.          |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3B011
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/23/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 5.5
- 8) Depth to water in borehole (BLS): 5.5
- 9) Highest open-borehole OVA/HNu reading (ppm): NA
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

Depth (BLS)

0- 0.2

Sample

## Sample Description Light grey sand, medium grained with some grass and roots.

- 0.2-0.8 Light tan sand, medium grained.
- 0.8-3.0 Medium tan sand, medium to coarse grained.
- Light tan to yellow sand, medium to coarse grained. Wet at  $5.5~{\rm ft.}$ 3.0- 5.5

BOREHOLE LITHOLOGIC LOG

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B012
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/25/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 2
- 8) Depth to water in borehole (BLS): 2
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                        |
|-----------------------|--------------------------------------------------------------|
| 0- 0.5                | Dark grey, organic rich sand (humas), medium-coarse grained. |
| 0.5- 1.5              | Medium tan sand, medium to coarse grained.                   |
| 1.5- 2.0              | Pale grey sand, coarse grained. Wet at 2 ft.                 |

Notes: All depths, lengths, heights, and elevations are measured in feet.
All boreholes are 4 inches in diameter. All well casings and screens
are 2-inch-diameter; well screen slot sizes are .010 inches. No
annular material (i.e. filter pack, seal or grout) was used in well
installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B013
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/24/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 2.7
- 8) Depth to water in borehole (BLS): 2.7
- 9) Highest open-borehole OVA/HNu reading (ppm): 170
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments: Petroleum odor noted while drilling. Boring in burn area.

## BOREHOLE LITHOLOGIC LOG Sample Sample Depth (BLS) Description Dark grey sand, medium coarse grained. Color due to burned materials (hydrocarbons). 0 - 0.2Medium brown sand, medium coarse grained. Petroleum odor noted at 1 foot BLS. 0.2 - 1.51.5- 2.7 Pale grey sand, coarse grained. Wet at 2.7 ft.

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO14
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/24/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 3
- 8) Depth to water in borehole (BLS): 3
- 9) Highest open-borehole OVA/HNu reading (ppm): 150
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments: Boring drilled in burn area, petroleum odors noted.

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                           |
|-----------------------|---------------------------------------------------------------------------------|
| 0- 0.1                | Dark grey sand, medium coarse grained.                                          |
| 0.1- 0.3              | Medium grey-brown sand, medium to medium coarse grained.                        |
| 0.3- 2.0              | Medium tan sand, medium-coarse grained.                                         |
| 2.0- 3.0              | Pale grey sand, coarse grained. Wet at $3\ \mathrm{ft}$ . Petroleum odor noted. |

Notes: All depths, lengths, heights, and elevations are measured in feet.
All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3B015
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/23/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 3.5
- 8) Depth to water in borehole (BLS): 3.5
- 9) Highest open-borehole OVA/HNu reading (ppm): NA
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments: Petroleum odor near water table.

| BOREHOLE LITHOLOGIC LOG |                                                                                          |
|-------------------------|------------------------------------------------------------------------------------------|
| Sample<br>Depth (BLS)   | Sample<br>Description                                                                    |
| 0- 0.1                  | Dark grey organic rich sand, fine to medium grained.                                     |
| 0.1- 1.5                | Light tan to yellow sand, medium to medium-coarse grained.                               |
| 1.5- 3.5                | Pale cream-grey sand, coarse grained. Wet at 3.5 ft.<br>Petroleum odor near water table. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger

NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO16
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/23/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 2
- 8) Depth to water in borehole (BLS): 2
- 9) Highest open-borehole OVA/HNu reading (ppm): NA
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                     |
|-----------------------|---------------------------------------------------------------------------|
| 0- 1.5                | Pale grey sand, medium to coarse grained.                                 |
| 1.5- 2.0              | Pale cream sand with bright orange mottling, coarse grained. Wet at 2 ft. |

Notes: All depths, lengths, heights, and elevations are measured in feet.
All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3B017
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/25/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 0.7
- 8) Depth to water in borehole (BLS): 0.7
- 9) Highest open-borehole OVA/HNu reading (ppm): 12
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments: Petroleum odor noted while drilling.

#### BOREHOLE LITHOLOGIC LOG

| Sample      | Sample                                                                                        |
|-------------|-----------------------------------------------------------------------------------------------|
| Depth (BLS) | Description                                                                                   |
| 0- 0.7      | Dark grey to black humus rich sand, coarse grained, abundant organic material and vegetation. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable
SSA = solid stem auger
HA = hand auger
NR = No Reading

BLS = below land surface
TOC = top of casing
BTOC = below top of casing

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO18
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/26/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 0.7
- 8) Depth to water in borehole (BLS): 0.7
- 9) Highest open-borehole OVA/HNu reading (ppm): 150
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments: Strong petroleum odor noted during drilling. Sheen noted on water.

## BOREHOLE LITHOLOGIC LOG

|                       | BORDHOLD DITHOLOGIC DOG                                                                                                                 |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>Depth (BLS) | Sample<br>Description                                                                                                                   |
| 0- 0.7                | Dark grey to black organic rich sand, vegetation present. Strong petroleum odor noted. Wet at 0.7 ft. Sheen noted on water in borehole. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger TOC = top of casing BTOC = below top of casing NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3B019
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/26/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 0.7
- 8) Depth to water in borehole (BLS): 0.7
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------|
| 0- 0.5                | Dark grey to black organic rich sand, medium to coarse grained.                                     |
| 0.5- 0.7              | Pale grey-tan sand, medium to medium coarse grained.<br>Wet at 0.7 ft. Abundant vegetation present. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B020
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/24/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 0.67
- 8) Depth to water in borehole (BLS): 0.67
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|
| 0- 0.67               | Dark grey to black organic rich sand, medium to medium coarse grained. Wet at 0.67 ft. Much vegetation present. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B021
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/23/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 1
- 8) Depth to water in borehole (BLS): 1
- 9) Highest open-borehole OVA/HNu reading (ppm): NA
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments: Slight petroleum odor at water table.

### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                          |
|-----------------------|------------------------------------------------------------------------------------------------|
| 0- 0.5                | Dark grey to black organic rich sand, medium to medium coarse grained with grass and roots.    |
| 0.5- 1.0              | Light grey to tan sand, coarse grained. Wet at 1 foot, slight petroleum odor near water table. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO22
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: HA
- 5) Date drilled/installed: 07/23/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 5.5
- 8) Depth to water in borehole (BLS): 5.5
- 9) Highest open-borehole OVA/HNu reading (ppm): NA
- 10) Depth of well (BLS): NA
- 11) Length of well screen: NA
- 12) Length of casing (BLS): NA
- 13) Approx. height of casing above land surface: NA
- 14) Depth to water in well (BTOC): NA
- 15) Elevation of TOC: NA
- 16) Water level elevation: NA
- 17) Date groundwater sampled:
- 18) pH (units): NA
- 19) Temperature (degrees C): NA
- 20) Specific conductance (umhos/cm): NA
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                        |
|-----------------------|------------------------------------------------------------------------------|
| 0- 1.0                | Light grey sand, fine to medium grained, dry with some grass and roots.      |
| 1.0- 1.5              | Pale cream to tan sand, medium grained.                                      |
| 1.5- 5.0              | Pale cream sand, coarse grained with orange mottling at 48 to 50 inches BLS. |
| 5.0- 5.5              | Pale cream and orange mottled sand, medium to coarse grained. Wet at 5.5 ft. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B023/P03TW023
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/25/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 4.5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): 7.40
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 2.40
- 13) Approx. height of casing above land surface: 2.56
- 14) Depth to water in well (BTOC): 5.99
- 15) Elevation of TOC: 30.56
- 16) Water level elevation: 24.57
- 17) Date groundwater sampled: 07/25/91
- 18) pH (units): 5.9
- 19) Temperature (degrees C): 27
- 20) Specific conductance (umhos/cm): 137
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

|                       | BOREHOLE LITHOLOGIC LOG                                        |
|-----------------------|----------------------------------------------------------------|
| Sample<br>Depth (BLS) | Sample<br>Description                                          |
| 0- 1.0                | Dark grey, organic rich sand, medium to medium coarse grained. |
| 1.0- 2.3              | Light tan sand, medium coarse grained.                         |

2.3- 9.0 Pale grey sand, coarse grained. Wet at 4.5 ft.

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

= not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO24/PO3TWO24
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/26/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 4
- 9) Highest open-borehole OVA/HNu reading (ppm): 170
- 10) Depth of well (BLS): 6.87
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 1.87
- 13) Approx. height of casing above land surface: 3.06
- 14) Depth to water in well (BTOC): 5.42
- 15) Elevation of TOC: 30.17
- 16) Water level elevation: 24.75
- 17) Date groundwater sampled: 07/26/91
- 18) pH (units): 5.9
- 19) Temperature (degrees C): 27
- 20) Specific conductance (umhos/cm): 159
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments: Boring/well in burn area. Free product noted in soil, sheen on water.

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                                                                                                     |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0- 1.5                | Dark grey to black sand, medium to coarse grained, appears stained from burned hydrocarbon residue. Soil saturated with free product.1/4 inch plastic pit liner at 1.5 ft |
| 1.5- 9.0              | Dark grey to black sand, medium to coarse grained. Free product oozing out at 3 ft. Water at 4 ft.                                                                        |

Notes: All depths, lengths, heights, and elevations are measured in feet.
All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO25/PO3TWO25
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/26/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 3
- 9) Highest open-borehole OVA/HNu reading (ppm): 165
- 10) Depth of well (BLS): 6.81
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 1.81
- 13) Approx. height of casing above land surface: 3.14
- 14) Depth to water in well (BTOC): 5.30
- 15) Elevation of TOC: 30.10
- 16) Water level elevation: 24.80
- 17) Date groundwater sampled: 07/26/91
- 18) pH (units): 5.2
- 19) Temperature (degrees C): 29
- 20) Specific conductance (umhos/cm): 90
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments: Boring/well in burn area. Petroleum hydrocarbon odor present.

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                                      |
|-----------------------|------------------------------------------------------------------------------------------------------------|
| 0- 1.5                | Dark grey sand, medium to coarse grained, color due to burned hydrocarbon residue. Petroleum odor present. |
| 1.5- 9.0              | Light grey sand, coarse grained. Wet at 3 ft. Petroleum odor present.                                      |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B026/P03TW026
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/24/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 3
- 9) Highest open-borehole OVA/HNu reading (ppm): 150
- 10) Depth of well (BLS): 7.05
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 2.05
- 13) Approx. height of casing above land surface: 2.85
- 14) Depth to water in well (BTOC): 6.12
- 15) Elevation of TOC: 30.69
- 16) Water level elevation: 24.57
- 17) Date groundwater sampled: 07/24/91
- 18) pH (units): 4.8
- 19) Temperature (degrees C): 28
- 20) Specific conductance (umhos/cm): 39
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments: Strong petroleum odor noted during drilling.

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                             |
|-----------------------|-----------------------------------------------------------------------------------|
| 0- 1.0                | Pale grey sand, medium to coarse grained. Some grass and roots present.           |
| 1.0- 3.0              | Medium tan sand, medium coarse grained. Wet at 3 ft. Strong petroleum odor noted. |
| 3.0- 9                | Pale grey sand, coarse grained.                                                   |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO27/PO3TWO27
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/24/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 3.5
- 9) Highest open-borehole OVA/HNu reading (ppm): 200
- 10) Depth of well (BLS): 8.23
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 3.23
- 13) Approx. height of casing above land surface: 2.47
- 14) Depth to water in well (BTOC): 5.30
- 15) Elevation of TOC: 29.64
- 16) Water level elevation: 24.34
- 17) Date groundwater sampled: 07/24/91
- 18) pH (units): 4.4
- 19) Temperature (degrees C): 28
- 20) Specific conductance (umhos/cm): 94
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- Comments: Drilling in burn area. Sheen noted on water while drilling.

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                          |
|-----------------------|------------------------------------------------------------------------------------------------|
| 0- 0.7                | Dark grey sand, medium to coarse grained. Color due to burned material residue (hydrocarbons). |
| 0.7- 3.5              | Medium tan to grey sand, medium coarse grained. Wet at 3.5 ft. Petroleum odor noted.           |
| 3.5- 9.0              | Pale grey sand, medium to medium-coarse grained.                                               |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger

NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B028/P03TW028
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/23/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 4
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): 7.91
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 2.91
- 13) Approx. height of casing above land surface: 1.98
- 14) Depth to water in well (BTOC): 5.75
- 15) Elevation of TOC: 29.47
- 16) Water level elevation: 23.72
- 17) Date groundwater sampled: 07/24/91
- 18) pH (units): 5.6
- 19) Temperature (degrees C): 27
- 20) Specific conductance (umhos/cm): 28
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|
| 025                   | Dark grey organic rich sand, medium to medium coarse grained.                                                            |
| .25- 3.0              | Medium tan sand, medium coarse grained.                                                                                  |
| 3.0- 9.0              | Pale grey sand, medium coarse grained. Wet at 4 ft. Dark brown-grey at 7 to 7.5 ft., possilble staining due to organics. |

Notes: All depths, lengths, heights, and elevations are measured in feet.
All boreholes are 4 inches in diameter. All well casings and screens
are 2-inch-diameter; well screen slot sizes are .010 inches. No
annular material (i.e. filter pack, seal or grout) was used in well
installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger

NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO29/PO3TWO29
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/23/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 4.5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): 8.3
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 3.3
- 13) Approx. height of casing above land surface: 1.56
- 14) Depth to water in well (BTOC): 5.14
- 15) Elevation of TOC: 27.83
- 16) Water level elevation: 22.69
- 17) Date groundwater sampled: 07/24/91
- 18) pH (units): 5.3
- 19) Temperature (degrees C): 27
- 20) Specific conductance (umhos/cm): 32
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample Description                                   |
|-----------------------|------------------------------------------------------|
| 0- 4.5                | Pale tan sand, medium coarse grained. Wet at 4.5 ft. |
| 4.5- 9.0              | Pale cream sand, coarse grained.                     |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO30/PO3TWO30
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/25/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 5
- 9) Highest open-borehole OVA/HNu reading (ppm): 2
- 10) Depth of well (BLS): 8.14
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 3.14
- 13) Approx. height of casing above land surface: 1.72
- 14) Depth to water in well (BTOC): 5.15
- 15) Elevation of TOC: 29.42
- 16) Water level elevation: 24.27
- 17) Date groundwater sampled: 07/25/91
- 18) pH (units): 4.9
- 19) Temperature (degrees C): 27
- 20) Specific conductance (umhos/cm): 41
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

## BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------|
| 0- 0.7                | Dark grey-brown sand, medium to medium coarse grained with much organic material and vegetation.  |
| 0.7- 1.0              | Medium reddish-brown sand, coarse grained.                                                        |
| 1.0- 2.5              | Medium brown sand, medium coarse grained.                                                         |
| 2.5- 4.5              | Medium grey to tan sand, medium coarse grained.                                                   |
| 4.5- 9.0              | Dark grey to black peaty sand (humus rich), sand is medium coarse to coarse grained. Wet at 5 ft. |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B031/P03TW031
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/25/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): 7.45
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 2.45
- 13) Approx. height of casing above land surface: 2.38
- 14) Depth to water in well (BTOC): 5.47
- 15) Elevation of TOC: 29.98
- 16) Water level elevation: 24.51
- 17) Date groundwater sampled: 07/26/91
- 18) pH (units): 6.3
- 19) Temperature (degrees C): 28
- 20) Specific conductance (umhos/cm): 100
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                                  |
|-----------------------|--------------------------------------------------------------------------------------------------------|
| 0- 0.7                | Dark greyish brown, organic rich sand, medium to medium coarse grained with much vegetation and roots. |
| 0.7- 2.5              | Medium tan to yellow sand, medium coarse grained.                                                      |
| 2.5- 9.0              | Pale grey sand, coarse grained.                                                                        |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

= not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: PO3BO32/PO3TWO32
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/25/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): 8.19
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 3.19
- 13) Approx. height of casing above land surface: 2.35
- 14) Depth to water in well (BTOC): 5.32
- 15) Elevation of TOC: 29.71
- 16) Water level elevation: 24.39
- 17) Date groundwater sampled: 07/26/91
- 18) pH (units): 6.3
- 19) Temperature (degrees C): 27
- 20) Specific conductance (umhos/cm): 87
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                    |
|-----------------------|------------------------------------------------------------------------------------------|
| 0- 0.2                | Dark grey to black, organic rich sand, medium coarse grained, much vegetation and roots. |
| 0.2- 0.8              | Reddish brown sand, coarse grained.                                                      |
| 0.8- 2.0              | Medium tan sand, medium to medium coarse grained.                                        |
| 2.0- 9.0              | Pale grey sand, coarse grained. Wet at 5 ft.                                             |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B033/P03TW033
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/25/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 9
- 8) Depth to water in borehole (BLS): 5
- 9) Highest open-borehole OVA/HNu reading (ppm): 2.5
- 10) Depth of well (BLS): 7.52
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 2.52
- 13) Approx. height of casing above land surface: 2.24
- 14) Depth to water in well (BTOC): 5.22
- 15) Elevation of TOC: 29.38
- 16) Water level elevation: 24.16
- 17) Date groundwater sampled: 07/26/91
- 18) pH (units): 5.2
- 19) Temperature (degrees C): 28
- 20) Specific conductance (umhos/cm): 47
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

| BOREHOLE LITHOLOGIC LOG |                                                                                              |
|-------------------------|----------------------------------------------------------------------------------------------|
| Sample<br>Depth (BLS)   | Sample<br>Description                                                                        |
| 0- 0.1                  | Dark grey organic rich sand, medium to medium coarse grained with much vegetation and roots. |
| 0.1- 2.0                | Tan and orange mottled sand, coarse grained.                                                 |
| 2.0- 9.0                | Pale grey sand, medium coarse to coarse grained. Wet at 5 ft.                                |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger HA = hand auger

NR = No Reading

- 1) Site no.: 03
- 2) Boring no./Well no.: P03B034/P03TW034
- 3) Drilling firm: Meister and Assoc.
- 4) Drilling method: SSA
- 5) Date drilled/installed: 07/23/91
- 6) Geologist: DAN FOSS
- 7) Depth of boring (BLS): 10
- 8) Depth to water in borehole (BLS): 5.5
- 9) Highest open-borehole OVA/HNu reading (ppm): 0
- 10) Depth of well (BLS): 8.24
- 11) Length of well screen: 5
- 12) Length of casing (BLS): 3.24
- 13) Approx. height of casing above land surface: 1.60
- 14) Depth to water in well (BTOC): 5.80
- 15) Elevation of TOC: 28.75
- 16) Water level elevation: 22.95
- 17) Date groundwater sampled: 07/24/91
- 18) pH (units): 5.7
- 19) Temperature (degrees C): 27
- 20) Specific conductance (umhos/cm): 56
- 21) Borehole/Well abandonment method: Backfilled with cuttings.
- 22) Comments:

#### BOREHOLE LITHOLOGIC LOG

| Sample<br>Depth (BLS) | Sample<br>Description                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------|
| 0- 0.7                | Light grey organic rich sand, medium grained with some grass and roots in upper 6 inches. |
| 0.7- 2.0              | Medium tan sand, medium coarse grained.                                                   |
| 2.0- 2.3              | Medium tan-yellow sand, medium coarse grained.                                            |
| 2.3- 10.0             | Pale grey sand, coarse grained. Wet at 5.5 ft.                                            |

Notes: All depths, lengths, heights, and elevations are measured in feet. All boreholes are 4 inches in diameter. All well casings and screens are 2-inch-diameter; well screen slot sizes are .010 inches. No annular material (i.e. filter pack, seal or grout) was used in well installation. Unless otherwise noted, all sand grains are quartz.

NA = not applicable SSA = solid stem auger

HA = hand auger NR = No Reading

# APPENDIX G

SURFACE WATER SAMPLING ANALYTICAL SCREENING RESULTS

#### **MEMORANDUM**

T0:

John Barksdale

FROM:

Gary Hahn Starigglabyter

DATE:

August 16, 1991

SUBJECT:

UH-8000 Pensacola Report

RE:

9101.838

CC:

Lab File

Attached is the laboratory report of the analysis conducted on ten samples received at the Analytical Services Center on July 31, 1991. Analysis was performed according to the screening procedures set forth in "Generic Quality Assurance Project Plan, Contamination Assessments and Remedial Activities, Naval Air Station Pensacola, Pensacola, Florida," July 1990.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/kr Enclosure Jal# 9101.838

802,501,507, LDE# XO3L2013, QC# 10042C

HCLLOE# 5587 KEBP HNO3 LOCA 6623 KECG 12501 Let 2876 KERC

Page 1 of 1.

ecology and environment, inc. Sample hange 174/1-17420's gal amber Lot#1071061 QC# 10180C

200 PLEABANTVIEW DRIVE LANCASTER, NEW YORK 10008, TEL. 718/884 8080

12 poly lot# 110902 QC# 10820C

CHAIN-OF-CUSTODY RECORD 114801 QC# 10884C

WH8030 NASP SITE 3 John Barksdale Don Fass REMARKS NUMBER SAMPLE INFORMATION OF STATION LOCATION EXPECTED COMPOUNDS (Concentration) TAINERS 50001 7/30 0930 3 KKKK Cotch basin LLIF sodings LOW 5P002 7/301200 outfall IL sediment 3 11 KKKK 50020 7/30 1200 deplicate **3** KKKKKK Duplicate Sample - outfall LL ·ø3 593 SW0017/30/0930 <u>5</u> Low Catch basin LLIF Eurfowll, of 208 KN002 17 30 1200 outfall LL surface 160 SUMB 130 1200 ?લ્3 5 puplicate cample-outfall Ll 203 PQ3 Date/Time: 7/309/ Received By: (Signature) Relinquished By: (Signature) Received By: (Signature) 1650 Fed. Ex. Date/Time: Relinquished By: (Signature) Received By (Signatural 7/39/9/ Data/Time: 7-3/.9 Received For Laboratory By: Relinguished By: (Signature) Received For Labgratory By: 0176546982

VON TEMP. AT 4°C upon receipt at LABVIS "Sa CONCENTRATION RANGE on back of form.



HONE VOC # 1123043, QCT 10042C
HONE VOC # 1123043, QCT 10354C

NSCAL ONE LOT 1071061 QCT 10180C

IL PON LOT 1148 OLLOGT 1084C

CHAIN OF CUSTODY RECORD 1084C

HCL LOCAT 5587 KEGP
HNOS LOCAT 6603 KECB
Hasof Locat 2876 KERC

|     | Project No<br>UH 80<br>Samplers | (Signal)  | resi                   | <u>NSP</u> | ی (          |          | <u>.3</u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Project Manager  JOHA  Field Team Lea | der:        | KSd         | ale                                   |                                 |       |              |        | /-  |    |                          |
|-----|---------------------------------|-----------|------------------------|------------|--------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|-------------|-------------|---------------------------------------|---------------------------------|-------|--------------|--------|-----|----|--------------------------|
|     | STATION<br>NUMBER               | 90<br>199 | B. 7                   |            | AMPL<br>TYPE | •        | EXP         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NFORMATION     | Dan F                                 |             | MOITATE     | N LOCATION                            | NUMBER<br>OF<br>CON-<br>TAINERS | /4    | اور<br>ن کرد |        |     |    | REMARKS                  |
|     | SD@3                            | 7/30      |                        | 5          | K            |          | Low         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       | 1           |             | A sediment                            |                                 | 13    | 1-           | -      |     | 12 |                          |
| P03 | SD004                           | 1130      | 143                    | 7          | X            | $\dashv$ | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | <u> </u>                              | CUKAL       | win h       | A3M sediment                          | 3                               | 74    | ×            | Ŋ      | ~   | ×  |                          |
|     |                                 |           |                        | 1          |              |          |             | King and the second sec |                |                                       |             |             | Ald A                                 |                                 |       |              |        |     |    |                          |
|     |                                 | -         | $\ \cdot\ $            | -          |              | $\dashv$ |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |             |             |                                       |                                 | -     |              |        |     |    |                          |
|     | SWW2                            | -         | 1                      |            | X            |          | Low         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ~~~                                   | Carch       | bain A      | HABM Straface                         | 5                               | X     | ×            | *4     | M   |    |                          |
| PO3 | <u>sw004</u>                    | 7/30      | 143                    | 2          | Ŋ            |          | '''         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·            |                                       | Dut fal     | AK/         | where H2O                             | 5                               | X     | X            | ×      | ×   | X  |                          |
|     |                                 |           |                        |            |              |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |             |             |                                       |                                 |       |              |        |     |    |                          |
|     |                                 | ļ         | $\left  \cdot \right $ | -          | -            |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |             | <del></del> |                                       |                                 |       | _            |        |     | -  |                          |
|     |                                 |           |                        |            |              |          |             | 7.17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                       |             |             | · · · · · · · · · · · · · · · · · · · |                                 |       |              |        |     |    |                          |
|     | Relinquish                      | ed-By: I  | الاوود                 | -1         |              | #10/T    | ma: 7/7/1/0 | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Signature)    | Relinquished 8                        | y: (Signati | ıra)        | Date/Time:                            | Receive                         | d By: | (Sign        | ature  | )   |    | Ship Via                 |
|     | 1 /                             | 147       |                        |            |              | 65.      |             | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [Signature]    | Helinguished B                        | /: (Signatu | ire)        | Date/Time:                            | Receive                         | By:   | Signa        | atura) |     |    | Fed. Ex.                 |
|     | ļ                               |           | - 1                    |            |              | a10/T/   | ma: 7,21 s  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _              | Relinguished B                        | y: ISignati | ıral        | Date/Time:                            | Receive                         | d For | Labor        | raton  | By: |    | BL/Airbill Number: Date: |
| 1   | Distribution                    | Ex.       | al Acad                |            | 1 311        | 9-2      | Copy to Coo | (ISignayola)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Laboratory By: |                                       |             |             | <u></u>                               | (Signatu                        | (#)   |              |        |     |    | 0776546993 7/3991        |

culon

\*See CONCENTRATION RANGE on back of form.

ION TEMP, AT 3°C Upon receipt out the us

## Ecology and Environment, Inc. SAMPLE TRACKING REPORT

| LAB<br>SAMPLE<br>ID | CLIENT<br>SAMPLE<br>ID |     | TEST<br>CODE       | DATE<br>SAMPLED      | DATE<br>EXTRACTED | DATE<br>ANALYZED     |
|---------------------|------------------------|-----|--------------------|----------------------|-------------------|----------------------|
| 17411.01            | P03-SD001              |     | SPNPRG1            | 07/30/91             |                   | 08/05/91             |
| 17411.02            | P03-SD001              |     | SPNTPH1            | 07/30/91             |                   | 08/05/91             |
| 17411.03            | P03-SD001              |     | SPNMET1            | 07/30/91             |                   | 08/05/91             |
| _,,,                |                        |     | SPNP&P1            | 07/30/91             |                   | 08/01/91             |
|                     |                        |     | SPNPAH1            | 07/30/91             |                   | 08/03/91             |
|                     |                        |     | SPNPHL1            | 07/30/91             |                   | 08/07/91             |
| 17412.01            | P03-SD002              |     | SPNPRG1            | 07/30/91             |                   | 08/05/91             |
| 17412.02            | P03-SD002              |     | SPNTPH1            | 07/30/91             |                   | 08/05/91             |
| 17412.03            | P03-SD002              |     | SPNMET1            | 07/30/91             |                   | 08/05/91             |
|                     |                        |     | SPNP&P1            | 07/30/91             |                   | 08/01/91             |
|                     |                        |     | SPNPAH1            | 07/30/91             |                   | 08/03/91             |
|                     |                        |     | SPNPHL1            | 07/30/91             |                   | 08/07/91             |
| 17413.01            | P03-SD002              |     | SPNPRG1            | 07/30/91             |                   | 08/05/91             |
| 17413.02            | P03-SD002              |     | SPNTPH1            | 07/30/91             |                   | 08/05/91             |
| 17413.03            | P03-SD002              | DUP | SPNMET1            | 07/30/91             |                   | 08/05/91             |
|                     |                        |     | SPNP&P1            | 07/30/91             |                   | 08/01/91             |
|                     |                        |     | SPNPAH1            | 07/30/91             |                   | 08/03/91             |
| 47/4/ 04            |                        |     | SPNPHL1            | 07/30/91             |                   | 08/07/91             |
| 17414.01            | P03-SD003              |     | SPNPRG1            | 07/30/91             |                   | 08/05/91             |
| 17414.02            | P03-SD003              |     | SPNTPH1            | 07/30/91             |                   | 08/05/91             |
| 17414.03            | P03-SD003              |     | SPNMET1            | 07/30/91             |                   | 08/05/91             |
|                     |                        |     | SPNP&P1            | 07/30/91             |                   | 08/01/91             |
|                     |                        |     | SPNPAH1            | 07/30/91<br>07/30/91 |                   | 08/03/91<br>08/07/91 |
| 17415.01            | P03-SD004              |     | SPNPHL1<br>SPNPRG1 | 07/30/91             |                   | 08/07/91             |
| 17415.01            | P03-SD004              |     | SPNTPH1            | 07/30/91             |                   | 08/05/91             |
| 17415.02            | P03-SD004              |     | SPNMET1            | 07/30/91             |                   | 08/05/91             |
| 17415.05            | 103-36004              |     | SPNP&P1            | 07/30/91             |                   | 08/01/91             |
|                     |                        |     | SPNPAH1            | 07/30/91             |                   | 08/03/91             |
|                     |                        |     | SPNPHL1            | 07/30/91             |                   | 08/07/91             |
| 17416.01            | P03-SW001              |     | WPNPRG1            | 07/30/91             |                   | 08/02/91             |
| 17416.03            | P03-SW001              |     | WPNP&P1            | 07/30/91             |                   | 08/01/91             |
|                     |                        |     | WPNPAH1            | 07/30/91             |                   | 08/03/91             |
|                     |                        |     | WPNPHL1            | 07/30/91             |                   | 08/06/91             |
| 17416.04            | P03-SW001              |     | WPNTPH1            | 07/30/91             |                   | 08/01/91             |
| 17416.05            | P03-SW001              |     | WPNMET1            | 07/30/91             |                   | 08/05/91             |
| 17417.01            | P03-SW002              |     | WPNPRG1            | 07/30/91             |                   | 08/02/91             |
| 17417.03            | P03-SW002              |     | WPNP&P1            | 07/30/91             |                   | 08/01/91             |
|                     |                        |     | WPNPAH1            | 07/30/91             |                   | 08/03/91             |
|                     |                        |     | WPNPHL1            | 07/30/91             |                   | 08/06/91             |
| 17417.04            | P03-SW002              |     | WPNTPH1            | 07/30/91             |                   | 08/01/91             |
| 17417.05            | P03-SW002              |     | WPNMET1            | 07/30/91             |                   | 08/05/91             |
| 17418.01            | P03-SW002              |     | WPNPRG1            | 07/30/91             |                   | 08/02/91             |
| 17418.03            | P03-SW002              | DUP | WPNP&P1            | 07/30/91             |                   | 08/01/91             |
|                     |                        |     | WPNPAH1            | 07/30/91             |                   | 08/03/91             |
|                     |                        |     | WPNPHL1            | 07/30/91             |                   | 08/06/91             |
| 17418.04            | P03-SW002              | DUP | WPNTPH1            | 07/30/91             |                   | 08/01/91             |

# Ecology and Environment, Inc. SAMPLE TRACKING REPORT

| LAB<br>SAMPLE | CLIENT<br>SAMPLE                                                                     |                                               | TEST                                                                                                                                      | DATE                          | DATE                                        | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|--------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ΤD            | TD                                                                                   |                                               | CODE                                                                                                                                      | SAMPLED                       | EXIRACIED                                   | ANALYZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17418.05      | P03-SW002                                                                            | DUP                                           | WPNMET1                                                                                                                                   | 07/30/91                      |                                             | 08/05/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17419.01      | P03-SW003                                                                            |                                               | WPNPRG1                                                                                                                                   | 07/30/91                      |                                             | 08/02/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17419.03      | P03-SW003                                                                            |                                               | WPNP&P1                                                                                                                                   | 07/30/91                      |                                             | 08/01/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                                      |                                               | WPNPAH1                                                                                                                                   | 07/30/91                      |                                             | 08/03/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                                      |                                               | WPNPHL1                                                                                                                                   | 07/30/91                      |                                             | 08/06/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17419.04      | P03-SW003                                                                            |                                               | WPNTPH1                                                                                                                                   | 07/30/91                      |                                             | 08/01/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17419.05      | P03-SW003                                                                            |                                               | WPNMET1                                                                                                                                   | 07/30/91                      |                                             | 08/05/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17420.01      | P03-SW004                                                                            |                                               | WPNPRG1                                                                                                                                   | 07/30/91                      |                                             | 08/03/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17420.03      | P03-SW004                                                                            |                                               | WPNP&P1                                                                                                                                   | 07/30/91                      |                                             | 08/01/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                                      |                                               | WPNPAH1                                                                                                                                   | 07/30/91                      |                                             | 08/03/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                                      |                                               | WPNPHL1                                                                                                                                   | 07/30/91                      |                                             | 08/06/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17420.04      | P03-SW004                                                                            |                                               | WPNTPH1                                                                                                                                   | 07/30/91                      |                                             | 08/01/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17420.05      | P03-SW004                                                                            |                                               | WPNMET1                                                                                                                                   | 07/30/91                      |                                             | 08/05/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | SAMPLE<br>ID<br>17418.05<br>17419.01<br>17419.03<br>17419.05<br>17420.01<br>17420.03 | SAMPLE ID | SAMPLE SAMPLE ID ID 17418.05 P03-SW002 DUP 17419.01 P03-SW003 17419.03 P03-SW003 17419.05 P03-SW003 17420.01 P03-SW004 17420.03 P03-SW004 | SAMPLE SAMPLE TEST ID ID CODE | SAMPLE SAMPLE TEST DATE  ID ID CODE SAMPLED | SAMPLE SAMPLE TEST DATE DATE ID ID CODE SAMPLED EXTRACTED  17418.05 P03-SW002 DUP WPNMET1 07/30/91 17419.01 P03-SW003 WPNPRG1 07/30/91 17419.03 P03-SW003 WPNPAH1 07/30/91 WPNPHL1 07/30/91 WPNPHL1 07/30/91 17419.04 P03-SW003 WPNTPH1 07/30/91 17420.01 P03-SW003 WPNMET1 07/30/91 17420.03 P03-SW004 WPNPRG1 07/30/91 17420.04 P03-SW004 WPNPAH1 07/30/91 17420.05 P03-SW004 WPNPRG1 07/30/91 17420.06 P03-SW004 WPNPAH1 07/30/91 WPNPAH1 07/30/91 WPNPAH1 07/30/91 WPNPHL1 07/30/91 WPNPHL1 07/30/91 |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17416 MATRIX: VATER

SAMPLE ID CLIENT: PO3-SWOO1

| PARAMETER        | RESULTS | Q | QNT. LIMIT | UNITS |
|------------------|---------|---|------------|-------|
|                  |         | - |            |       |
| Ars <b>en</b> ic | ND      |   | 60         | UG/L  |
| Chromium         | 67      |   | 10         | UG/L  |
| Zinc             | 48      |   | 20         | UG/L  |
| Lead             | ND      |   | 40         | UG/L  |
| Cadmium          | ND      |   | 5.0        | UG/L  |
| Nickel           | ND      |   | 40         | UG/L  |
| Copper           | ND      |   | 25         | UG/L  |
| Silver           | ND      |   | 10         | UG/L  |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-17417 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW002

| PARAMETER      | RESULTS | Q | QNT. LIMIT | UNITS |
|----------------|---------|---|------------|-------|
|                |         | _ |            |       |
| Arsenic        | ND      |   | 60         | UG/L  |
| Chromium       | ND      |   | 10         | UG/L  |
| Zinc           | 26      |   | 20         | UG/L  |
| Lead           | ND      |   | 40         | UG/L  |
| Cadmium        | ND      |   | 5.0        | UG/L  |
| Nick <b>el</b> | ND      |   | 40         | UG/L  |
| Copper         | ND      |   | 25         | UG/L  |
| Silver         | ND      |   | 10         | UG/L  |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-17418 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SWOO2 DUP

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         |   |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | 10      |   | 10         | UG/L  |
| Zinc      | 64      |   | 20         | UG/L  |
| Lead      | ND      |   | 40         | UG/L  |
| Cadmium   | ND      |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17419 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW003

| PARAMETER                                             | RESULTS | Q | QNT. LIMIT | UNITS |
|-------------------------------------------------------|---------|---|------------|-------|
| ware table follow speed above white speed states over |         |   |            |       |
| Arsenic                                               | ND      |   | 60         | UG/L  |
| Chromium                                              | ND      |   | 10         | UG/L  |
| Zinc                                                  | ND      |   | 20         | UG/L  |
| Lead                                                  | ND      |   | 40         | UG/L  |
| Cadmium                                               | ND      |   | 5.0        | UG/L  |
| Nickel                                                | ND      |   | 40         | UG/L  |
| Copper                                                | ND      |   | 25         | UG/L  |
| Silver                                                | ND      |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17420 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW004

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - | ~~~~~~~~~  |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | ND      |   | 10         | UG/L  |
| Zinc      | 50      |   | 20         | UG/L  |
| Lead      | ND      |   | 40         | UG/L  |
| Cadmium   | ND      |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

L = PRESENT BELOW STATED DETECTION LIMIT

#### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF WATER SAMPLES

9101.838

| ( | u | Ø | / | L | 1 |
|---|---|---|---|---|---|
|   |   |   |   |   |   |

| Parameter | E & E<br>Laboratory<br>No. 91-<br>17420 | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |
|-----------|-----------------------------------------|----------------------|-----------------------|--------------------------------------------|
| Arsenic   |                                         | ND                   | ND                    | NC                                         |
| Chromium  |                                         | ND                   | ND                    | NC                                         |
| Zinc      |                                         | 50                   | <b>8</b> 3            | 50                                         |
| Lead      |                                         | ND                   | ND                    | NC                                         |
| Cadmium   |                                         | ND                   | ND                    | NC                                         |
| Nickel    |                                         | ND                   | ND                    | NC                                         |
| Copper    |                                         | ND                   | ND                    | NC                                         |
| Silver    |                                         | ND                   | ND                    | NC                                         |

ND = NOT DETECTED

NC = NOT CALCULABLE

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPD'S ARE CALCULATED DIRECTLY FROM THE RAW DATA.

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9101.838

| (ug/L) |
|--------|
|--------|

| Parameter | E & E<br>Laboratory<br>No. 91-<br>17420 | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|-----------|-----------------------------------------|-------------------|-----------------|----------------------|---------------------|
| Arsenic   |                                         | ND                | 2000            | 1700                 | 83                  |
| Chromium  |                                         | ND                | 200             | 200                  | 9 <b>8</b>          |
| Zinc      |                                         | 50                | 500             | 480                  | 87                  |
| Lead      |                                         | ND                | 500             | 470                  | 93                  |
| Cadmium   |                                         | ND                | 50              | 45                   | 90                  |
| Nickel    |                                         | ND                | 500             | 480                  | 97                  |
| Copper    |                                         | ND                | 250             | 240                  | 95                  |
| Silver    |                                         | ND                | 50              | 48                   | 96                  |

ND = NOT DETECTED

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

<sup>\*\* =</sup> RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | ND      |   | 10         | UG/L  |
| Zinc      | 86      |   | 20         | UG/L  |
| Lead      | ND      |   | 40         | UG/L  |
| Cadmium   | ND      |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |
|           |         |   |            |       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2 SAMPLE ID LAB : EE-91-17416 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW001

 PARAMETER
 RESULTS
 Q QNT. LIMIT UNITS

 TRPH
 ND
 1.0
 MG/L

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-17417 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW002

PARAMETER RESULTS Q QNT. LIMIT UNITS \_ \_\_\_\_\_ ND TRPH 1.0 MG/L

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17418 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW002 DUP

RESULTS Q QNT. LIMIT UNITS PARAMETER ND 1.0 MG/L \_\_\_\_\_ TRPH

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17419 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW003

PARAMETER RESULTS Q QNT. LIMIT UNITS 3.0 1.0 MG/L TRPH

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-17420 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW004

PARAMETER RESULTS Q QNT. LIMIT UNITS ND 1.0 MG/L TRPH

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9101.838

| (mg/L)                                |                                |                   |                 |                      |                     |  |  |
|---------------------------------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|--|--|
| Parameter                             | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |  |
| T. Recoverable Petroleum Hydrocarbons |                                |                   |                 |                      |                     |  |  |
|                                       | Batch QC                       | ND                | 2.2             | 2.0                  | 95                  |  |  |

ND = NOT DETECTED

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

<sup>\*\* =</sup> RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

PARAMETER TRPH

L = PRESENT BELOW STATED DETECTION LIMIT

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17416 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW001

| PARAMETER                    | RESULTS | Q | QNT. LIMIT |
|------------------------------|---------|---|------------|
|                              | ****    | - |            |
| Benzene                      | ND      |   | 10         |
| Toluene                      | 21      |   | 10         |
| Ethylbenzene                 | 10      |   | 10         |
| Total Xylenes                | 150     |   | 10         |
| 1,2 - Dichlorobenzene        | ND      |   | 10         |
| 1,3 - Dichlorobenzene        | ND      |   | 10         |
| 1,4 - Dichlorobenzene        | ND      |   | 10         |
| 1,1 - Dichloroethene         | ND      |   | 10         |
| Methylene Chloride           | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene | ND      |   | 10         |
| 1,1 - Dichloroethane         | ND      |   | 10         |
| 1,1,1 - Trichloroethane      | ND      |   | 10         |
| 1,2 - Dichloroethane         | ND      |   | 10         |
| Trichloroethene              | ND      |   | 10         |
| Tetrachloroethene            | ND      |   | 10         |
| Chlorobenzene                | ND      |   | 10         |
|                              |         |   |            |

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17417 MATRIX: VATER

SAMPLE ID CLIENT: PO3-SW002

| PARAMETER                              | RESULTS | Q | QNT. LIMIT |
|----------------------------------------|---------|---|------------|
| NAME OF THE PARTY AND PARTY AND PARTY. |         | - |            |
| Benzene                                | ND      |   | 10         |
| Toluene                                | ND      |   | 10         |
| Ethylbenzene                           | ND      |   | 10         |
| Total Xylenes                          | ND      |   | 10         |
| 1,2 - Dichlorobenzene                  | ND      |   | 10         |
| 1,3 - Dichlorobenzene                  | ND      |   | 10         |
| 1,4 - Dichlorobenzene                  | ND      |   | 10         |
| 1,1 - Dichloroethene                   | ND      |   | 10         |
| Methylene Chloride                     | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene           | ND      |   | 10         |
| 1,1 - Dichloroethane                   | ND      |   | 10         |
| 1,1,1 - Trichloroethane                | ND      |   | 10         |
| 1,2 - Dichloroethane                   | ND      |   | 10         |
| Trichloroethene                        | ND      |   | 10         |
| Tetrachloroethene                      | ND      |   | 10         |
| Chlorobenzene                          | ND      |   | 10         |
|                                        |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17418 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW002 DUP

| PARAMETER                             | RESULTS | Q | QNT. LIMIT |
|---------------------------------------|---------|---|------------|
| 455 455 1007 1007 1007 1007 1007 1007 |         |   |            |
| Benzene                               | ND      |   | 10         |
| Toluene                               | ND      |   | 10         |
| Ethylbenzene                          | ND      |   | 10         |
| Total Xylenes                         | ND      |   | 10         |
| 1,2 - Dichlorobenzene                 | ND      |   | 10         |
| 1,3 - Dichlorobenzene                 | ND      |   | 10         |
| 1,4 - Dichlorobenzene                 | ND      |   | 10         |
| 1,1 - Dichloroethene                  | ND      |   | 10         |
| Methylene Chloride                    | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene          | ND      |   | 10         |
| 1,1 - Dichloroethane                  | ND      |   | 10         |
| 1,1,1 - Trichloroethane               | ND      |   | 10         |
| 1,2 - Dichloroethane                  | ND      |   | 10         |
| Trichloroethene                       | ND      |   | 10         |
| Tetrachloroethene                     | ND      |   | 10         |
| Chlorobenzene                         | ND      |   | 10         |
|                                       |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17419 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW003

| PARAMETER                    | RESULTS | Q | QNT. LIMIT |
|------------------------------|---------|---|------------|
|                              |         | - |            |
| Benzene                      | 56      |   | 10         |
| Toluene                      | ND      |   | 10         |
| Ethylbenzene                 | ND      |   | 10         |
| Total Xylenes                | 87      |   | 10         |
| 1,2 - Dichlorobenzene        | ND      |   | 10         |
| 1,3 - Dichlorobenzene        | ND      |   | 10         |
| 1,4 - Dichlorobenzene        | ND      |   | 10         |
| 1,1 - Dichloroethene         | ND      |   | 10         |
| Methylene Chloride           | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene | ND      |   | 10         |
| 1,1 - Dichloroethane         | ND      |   | 10         |
| 1,1,1 - Trichloroethane      | ND      |   | 10         |
| 1,2 - Dichloroethane         | ND      |   | 10         |
| Trichloroethene              | ND      |   | 10         |
| Tetrachloroethene            | ND      |   | 10         |
| Chlorobenzene                | ND      |   | 10         |
|                              |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17420 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW004

| PARAMETER                    | RESULTS | Q | QNT. LIMIT |
|------------------------------|---------|---|------------|
|                              |         | _ |            |
| Benzene                      | ND      |   | 10         |
| Toluene                      | ND      |   | 10         |
| Ethylbenzene                 | ND      |   | 10         |
| Total Xylenes                | ND      |   | 10         |
| 1,2 - Dichlorobenzene        | ND      |   | 10         |
| 1,3 - Dichlorobenzene        | ND      |   | 10         |
| 1,4 - Dichlorobenzene        | ND      |   | 10         |
| 1,1 - Dichloroethene         | ND      |   | 10         |
| Methylene Chloride           | ND      |   | <b>1</b> 0 |
| Trans - 1,2 - Dichloroethene | ND      |   | 10         |
| 1,1 - Dichloroethane         | ND      |   | 10         |
| 1,1,1 - Trichloroethane      | ND      |   | 10         |
| 1,2 - Dichloroethane         | ND      |   | 10         |
| Trichloroethene              | ND      |   | 10         |
| Tetrachloroethene            | ND      |   | 10         |
| Chlorobenzene                | ND      |   | 10         |
|                              |         |   |            |

# QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD) OF WATER MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MSD) (Sample # 17420)

9101.838

|                          |                   | (ug/L           | .)  |    |     |                     |     |     |
|--------------------------|-------------------|-----------------|-----|----|-----|---------------------|-----|-----|
|                          | 0-1-1-1           | Amount<br>Added |     |    |     | Percent<br>Recovery |     |     |
| Parameter                | Original<br>Value | MS              | MSD | MS | MSD | MS                  | MSD | RPD |
| Benzene                  | ND                | 20              | 20  | 17 | 15  | 85                  | 75  | 13  |
| Toluene                  | ND                | 20              | 20  | 16 | 15  | 80                  | 75  | 6.5 |
| Ethyl Benzene            | ND                | 20              | 20  | 16 | 14  | 80                  | 70  | 13  |
| 1,2-Dichlorobenzene      | ND                | 40              | 40  | 19 | 18  | 48                  | 45  | 6.5 |
| 1,3-Dichlorobenzene      | ND                | 40              | 40  | 31 | 28  | 78                  | 70  | 11  |
| 1,4-Dichlorobenzene      | ND                | - 40            | 40  | 31 | 29  | 78                  | 73  | 6.6 |
| 1,1-Dichloroethene       | ND                | 20              | 20  | 22 | 21  | 110                 | 105 | 4.7 |
| Methylene Chloride       | ND                | 20              | 20  | 20 | 20  | 100                 | 100 | 0   |
| Trans-1,2-Dichloroethene | e ND              | 20              | 20  | 20 | 20  | 100                 | 100 | 0   |
| 1,1-Dichloroethane       | ND                | 20              | 20  | 20 | 19  | 100                 | 95  | 5.1 |
| 1,1,1-Trichloroethane    | ND                | 20              | 20  | 20 | 19  | 100                 | 95  | 5.1 |
| 1,2-Dichloroethane       | ND                | 20              | 20  | 24 | 22  | 120                 | 110 | 8.7 |
| Trichloroethene          | ND                | 20              | 20  | 22 | 20  | 110                 | 100 | 9.5 |
| Tetrachloroethene        | ND                | 20              | 20  | 21 | 19  | 105                 | 95  | 10  |

ND = NOT DETECTED

### QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY OF WATER MATRIX SPIKE (MS) (Sample # Blank Spike)

9101.838

| 1 |   | ~ | 1 | t | ١ |
|---|---|---|---|---|---|
| ( | u | v | / | L | , |

| E & E Laborato Parameter No. 91- | ry Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|----------------------------------|----------------------|-----------------|----------------------|---------------------|
| Benzene                          | ND                   | 20              | 19                   | 95                  |
| Toluene                          | ND                   | 20              | 19                   | 95                  |
| Ethyl Benzene                    | ND                   | 20              | 17                   | 85                  |
| 1,2-Dichlorobenzene              | ND                   | 20              | 9                    | 45                  |
| 1,3-Dichlorobenzene              | ND                   | 20              | 14                   | 70                  |
| 1,4-Dichlorobenzene              | ND                   | 20              | 15                   | 75                  |
| 1,1-Dichloroethene               | ND                   | 20              | 35                   | 175*                |
| Methylene Chloride               | ND                   | 20              | 21                   | 105                 |
| Trans-1,2-Dichloroether          | ne ND                | 20              | 21                   | 105                 |
| 1,1-Dichloroethane               | ND                   | 20              | 21                   | 105                 |
| 1,1,1-Trichloroethane            | ND                   | 20              | 21                   | 105                 |
| 1,2-Dichloroethane               | ND                   | 20              | 28                   | 140                 |
| Trichloroethene                  | ND                   | 20              | 25                   | 125                 |
| Tetrachloroethene                | ND                   | 20              | 24                   | 120                 |

ND = NOT DETECTED

<sup>\* =</sup> HIGH COMPOUND RECOVERY DUE TO MATRIX INTERFERENCE

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SURROGATE SPIKES

9101.838

| Compound           | E & E<br>Laboratory<br>No. 91- | Percent<br>Recovery |  |
|--------------------|--------------------------------|---------------------|--|
| Trifluorotoluene   | 17416                          | 100                 |  |
|                    | 17417                          | 83                  |  |
|                    | 17418                          | 88                  |  |
|                    | 17419                          | 88                  |  |
|                    | 17420                          | 95                  |  |
|                    | Method Blank                   | 100                 |  |
| 1,4-Dichlorobutane | 17416                          | 110                 |  |
| •                  | 17417                          | 103                 |  |
|                    | 17418                          | 104                 |  |
|                    | 17419                          | 100                 |  |
|                    | 17420                          | 93                  |  |
|                    | Method Blank                   | 100                 |  |

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

| PARAMETER                    | RESULTS | Q | QNT. LIMIT |
|------------------------------|---------|---|------------|
| Benzene                      | ND      | - | 10         |
| Toluene                      | ND      |   | 10         |
| Ethylbenzene                 | ND      |   | 10         |
| Total Xylenes                | ND      |   | 10         |
| 1,2 - Dichlorobenzene        | ND      |   | 10         |
| 1,3 - Dichlorobenzene        | ND      |   | 10         |
| 1,4 - Dichlorobenzene        | ND      |   | 10         |
| 1,1 - Dichloroethene         | ND      |   | 10         |
| Methylene Chloride           | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene | ND      |   | 10         |
| 1,1 - Dichloroethane         | ND      |   | 10         |
| 1,1,1 - Trichloroethane      | ND      |   | 10         |
| 1,2 - Dichloroethane         | ND      |   | 10         |
| Trichloroethene              | ND      |   | 10         |
| Tetrachloroethene            | ND      |   | 10         |
| Chlorobenzene                | ND      |   | 10         |
|                              |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :WPNPAH1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17416 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW001

PARAMETER RESULTS Q QNT. LIMIT
----Total as Benzo-a-pyrene ND 100

TEST CODE :WPNPAH1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17417

MATRIX: WATER

SAMPLE ID CLIENT: PO3-SWOO2

PARAMETER

RESULTS Q QNT. LIMIT

Total as Benzo-a-pyrene ND 100

TEST CODE :WPNPAH1

JOB NUMBER: 9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID CLIENT TO SAMPLE UNITS : UG/L MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW002 DUP

PARAMETER RESULTS Q QNT. LIMIT ND 100 \_\_\_\_\_ Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.838 TEST CODE : WPNPAH1

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17419 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW003

RESULTS Q QNT. LIMIT PARAMETER Total as Benzo-a-pyrene ND 100

TEST CODE :WPNPAH1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB : EE-91-17420 SAMPLE ID CLIENT: PO3-SW004 UNITS : UG/L MATRIX: WATER

PARAMETER RESULTS Q QNT. LIMIT ND 100 \_\_\_\_\_ Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9101.838

| (ug)       |                                |                   |                 |                      |                     |
|------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| Benzo(a)py | rene                           |                   |                 |                      |                     |
|            | 17420 MS                       | ND                | 50              | 30                   | 60                  |

ND = NOT DETECTED

TEST CODE :WPNPAH1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : METHOD BLANK MATRIX: WATER MATRIX: WATER

PARAMETER RESULTS Q QNT. LIMIT
----Total as Benzo-a-pyrene ND 100

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNPHL1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17416 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW001

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_ 

Total as Trichlorophenol ND 100

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :WPNPHL1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB : EE-91-17417
SAMPLE ID CLIENTE BOO 5000 TEST NAME : PNC PHENOL - LC UNITS : UG/L MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW002

PARAMETER RESULTS Q QNT. LIMIT ----

Total as Trichlorophenol ND 100

JOB NUMBER :9101.838 TEST CODE :WPNPHL1

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17418 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SWOO2 DUP

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_ \_\_\_\_ Total as Trichlorophenol 230 100

TEST CODE :WPNPHL1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC
SAMPLE ID LAB : EE-91-17419 UNITS : UG/L MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW003

PARAMETER RESULTS Q QNT. LIMIT 140 100 \_\_\_\_\_ Total as Trichlorophenol

TEST CODE : WPNPHL1

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PHENOL - LC UNITS : UG/L

SAMPLE ID LAB : EE-91-17420

MATRIX: VATER

SAMPLE ID CLIENT: PO3-SW004

PARAMETER

RESULTS Q QNT. LIMIT

\_\_\_\_

Total as Trichlorophenol ND

100

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

| 7 | Ŧ | v | Ţ | • | 0 | 3 | 0 |  |
|---|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |   |  |

| ( ug )      |                                |                   |                 |                      |                     |  |  |  |  |
|-------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|--|--|--|--|
| Parameter   | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |  |  |  |
| 2,4,6-Trick | hlorophenol                    |                   |                 |                      |                     |  |  |  |  |
|             | 17420 MS                       | ND                | 100             | 74                   | 74                  |  |  |  |  |

ND = NOT DETECTED

TEST CODE :WPNPHL1

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC

UNITS : UG/L

SAMPLE ID LAB : METHOD BLANK

MATRIX: VATER

PARAMETER

RESULTS Q QNT. LIMIT

Total as Trichlorophenol

ND

100

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNP&P1

JOB NUMBER: 9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-17416 MATRIX: WATER SAMPLE ID CLIENT: P03-SW001

UNITS : UG/L

| PARAMETER                                    | RESULTS | Q | QNT. LIMIT |
|----------------------------------------------|---------|---|------------|
| rent and alite little read with the rent and | -       |   |            |
| Heptachlor                                   | ND      |   | 5.0        |
| Lindane                                      | ND      |   | 5.0        |
| Aldrin                                       | ND      |   | 5.0        |
| 4,4 - DDT                                    | ND      |   | 5.0        |
| Dieldrin                                     | ND      |   | 5.0        |
| Endrin                                       | ND      |   | 5.0        |
| Chlordane                                    | ND      |   | 5.0        |
| 4,4-DDE                                      | ND      |   | 5.0        |
| Total PCBs                                   | ND      |   | 10         |
| 4,4-DDE                                      | ND      |   | 5.0        |

TEST CODE :WPNP&P1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17417 SAMPLE ID CLIENT: PO3-SW002 MATRIX: WATER

| RESULTS | Q                                      | QNT. LIMIT                             |
|---------|----------------------------------------|----------------------------------------|
|         |                                        |                                        |
| ND      |                                        | 5.0                                    |
| ND      |                                        | 10                                     |
|         | ND | ND |

TEST CODE :WPNP&P1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17418 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW002 DUP

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |
|            |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :WPNP&P1

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17419 SAMPLE ID CLIENT: PO3-SW003 MATRIX: WATER

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |

TEST CODE :WPNP&P1

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17420 MATRIX: WATER

SAMPLE ID CLIENT: PO3-SW004

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF WATER MATRIX SPIKE (Sample # 17420)

9101.838

| Compound   | Original<br>Result | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |  |  |  |  |  |  |
|------------|--------------------|-----------------|----------------------|---------------------|--|--|--|--|--|--|--|
| (ug/L)     |                    |                 |                      |                     |  |  |  |  |  |  |  |
| Heptachlor | ND                 | 2.0             | 1.32                 | 66                  |  |  |  |  |  |  |  |
| Lindane    | ND                 | 2.0             | 1.98                 | 99                  |  |  |  |  |  |  |  |
| Aldrin     | ND                 | 2.0             | 1.14                 | 57                  |  |  |  |  |  |  |  |
| 4,4'-DDT   | ND                 | 5.0             | 3.01                 | 60                  |  |  |  |  |  |  |  |
| Dieldrin   | ND                 | 5.0             | 5.36                 | 107                 |  |  |  |  |  |  |  |
| Endrin     | ND                 | 5.0             | 5.5                  | 110                 |  |  |  |  |  |  |  |
| PCB-1254   | ND                 | 25.0            | 22.7                 | 91                  |  |  |  |  |  |  |  |

ND = NOT DETECTED

TEST CODE :WPNP&P1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         |   |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |

QUALIFIERS: C = COMMENT D = NOT DETECTED D = COMMENT D = COMMENT

### APPENDIX H

## SEDIMENT SAMPLING ANALYTICAL SCREENING RESULTS

#### **MEMORANDUM**

TO:

John Barksdale

FROM:

Gary Hahn Shrighlahrfer

DATE:

August 16, 1991

SUBJECT:

UH-8000 Pensacola Report

RE:

9101.838

CC:

Lab File

Attached is the laboratory report of the analysis conducted on ten samples received at the Analytical Services Center on July 31, 1991. Analysis was performed according to the screening procedures set forth in "Generic Quality Assurance Project Plan, Contamination Assessments and Remedial Activities, Naval Air Station Pensacola, Pensacola, Florida," July 1990.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/kr Enclosure

Received By (Signature)

Received For Laboratory By:

Del H G/0/ 838 802 SCII JO / LOCH X 0362013, 9CH 100420 HCL LOCH 5587 KEGP HOMENOA WET 1123043, 9CT 103540 HNO3 LOCH 6623 KECF 1123043, 9CT 103540 HNO3 LOCH 6623 KECF 1123043, 9CT 101800 HNO3 LOCH 6623 KECF 1123043, 9CT 101800 HNO3 LOCH 101800 HD FINITION OF THE PROPERTY OF THE PROPERT HNO2 LOCK 6623 KECG H2504 Let # 2876 KERC

Page 1 at 1.

Project Name: NASP SITE 3 Project Manager: John Barksdale NH8030 Dan Fass REMARKS NUMBER OF CON-TAINERS SAMPLE INFORMATION STATION LOCATION EXPECTED COMPOUNDS (Concentration) 5000 730 0930 W LOW Cotch basin LLIF soliment 5P002 7/301200 outfall IL sediment × 500000 7/30 1200 deliate Duplicate Sample - outfall LL Catch basin LLIF Surface H.O 5 outfall LL Surface NO 5 SW0017/3010930 Low 205 RHOOS 17 30 1200 SW002 D 730 1200 "due), 5 Duplicate sample-outfall LL

Date/Time

Date/Time:

Date/Time: 7/20/2/ Received By: (Signature)

Date/Time: 7-3/-9 Received For Laboratory By

1650

Relinquished by: (Signature)

Relinquished By: (Signature)

 $\epsilon_{o}$ ۶۵۶

293 Pa3

IN TEMP. AT 4°C upon receipt at LHB VIS

Relinquished By: (Signature)

Fed. Ex.

0776546982



802 5011 JCA # X0362013, QCT 10042C 40m & VOC Lo ,123043, QCT 10354C 12501 ander LOT 1071061 QCT 10180C 12 pdy Lot 1148 011.QCT 10820C CHAIN-OF-CUSTODY RECORD 10884C

HCL LOCA 5587 KEGP HNO3 LOCA 6663 KECB Hasof Loca 2876 KERC

Page \_\_\_\_\_ of \_\_\_\_

|     | Project No.<br>UH 80<br>Samplera | 30<br>(Signat | ures)  |                         |         |      |     | <u>53</u>     |                          |              |            | Project Man<br>JON<br>Field Team | ager:<br>BB<br>Leader: | rks                                    | dale    |                                         |                      |              |        |            |       |                                          |                       |                                         |
|-----|----------------------------------|---------------|--------|-------------------------|---------|------|-----|---------------|--------------------------|--------------|------------|----------------------------------|------------------------|----------------------------------------|---------|-----------------------------------------|----------------------|--------------|--------|------------|-------|------------------------------------------|-----------------------|-----------------------------------------|
|     | Cb                               | 4K            | B. 7   | Zu                      | coj     | wz   | /   |               |                          |              |            | Dan                              | Fass                   |                                        |         |                                         |                      |              |        | /3         | Ø,    |                                          |                       | REMARKS                                 |
|     | STATION<br>NUMBER                | DATE          |        | П                       | SA<br>T | MPL  | E   |               | SAMPLE                   | NFORMATI     | ON         |                                  |                        | SYATION LOCATION OF                    |         |                                         |                      | /s1          | 30     | Self.      | ryk.  | <b>3 5 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9</b> |                       |                                         |
| l   |                                  | 199           |        |                         | COMP    | GRAB | Ā   | EXPE          | CTED COMPO               | UNDS (Con    | centration | .j.•                             |                        |                                        |         |                                         | CON-<br>TAINERS      | 1            | 1/2    | 3          | ۶۴    | <b>1</b> /2                              | § /                   |                                         |
| Pa3 | SDQ3                             | 7/30          | 13     | 5                       |         | K    |     | Low           |                          |              |            | /                                | Fa                     | tfall                                  | AA sedi | ment                                    |                      |              |        | ¥          | M     | ¥                                        |                       |                                         |
| P03 | SD004                            | 7/3           | 143    | 30                      | _       | X    |     | "             |                          |              |            |                                  | J COK!                 | hesin                                  | MEAA    | sediment                                | 3                    | 74           | X      | Þ          | ×     | Ø                                        |                       | **************************************  |
|     |                                  | _             | -      | $\downarrow \downarrow$ |         |      |     |               |                          | ·······      |            |                                  | $\perp$                |                                        |         |                                         |                      | <u> </u>     | _      |            | ļ     |                                          |                       |                                         |
|     |                                  | -             | +-     | +                       |         |      | -   |               |                          |              |            |                                  |                        | <del></del>                            | N       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                      | -            | _      |            |       |                                          |                       |                                         |
|     |                                  | -             | +-     | $\dagger \dagger$       | $\neg$  |      |     |               |                          |              |            | ············                     | -                      | ······································ |         |                                         | <u> </u>             | -            |        |            |       |                                          |                       |                                         |
| P03 | EMWZ                             | 7/31          | 13     | 5                       |         | ×    |     | Low           |                          |              |            |                                  | Cate                   | h hásin                                | MSAA    | Synface                                 | 5                    | X            | X      | <b>x</b> 4 | M     | ×                                        |                       |                                         |
|     | 5W004                            |               |        |                         |         | ×    |     | 11.           |                          |              |            |                                  | DA+                    | Ak IIs                                 | Surface | surface<br>H2O                          | 5                    | X            | χ      | X          | ×     | λ                                        |                       |                                         |
|     |                                  |               |        |                         |         |      |     |               |                          |              |            |                                  |                        |                                        |         |                                         |                      | <u> </u>     |        |            |       |                                          |                       |                                         |
|     |                                  | <u> </u>      | 4      | $\perp$                 | _       |      |     |               |                          |              |            |                                  |                        |                                        |         |                                         | ļ                    | ļ            | _      |            | ļ.,   |                                          |                       |                                         |
|     |                                  | ļ             | $\bot$ | +                       |         |      |     |               |                          |              |            |                                  |                        |                                        |         |                                         |                      |              |        |            | -     |                                          |                       |                                         |
|     |                                  | $\vdash$      | -      | +1                      |         |      |     |               |                          |              |            |                                  | -                      |                                        |         |                                         |                      | -            |        |            |       |                                          |                       |                                         |
|     |                                  |               | +      | $\forall \dagger$       |         |      | _   |               |                          |              |            |                                  |                        |                                        |         |                                         |                      | <del> </del> |        |            |       |                                          |                       |                                         |
|     | Relinquish                       | 200           | //     | idral <sup>†</sup>      |         |      | 65  | 5-7/30/91     | Received By:             | Signature)   |            | Relinquish                       | d By (Sign             | ature)                                 | Date/   | Time:                                   | Received             | d By:        | (Sign  | ature      | )     |                                          | Ship Via:<br>Fed. Ex. | *************************************** |
| Ì   | Relinquish                       |               |        | (eru)                   |         |      |     | Time:         | Received By:             | Signature    |            | Relinquishe                      | d By: (Sign            | ature)                                 | Date/   | Time.                                   | Received             | By:          | (Signa | ature!     | )     |                                          | BL/Arrbill Number:    | 12                                      |
|     | Relinquish                       | ed By:        | (Signa | tore)                   |         | o    | 9-1 | Time: 7.8/-7/ | Received For (Signer For | Laboratory E | By:        | Relinquish                       | id By: (Sign           | atura)                                 | Ďate/   | Time:                                   | Raceived<br>(Signatu |              | Labo   | raton      | у Ву: |                                          | 0776546993            | 7/30/9/                                 |

\*See CONCENTRATION RANGE on back of form.

receipt at the us

# Ecology and Environment, Inc. SAMPLE TRACKING REPORT

| LAB<br>SAMPLE<br>ID | CLIENT<br>SAMPLE<br>ID |     | TEST<br>CODE | DATE<br>SAMPLED | DATE<br>EXTRACTED | DATE<br>ANALYZED |
|---------------------|------------------------|-----|--------------|-----------------|-------------------|------------------|
| 17411.01            | P03-SD001              |     | SPNPRG1      | 07/30/91        |                   | 08/05/91         |
| 17411.02            | P03-SD001              |     | SPNTPH1      | 07/30/91        |                   | 08/05/91         |
| 17411.03            | P03-SD001              |     | SPNMET1      | 07/30/91        |                   | 08/05/91         |
|                     |                        |     | SPNP&P1      | 07/30/91        |                   | 08/01/91         |
|                     |                        |     | SPNPAH1      | 07/30/91        |                   | 08/03/91         |
|                     |                        |     | SPNPHL1      | 07/30/91        |                   | 08/07/91         |
| 17412.01            | P03-SD002              |     | SPNPRG1      | 07/30/91        |                   | 08/05/91         |
| 17412.02            | P03-SD002              |     | SPNTPH1      | 07/30/91        |                   | 08/05/91         |
| 17412.03            | P03-SD002              |     | SPNMET1      | 07/30/91        |                   | 08/05/91         |
|                     |                        |     | SPNP&P1      | 07/30/91        |                   | 08/01/91         |
|                     |                        |     | SPNPAH1      | 07/30/91        |                   | 08/03/91         |
|                     |                        |     | SPNPHL1      | 07/30/91        |                   | 08/07/91         |
| 17413.01            | P03-SD002              | DUP | SPNPRG1      | 07/30/91        |                   | 08/05/91         |
| 17413.02            | P03-SD002              | DUP | SPNTPH1      | 07/30/91        |                   | 08/05/91         |
| 17413.03            | P03-SD002              | DUP | SPNMET1      | 07/30/91        |                   | 08/05/91         |
|                     |                        |     | SPNP&P1      | 07/30/91        |                   | 08/01/91         |
|                     |                        |     | SPNPAH1      | 07/30/91        |                   | 08/03/91         |
|                     |                        |     | SPNPHL1      | 07/30/91        |                   | 08/07/91         |
| 17414.01            | P03-SD003              |     | SPNPRG1      | 07/30/91        |                   | 08/05/91         |
| 17414.02            | P03-SD003              |     | SPNTPH1      | 07/30/91        |                   | 08/05/91         |
| 17414.03            | P03-SD003              |     | SPNMET1      | 07/30/91        |                   | 08/05/91         |
|                     |                        |     | SPNP&P1      | 07/30/91        |                   | 08/01/91         |
|                     |                        |     | SPNPAH1      | 07/30/91        |                   | 08/03/91         |
|                     |                        |     | SPNPHL1      | 07/30/91        |                   | 08/07/91         |
| 17415.01            | P03-SD004              |     | SPNPRG1      | 07/30/91        |                   | 08/05/91         |
| 17415.02            | P03-SD004              |     | SPNTPH1      | 07/30/91        |                   | 08/05/91         |
| 17415.03            | P03-SD004              |     | SPNMET1      | 07/30/91        |                   | 08/05/91         |
|                     |                        |     | SPNP&P1      | 07/30/91        |                   | 08/01/91         |
|                     |                        |     | SPNPAH1      | 07/30/91        |                   | 08/03/91         |
|                     |                        |     | SPNPHL1      | 07/30/91        |                   | 08/07/91         |
| 17416.01            | P03-SW001              |     | WPNPRG1      | 07/30/91        |                   | 08/02/91         |
| 17416.03            | P03-SW001              |     | WPNP&P1      | 07/30/91        |                   | 08/01/91         |
|                     |                        |     | WPNPAH1      | 07/30/91        |                   | 08/03/91         |
|                     |                        |     | WPNPHL1      | 07/30/91        |                   | 08/06/91         |
| 17416.04            | P03-SW001              |     | WPNTPH1      | 07/30/91        |                   | 08/01/91         |
| 17416.05            | P03-SW001              |     | WPNMET1      | 07/30/91        |                   | 08/05/91         |
| 17417.01            | P03-SW002              |     | WPNPRG1      | 07/30/91        |                   | 08/02/91         |
| 17417.03            | P03-SW002              |     | WPNP&P1      | 07/30/91        |                   | 08/01/91         |
|                     |                        |     | WPNPAH1      | 07/30/91        |                   | 08/03/91         |
|                     |                        |     | WPNPHL1      | 07/30/91        |                   | 08/06/91         |
| 17417.04            | P03-SW002              |     | WPNTPH1      | 07/30/91        |                   | 08/01/91         |
| 17417.05            | P03-SW002              |     | WPNMET1      | 07/30/91        |                   | 08/05/91         |
| 17418.01            | P03-SW002              |     | WPNPRG1      | 07/30/91        |                   | 08/02/91         |
| 17418.03            | P03-SW002              | DUP | WPNP&P1      | 07/30/91        |                   | 08/01/91         |
|                     |                        |     | WPNPAH1      | 07/30/91        |                   | 08/03/91         |
|                     |                        |     | WPNPHL1      | 07/30/91        |                   | 08/06/91         |
| 17418.04            | P03-SW002              | DUP | WPNTPH1      | 07/30/91        |                   | 08/01/91         |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17411 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SDOO1

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.8     |   | 1.0        | MG/KG |
| Zinc      | 4.0     |   | 2.0        | MG/KG |
| Lead      | 13      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17412 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SD002

| PARAMETER | RESULTS | Q | QNT, LIMIT  | UNITS |
|-----------|---------|---|-------------|-------|
|           |         | _ |             |       |
| Arsenic   | ND      |   | <b>6.</b> 0 | MG/KG |
| Chromium  | ND      |   | 1.0         | MG/KG |
| Zinc      | 18      |   | 2.0         | MG/KG |
| Lead      | ND      |   | 4.0         | MG/KG |
| Cadmium   | ND      |   | 0.50        | MG/KG |
| Nickel    | ND      |   | 4.0         | MG/KG |
| Copper    | ND      |   | 2.5         | MG/KG |
| Silver    | ND      |   | 1.0         | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17413 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SD002 DUP

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           | -       | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | 14      |   | 2.0        | MG/KG |
| Lead      | 10      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17414 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SD003

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 7.0     |   | 1.0        | MG/KG |
| Zinc      | 32      |   | 2.0        | MG/KG |
| Lead      | 180     |   | 4.0        | MG/KG |
| Cadmium   | 1.4     |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | 31      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17415 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SD004

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.3     |   | 1.0        | MG/KG |
| Zinc      | 9.5     |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |
|           |         |   |            |       |

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

9101.838

| • |    |    | • |   | ٠ |
|---|----|----|---|---|---|
| • | mΩ | -/ | v | ~ | • |
|   |    |    |   |   |   |

| Parameter | E & E<br>Laboratory<br>No. 91-<br>17415 | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |
|-----------|-----------------------------------------|----------------------|-----------------------|--------------------------------------------|
| Arsenic   |                                         | ND                   | ND                    | NC                                         |
| Chromium  |                                         | 1.3                  | 2.0                   | 39                                         |
| Zinc      |                                         | 9.5                  | 3.9                   | 84                                         |
| Lead      |                                         | ND                   | ND                    | NC                                         |
| Cadmium   |                                         | ND                   | ND                    | NC                                         |
| Nickel    |                                         | ND                   | ND                    | NC                                         |
| Copper    |                                         | ND                   | ND                    | NC                                         |
| Silver    |                                         | ND                   | ND                    | NC                                         |

ND = NOT DETECTED

NC = NOT CALCULABLE

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPD's ARE CALCULATED DIRECTLY FROM THE RAW DATA.

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOLID SAMPLES

9101.838

| , |    | , | • |   | ` |
|---|----|---|---|---|---|
| ( | mg | / | ĸ | Ø | ) |

| Parameter | E & E<br>Laboratory<br>No. 91-<br>17415 | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|-----------|-----------------------------------------|-------------------|-----------------|----------------------|---------------------|
| Arsenic   |                                         | ND                | 2 <b>0</b> 0    | 180                  | 88                  |
| Chromium  |                                         | 1.3               | 20              | 23                   | 110                 |
| Zinc      |                                         | 9.5               | 50              | 51                   | 83                  |
| Lead      |                                         | ND                | 50              | 49                   | 97                  |
| Cadmium   |                                         | ND                | 5.0             | 4.4                  | 88                  |
| Nickel    |                                         | ND                | 50              | 49                   | 99                  |
| Copper    |                                         | ND                | 25              | 26                   | 103                 |
| Silver    |                                         | ND                | 5.0             | 4.5                  | 91                  |

ND = NOT DETECTED

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

<sup>\*\* =</sup> RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : METHOD BLANK MATRIX: SOLID

| PARAMETER | RESULTS | Q   | QNT. LIMIT | UNITS |
|-----------|---------|-----|------------|-------|
|           |         | *** |            |       |
| Arsenic   | ND      |     | 6.0        | MG/KG |
| Chromium  | ND      |     | 1.0        | MG/KG |
| Zinc      | ND      |     | 2.0        | MG/KG |
| Lead      | ND      |     | 4.0        | MG/KG |
| Cadmium   | ND      |     | 0.50       | MG/KG |
| Nickel    | ND      |     | 4.0        | MG/KG |
| Copper    | ND      |     | 2.5        | MG/KG |
| Silver    | ND      |     | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-17411 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SD001

PARAMETER
----TRPH RESULTS Q QNT. LIMIT UNITS 11 5.0 MG/KG

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17412 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SD002

PARAMETER TRPH

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17413 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SD002 DUP

RESULTS Q QNT. LIMIT UNITS
----- - ----- ----ND 5.0 MG/KG PARAMETER \_\_\_\_ 5.0 MG/KG TRPH

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17414 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SD003

RESULTS Q QNT. LIMIT UNITS PARAMETER 770 5.0 MG/KG TRPH

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17415 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SD004

 
 PARAMETER
 RESULTS
 Q QNT. LIMIT
 UNITS

 TRPH
 9.7
 5.0
 MG/KG
 9.7 5.0 MG/KG

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

9101.838

|                                      |                                | (mg/kg)              |                       |                                            |
|--------------------------------------|--------------------------------|----------------------|-----------------------|--------------------------------------------|
| Parameter                            | E & E<br>Laboratory<br>No. 91- | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |
| T. Recoveral<br>Petroleum<br>Hydroca |                                |                      |                       |                                            |
|                                      | Batch QC                       | 11                   | ND                    | NC                                         |

ND = NOT DETECTED

NC = NOT CALCULABLE

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPD'S ARE CALCULATED DIRECTLY FROM THE RAW DATA.

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOLID SAMPLES

9101.838

|            |                                | (mg/kg)           | )               |                      |                     |
|------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| T. Recover | m                              |                   |                 |                      |                     |
|            | Batch QC<br>Batch QC           | 11<br>30          | 100<br>100      | 78<br>110            | 65<br>83            |

ND = NOT DETECTED

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

<sup>\*\* =</sup> RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

TEST CODE :SPNPRG1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17411 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD001

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | - |            |
| Benzene                     | ND      |   | 1000       |
| Toluen <b>e</b>             | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | 1600    |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

TEST CODE :SPNPRG1 JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17412 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD002

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | _ |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-17413

SAMPLE ID CLIENT: PO3-SD002 DUP

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
| 455 455 455 455 455 455     |         |   |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ИD      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PURGABLES- GC SAMPLE ID LAB : EE-91-17414

SAMPLE ID CLIENT: PO3-SD003

| PARAMETER                                 | RESULTS | Q | QNT. LIMIT |
|-------------------------------------------|---------|---|------------|
| and with other riggs ones later land with |         | - | ~          |
| Benzene                                   | ND      |   | 1000       |
| Toluene                                   | ND      |   | 1000       |
| Ethylbenzene                              | ND      |   | 1000       |
| Total Xylenes                             | 1200    |   | 1000       |
| 1,2 - Dichlorobenzene                     | ND      |   | 1000       |
| 1,3 - Dichlorobenzene                     | ND      |   | 1000       |
| 1,4 - Dichlorobenzene                     | ND      |   | 1000       |
| 1,1 - dichloroethene                      | ND      |   | 1000       |
| Methylene Chloride                        | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene               | ND      |   | 1000       |
| 1,1 - dichloroethane                      | ND      |   | 1000       |
| 1,1,1 - Trichloroethane                   | ND      |   | 1000       |
| 1,2 - Dichloroethane                      | ND      |   | 1000       |
| Trichloroethene                           | ND      |   | 1000       |
| Tetrachloroethene                         | ND      |   | 1000       |
| chlorobenzene                             | ND      |   | 1000       |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17415 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD004

| PARAMETER                                           | RESULTS | Q | QNT. | LIMIT |
|-----------------------------------------------------|---------|---|------|-------|
| make while dates drive some make differ store about |         | - |      |       |
| Benzene                                             | ND      |   | 10   | 00    |
| Toluene                                             | ND      |   | 10   | 00    |
| Ethylbenzene                                        | ND      |   | 10   | 00    |
| Total Xylenes                                       | ND      |   | 10   | 00    |
| 1,2 - Dichlorobenzene                               | ND      |   | 10   | 00    |
| 1,3 - Dichlorobenzene                               | ŅD      |   | 10   | 00    |
| 1,4 - Dichlorobenzene                               | ND      |   | 10   | 00    |
| 1,1 - dichloroethene                                | ND      |   | 10   | 00    |
| Methylene Chloride                                  | ND      |   | 10   | 00    |
| Trans-1,2, - Dichloroethene                         | ND      |   | 10   | 00    |
| 1,1 - dichloroethane                                | ND      |   | 10   | 00    |
| 1,1,1 - Trichloroethane                             | ND      |   | 10   | 00    |
| 1,2 - Dichloroethane                                | ND      |   | 10   | 00    |
| Trichloroethene                                     | ND      |   | 10   | 00    |
| Tetrachloroethene                                   | ND      |   | 10   | 00    |
| chlorobenzene                                       | ND      |   | 10   | 00    |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SURROGATE SPIKES

9101.838

| Compound           | E & E<br>Laboratory<br>No. 91- | Percent<br>Recovery |  |
|--------------------|--------------------------------|---------------------|--|
| Trifluorotoluene   | 17411                          | 96                  |  |
|                    | 17412                          | 173*                |  |
|                    | 17413                          | 159*                |  |
|                    | 17414                          | 156*                |  |
|                    | 17415                          | 163*                |  |
|                    | Method Blank                   | 100                 |  |
| 1,4-Dichlorobutane | 17411                          | 86                  |  |
| •                  | 17412                          | 105                 |  |
|                    | 17413                          | 96                  |  |
|                    | 17414                          | 95                  |  |
|                    | 17415                          | 86                  |  |
|                    | Method Blank                   | 100                 |  |

<sup>\* =</sup> High surrogate recovery due to matrix interference.

JOB NUMBER :9101.838 TEST CODE :SPNPRG1

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : METHOD BLANK

| PARAMETER                                       | RESULTS | Q | QNT. LIMIT |
|-------------------------------------------------|---------|---|------------|
| with spirit stress state about state stage same |         | - |            |
| Benzene                                         | ND      |   | 1000       |
| Toluene                                         | ND      |   | 1000       |
| Ethylbenzene                                    | ND      |   | 1000       |
| Total Xylenes                                   | ND      |   | 1000       |
| 1,2 - Dichlorobenzene                           | ND      |   | 1000       |
| 1,3 - Dichlorobenzene                           | ND      |   | 1000       |
| 1,4 - Dichlorobenzene                           | ND      |   | 1000       |
| 1,1 - dichloroethene                            | ND      |   | 1000       |
| Methylene Chloride                              | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene                     | ND      |   | 1000       |
| 1,1 - dichloroethane                            | ND      |   | 1000       |
| 1,1,1 - Trichloroethane                         | ND      |   | 1000       |
| 1,2 - Dichloroethane                            | ND      |   | 1000       |
| Trichloroethene                                 | ND      |   | 1000       |
| Tetrachloroethene                               | ND      |   | 1000       |
| chlorobenzene                                   | ND      |   | 1000       |
|                                                 |         |   |            |

JOB NUMBER :9101.838 TEST CODE :SPNPAH1

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17411 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD001

PARAMETER RESULTS Q QNT. LIMIT rage ands only with the same maps. \_\_\_\_ 1700 1000 Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ESTIMATED VALUE D = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17412 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD002

PARAMETER RESULTS Q QNT. LIMIT ND 1000 \_\_\_\_ Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ESTIMATED VALUE D = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17413 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD002 DUP

PARAMETER RESULTS Q QNT. LIMIT ND 1000 \_\_\_\_\_

1000 Total as Benzo-a-pyrene ND

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17414 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD003

PARAMETER RESULTS Q QNT. LIMIT Total as Benzo-a-pyrene PRESENT L 1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17415 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD004

RESULTS Q QNT. LIMIT PARAMETER Total as Benzo-a-pyrene PRESENT L 1000

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOIL SAMPLES

|            |                                |                   |                 |                      | 9101.838            |
|------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
|            |                                | (ug)              |                 |                      |                     |
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| Benzo(a)py | rene                           |                   |                 |                      |                     |
|            | 17415 MS                       | ND                | 50              | 45                   | 90                  |

TEST CODE :SPNPAH1

JOB NUMBER :9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC SAMPLE ID LAB : METHOD BLANK

UNITS : UG/KG MATRIX : SOLID

PARAMETER

RESULTS Q QNT. LIMIT

Total as Benzo-a-pyrene

ND

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17411 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD001

RESULTS Q QNT. LIMIT PARAMETER

Total as Trichlorophenol ND 2000

\_\_\_\_\_\_

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17412 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD002

PARAMETER RESULTS Q QNT. LIMIT

Total as Trichlorophenol 5300 2000

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17413 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SDO02 DUP

PARAMETER RESULTS Q QNT. LIMIT Total as Trichlorophenol 3700 2000

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17414 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD003

RESULTS Q QNT. LIMIT
----- - - -----21000 2000 PARAMETER \_\_\_\_\_

Total as Trichlorophenol

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-17415

SAMPLE ID CLIENT: PO3-SD004

RESULTS Q QNT. LIMIT
----- - - -----ND 2000 PARAMETER

Total as Trichlorophenol

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOIL SAMPLES

9101.838

| (ug)       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                      |                                        |
|------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|----------------------------------------|
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Amount<br>Added                         | Amount<br>Determined | Percent<br>Recovery                    |
| 2,4,6-Tric | hlorophenol                    | weath the same of | *************************************** |                      | ************************************** |
|            | Blank Spike                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                     | 72                   | 72                                     |

ND = NOT DETECTED

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK MATRIX : SOLID

PARAMETER RESULTS Q QNT. LIMIT
----Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17411 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD001

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17412 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD002

| PARAMETER                              | RESULTS | Q | QNT. LIMIT |
|----------------------------------------|---------|---|------------|
| was very cost offe little tage and one |         | - |            |
| Heptachlor                             | ND      |   | 1000       |
| Lindane                                | ND      |   | 1000       |
| Aldrin                                 | ND      |   | 1000       |
| 4,4 - DDT                              | ND      |   | 1000       |
| Dieldrin                               | ND      |   | 1000       |
| Endrin                                 | ND      |   | 1000       |
| Chlordane                              | ND      |   | 1000       |
| 4,4-DDE                                | ND      |   | 1000       |
| Total PCBs                             | ND      |   | 5000       |

JOB NUMBER: 9101.838

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17413 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD002 DUP

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17414 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD003

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

JOB NUMBER: 9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17415 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SD004

| PARAMETER       | RESULTS                            | Q | QNT. LIMIT |
|-----------------|------------------------------------|---|------------|
|                 | make and an area come and a sittle | _ |            |
| Heptachlor      | ND                                 |   | 1000       |
| Lindane         | ND                                 |   | 1000       |
| Aldrin          | ND                                 |   | 1000       |
| 4,4 - DDT       | ND                                 |   | 1000       |
| Dieldrin        | ND                                 |   | 1000       |
| Endrin          | ND                                 |   | 1000       |
| Chlordane       | ND                                 |   | 1000       |
| 4,4-DD <b>E</b> | ND                                 |   | 1000       |
| Total PCBs      | ND                                 |   | 5000       |
|                 |                                    |   |            |

# QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SOIL MATRIX SPIKE (Sample # 17415)

9101.838

| Compound   | Original<br>Result | •    |      |             |  |  |  |  |  |  |  |  |  |  |
|------------|--------------------|------|------|-------------|--|--|--|--|--|--|--|--|--|--|
| (ug/kg)    |                    |      |      |             |  |  |  |  |  |  |  |  |  |  |
| Heptachlor | ND                 | 400  | 288  | 72          |  |  |  |  |  |  |  |  |  |  |
| Lindane    | ND                 | 400  | 428  | <b>1</b> 07 |  |  |  |  |  |  |  |  |  |  |
| Aldrin     | ND                 | 400  | 245  | 61          |  |  |  |  |  |  |  |  |  |  |
| 4,4'-DDT   | ND                 | 1000 | 552  | 5 <b>5</b>  |  |  |  |  |  |  |  |  |  |  |
| Dieldrin   | ND                 | 1000 | 1032 | 103         |  |  |  |  |  |  |  |  |  |  |
| Endrin     | ND                 | 1000 | 1090 | 109         |  |  |  |  |  |  |  |  |  |  |
| PCB-1254   | ND                 | 5000 | 3270 | 65          |  |  |  |  |  |  |  |  |  |  |

ND = NOT DETECTED

TEST CODE :SPNP&P1

JOB NUMBER: 9101.838

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PEST./PCB SAMPLE ID LAB : METHOD BLANK

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

#### APPENDIX I

## SOIL SAMPLING ANALYTICAL SCREENING RESULTS

TO:

John Barksdale

FROM:

Gary Hahn

DATE:

August 13, 1991

SUBJECT: UH-8000 Pensacola Report

RE:

9101.780

CC:

Lab File

Attached is the laboratory report of the analysis conducted on nine samples received at the Analytical Services Center on July 24, 1991. Analysis was performed according to the screening procedures set forth in "Generic Quality Assurance Project Plan, Contamination Assessments and Remedial Activities, Naval Air Station Pensacola, Pensacola, Florida, July 1990.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/emc Enclosure

TO: John Barksdale

FROM: Gary Hahn Jalel p

DATE: August 12, 1991

SUBJECT: UH-8000 Pensacola Report

RE: 9101.792

CC: Lab File

Attached is the laboratory report of the analysis conducted on fifteen samples received at the Analytical Services Center on July 25, 1991. Analysis was performed according to the screening procedures set forth in "Generic Quality Assurance Project Plan, Contamination Assessments and Remedial Activities, Naval Air Station Pensacola, Pensacola, Florida," July 1990.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/jp Enclosure

TO:

John Barksdale

FROM:

Gary Hahn Lary Habilitie

DATE:

August 9, 1991

SUBJECT: UH-8000 Pensacola Report

RE:

9101.807

CC:

Lab File

Attached is the laboratory report of the analysis conducted on eleven samples received at the Analytical Services Center on July 26, 1991. Analysis was performed according to the screening procedures set forth in "Generic Quality Assurance Project Plan, Contamination Assessments and Remedial Activities, Naval Air Station Pensacola, Pensacola, Florida," July 1990.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/kr Enclosure

TO:

John Barksdale

FROM:

Gary Hahn Hary Hull be

DATE:

August 12, 1991

SUBJECT:

UH-8000 Pensacola Report

RE:

9101.824

CC:

Lab File

Attached is the laboratory report of the analysis conducted on fourteen samples received at the Analytical Services Center on July 27, 1991. Analysis was performed according to the screening procedures set forth in "Generic Quality Assurance Project Plan, Contamination Assessments and Remedial Activities, Naval Air Station Pensacola, Pensacola, Florida," July 1990.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/kr Enclosure # 9/01.780

802 S0,1 Jan Lot # X036013 QC# 10042C

ecology and environment, inc. SAmple RANGY /6 778-16786 40 ml VOA Lot # 1123043 QC# 10854C

108 PLEASANT/IEW DRIVE, LANCASTER, NEW YORK 14088, TEL. 716/684-8000
International Specialists in the Environment

| nternational Specialists in the Environment | TOTAL | 1-000, | TEL. | 10700- |
|---------------------------------------------|-------|--------|------|--------|
|                                             |       |        |      |        |
|                                             |       |        |      |        |

CHAIN-OF-CUSTODY RECORD

| Project No.: WI 8030 Project Name: NASP SITE Samplers: (Signatures)                  | 3 Project Manage JO MO                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REMARKS                                           |
|--------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| STATION DATE TIME A WE                           | SAMPLE INFORMATION  EXPECTED COMPOUNDS (Concentration)* | STATION LOCATION                                       | UMBER OF CON AINERS CON CONTRACTOR CONTRACTO |                                                   |
| 3 SOILA 7/23 0930 X 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                              | Lon                                                     | Soil Boring 016                                        | 3 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3   🛪                                             |
| 3 SO21A 7/23 1035 X<br>3 SO15A 7/23 10SO X                                           | "                                                       | " " 021                                                | KKKK E<br>K d K K E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - <del>                                    </del> |
| 3 SCO6N 7/23 1/40 VI                                                                 | "                                                       | // C00<br>// OII                                       | 3 XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |
| 3 SO31A723 1545 V 3 SO31A723 1615 V                                                  | "                                                       | , , , , , , , , , , , ,                                | 3 x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı M                                               |
| 3 5034A 7/23 1655 X                                                                  | ,,,                                                     | °° 034                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
|                                                                                      |                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|                                                                                      |                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| Relinquished By: (Signature)   Date/T.   80   Relinquished By: (Signature)   Date/T. | 5" FiDE                                                 | By: (Signature) Date/Time.  By: (Signature) Date/Time. | Received By (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fed. EX.                                          |
| FEDEN 17.N                                                                           | 4.91 PSUM News                                          | By (Signature) Date/Time                               | Received For Laboratory B<br>(Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0776546805 7/23/9/                                |
| Distribution: Original Accompanies Shipment *See CONCENTRATION RANGE on back of      | · Conv. to Confidental Field Flat                       | iner included                                          | For Tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PX 3°C TO                                         |

## ecology and environment, inc. 268 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14088, TEL. 716/684 8060 International Specialists in the Environment

CHAIN-OF-CUSTODY RECORD

| L   | amhfeit<br>1#80            |            |            | NA      | SP   | S     | ite | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                | Project Manager  John Field Team Leads  Och | ef       |                                               | اح                                    |          |                                 |       |          |           |    |    | 77 M   | A REI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|----------------------------|------------|------------|---------|------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|---------------------------------------------|----------|-----------------------------------------------|---------------------------------------|----------|---------------------------------|-------|----------|-----------|----|----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SI  | TATION                     | 199<br>199 | T ,        | IME     | COMP | GRABA | E E | EXPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | FORMATION UNDS (Concentration) |                                             | 400      | STATIC                                        | N LOC                                 | ATION    | NUMBER<br>OF<br>CON-<br>TAINERS |       | ar<br>SV | 12. C. J. | 34 |    |        | 7//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5   | 027A                       |            | 1          | 945     |      | Ö     | _   | LOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                |                                             | Soil     | Bon                                           | Λ4.                                   | 027      | 3                               | X     | N        |           |    | N  | Ϋ́     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _   | 0264                       |            |            |         |      |       |     | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                |                                             | <u> </u> | <u>                                      </u> | 9                                     | oal      | 3                               | X     |          | 70        | ×  | VI | 1-1    | A square de description de la constante de la |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | AEIO                       |            |            |         | V    |       |     | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the season of the season of            |                                | W. Co., and M. Cont. Secul. S Office to an  | *        | <i>"</i>                                      |                                       | 013      | 3                               | X     | X        | X         | X  | W  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }_  | TAEO                       | 147        | <b></b> -f |         | И    |       |     | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                | -                                           | "        | ~ (                                           | · · · · · · · · · · · · · · · · · · · | Duplkate |                                 | 1     | ×        | ×         | ×  | X  |        | Duplicate soil San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _   | 009A                       |            |            |         |      |       |     | ",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                |                                             | <b>W</b> | <i>''</i>                                     |                                       | 9009     | 3_3                             | X     |          | X         | 1  | X  |        | Distriction On II ONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | APIO                       |            |            |         |      |       |     | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                |                                             | "        | //                                            |                                       | 014      | 3                               | K     |          | X         | X  | X  | $\Box$ | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | AUCO                       |            |            |         |      |       |     | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                |                                             | "        | //                                            | -                                     | 020      | 3                               | M     | N        | X         | K  | V  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The state of the s |
|     | DIOA                       |            |            |         |      |       |     | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                |                                             | "        | 11                                            |                                       | 010      | 3                               | M     | M        | X.        | V  | x  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 5 | 004A                       | 7la        | t l        | 515     | Ŋ    |       |     | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                |                                             | "        | 11                                            |                                       | 004      | 3                               | ×     | ×        | A         | ×  | Ŋ  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                            |            |            |         |      |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                | -                                           |          |                                               | - M                                   |          |                                 |       |          |           |    |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ā   | lelinguish                 | SUBV       | 15:9       | ogeure! |      | _[    | 63  | Part of the last o |                                        |                                | Retinguished By                             | (Sign.   | ture)                                         |                                       | (e) Time | Received                        |       |          |           |    |    | 5      | Fed. EX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Relinquishi<br>Relinquishi |            |            |         |      | - -   |     | Time:<br>-4/4510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Received By (                          |                                | Relinguished By                             |          |                                               |                                       | e/Time   | Received<br>(Signatu            | d For | _        |           |    |    |        | L/Aribil Number: 0716546831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/24/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

\*See CONCENTRATION RANGE on back of form

Temp VOA was at 3°C upon receipt at LAB us

# ecology and environment, inc. 388 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14088, TEL. 718/884-8600 International Specialists in the Environment

### 802 Soil Jan Lot# X0362013, QC# 10042C 40ml VOA Lot# 1123043, QC# 10354C

CHAIN-OF-CUSTODY RECORD

Page 1 01 1

| Project No.  WH 8030 Project Name.  WASP SITE 3  Samplers: (Signatures)  STATION DATE TIME TYPE  STATION DATE TIME TYPE | Project Manage JOHA Field Yearn Le                   | Barksdol<br>Foss | e          |                                 |       |                    | - C     |       |                       | REMARKS                                         |      |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------|------------|---------------------------------|-------|--------------------|---------|-------|-----------------------|-------------------------------------------------|------|
| NUMBER LOS                                                                                                              | SAMPLE INFORMATION  ECTED COMPOUNDS (Cuncentration)* | STATION LO       | CATION     | NUMBER<br>OF<br>CON-<br>TAINERS | /3    |                    |         | 35.59 |                       |                                                 |      |
| 5033A 7/25 0950 X LOW                                                                                                   |                                                      | Soil Boring      | 033        | 3                               | N     | N<br>N             | 0)      | NO    | 7 /                   |                                                 |      |
| 5032A7/25 1030 W \"                                                                                                     |                                                      | 11 11            | 032        | _                               |       |                    |         | N P   | 1                     |                                                 |      |
| S S031A 7/25 1100 X                                                                                                     |                                                      | " "              | 031        | 3                               |       | N)                 | 4 >     |       |                       |                                                 |      |
| 1 S030 A 7/25 1125 X \ \                                                                                                |                                                      | " "              | 030        | 3                               | X)    | <b>\(\rangle\)</b> | XX      | ON    |                       |                                                 |      |
| 5023A7/2612W N \                                                                                                        |                                                      | 11 11            | 023        | 3                               | X     | X                  | K N     | Q D   |                       |                                                 |      |
| S001A7/25/430 N \\                                                                                                      |                                                      | 11 11            | 001        | യയയ                             | X     | XI)                | XX      | K I   |                       |                                                 |      |
| \$ 5007A 7/25 1500 X                                                                                                    | J                                                    | + 11             | 007        |                                 | X     | ×                  | λ       | 0 0   |                       |                                                 |      |
| SOI 24 1 25 1 530 W "                                                                                                   | €                                                    | 11 11            | 012        | ტ                               |       | K                  | XX      | Q X   |                       |                                                 |      |
| 3 5017 1 7/25 1550 W                                                                                                    |                                                      | 11 6             | 017        | 3                               | X.    | λη /               | K O     | 0 10  |                       |                                                 |      |
|                                                                                                                         |                                                      |                  |            |                                 |       |                    | +       |       |                       | bhiat B. C. |      |
|                                                                                                                         |                                                      |                  |            |                                 |       |                    |         |       |                       |                                                 |      |
| Cause 1710                                                                                                              |                                                      |                  | Date/Time: | Received                        |       |                    |         |       | Ship Via:<br>Fed. Ex. |                                                 |      |
| Relinquished By: (Signature) Date/Time:                                                                                 | Received By : (Signature) Helinquished E             | By: (Signature)  | Date/Time: | Received                        | By: ( | Signati            | ura)    |       | BL/Airbill Number:    | Date: .                                         |      |
| Relinquished By: (Signature)  Fechever Express 1169/0930  Distribution: Original Accompanies Shipment, Copy to Coo      | (Signature)                                          | By: (Signature)  | Date/Tima: | Received<br>(Signatur           | For L | abora              | itory E | Ву:   | 0776546912            |                                                 | 5/9/ |

\*See CONCENTRATION RANGE on back of form.

Temp. Vot at 3°C upon receipt at (ab 115

### 802 SOIJO- LOE# X0362013, QC#10042C 40 ml VOA LOE# 1123043, QC# 10354C

9101824

CHAIN-OF-CUSTODY RECORD

Page | of |

| Project No.:  UH8030 Project Name  NASP  Samplers: (Signatures)  A. June | spe3                                                                         | Project Manager  | John Bark      | csdale                |                                 |    |        |       | <b>1</b>   | REMARKS               |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|----------------|-----------------------|---------------------------------|----|--------|-------|------------|-----------------------|
| STATION DATE TIME SAM                                                    | SAMPLE INFORMATION                                                           |                  | STATION        | LOCATION              | NUMBER<br>OF<br>CON-<br>TAINERS | /4 | AR.    |       |            | REMARKS               |
| 3 SORA 7/26 0915 X                                                       | Low                                                                          | 17302            | Soil Borin     | 6- 018                | 3                               | K  | X      | M,    | KK         | 0                     |
| 3 5019117/26/0945/X                                                      | "                                                                            | /   3 +          | " "            | 019                   | 3                               | X  |        |       | XX         |                       |
| 3 5000A 7/24 1010 X                                                      | <b>\</b>                                                                     | / 4              | 1, 11          | 800                   | 3                               | Ŋ  | 'n     | X Y   | XX         | 4                     |
| 3 5003A 7 26 1050 X                                                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                       | 17305            | 11 11          | <u>003</u>            | 3                               | -  |        |       | XX         |                       |
| 2002 A 7/26 1040 X                                                       | "                                                                            | 1 16             | " "            | 002                   | 3                               | X  | ×      | X)    | XX         | d                     |
| 3 5005A 7/26 1120 Y                                                      | "                                                                            | 17               | 11 11          | ∞5                    | 3_                              |    | -      |       | XX         |                       |
| 3 SORTA 7/26 1420 X                                                      | High                                                                         | 181              | 11 11          | 024                   |                                 | X  |        |       | KK         |                       |
| 3 5025 A 7/26 1500 X                                                     | LOW                                                                          | 19/              | " "            | 025                   | 3                               | K  | X      | X     | ( K<br>( K | 4                     |
| 3 soasad 7/26 1500 V                                                     | LOW                                                                          | 173.10           | // //          | 025 duplica           | 3                               | X  | Ŋ      | X     | X) >       | duplicate sample.     |
|                                                                          |                                                                              |                  |                |                       | ì                               |    |        |       |            |                       |
| Clauf                                                                    | Date/Time?  Date/Time:  Received By: (Signature)                             | Relinquished B   |                | Date/Time: Oate/Time. | Received                        |    |        |       |            | Ship Via:<br>Fed. Ex. |
| FED. EXP.                                                                | Dete/Time: 945 Received For Laboratory By 7/21/9/ Received For Laboratory By | : Relinquished B | y: (Signature) | Date/Time:            | Received<br>(Signatur           |    | Labora | atory | By:        | 0776546960 7/26/9/    |

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

234056

<sup>\*</sup>See CONCENTRATION RANGE on back of form.

### JOB NUMBER: 9101.780

## Ecology and Environment, Inc. SAMPLE TRACKING REPORT

| LAB<br>SAMPLE<br>ID | CLIENT<br>SAMPLE<br>ID | TEST<br>CODE       | DATE<br>SAMPLED      | DATE<br>EXTRACTED | DATE<br>ANALYZED     |
|---------------------|------------------------|--------------------|----------------------|-------------------|----------------------|
| 1 < 770 01          | DO2 GOOGA              |                    | 07/02/01             |                   | 07/21/01             |
| 16778.01            | P03-S006A              | SPNPRG1            | 07/23/91             |                   | 07/31/91<br>08/02/91 |
| 16778.02            | P03-S006A              | SPNTPH1<br>SPNMET1 | 07/23/91<br>07/23/91 |                   | 07/29/91             |
| 16778.03            | P03-S006A              | SPNP&P1            | 07/23/91             |                   | 07/29/91             |
|                     |                        | SPNPAH1            | 07/23/91             |                   | 08/01/91             |
|                     |                        | SPNPHL1            | 07/23/91             |                   | 07/30/91             |
| 16779.01            | PO3-SO11A              | SPNPRG1            | 07/23/91             |                   | 07/30/91             |
| 16779.02            | P03-S011A              | SPNTPH1            | 07/23/91             |                   | 08/02/91             |
| 16779.03            | P03-S011A              | SPNMET1            | 07/23/91             |                   | 07/29/91             |
| 10///103            | 103 001111             | SPNP&P1            | 07/23/91             |                   | 07/30/91             |
|                     |                        | SPNPAH1            | 07/23/91             |                   | 08/01/91             |
|                     |                        | SPNPHL1            | 07/23/91             |                   | 07/30/91             |
| 16780.01            | P03-S015A              | SPNPRG1            | 07/23/91             |                   | 07/31/91             |
| 16780.02            | P03-S015A              | SPNTPH1            | 07/23/91             |                   | 08/02/91             |
| 16780.03            | P03-S015A              | SPNMET1            | 07/23/91             |                   | 07/29/91             |
|                     |                        | SPNP&P1            | 07/23/91             |                   | 07/30/91             |
|                     |                        | SPNPAH1            | 07/23/91             |                   | 08/01/91             |
|                     |                        | SPNPHL1            | 07/23/91             |                   | 07/30/91             |
| 16781.01            | P03-S016A              | SPNPRG1            | 07/23/91             |                   | 07/31/91             |
| 16781.02            | P03-S016A              | SPNTPH1            | 07/23/91             |                   | 08/02/91             |
| 16781.03            | P03-S016A              | SPNMET1            | 07/23/91             |                   | 07/29/91             |
|                     |                        | SPNP&P1            | 07/23/91             |                   | 07/30/91             |
|                     |                        | SPNPAH1            | 07/23/91             |                   | 08/01/91             |
|                     |                        | SPNPHL1            | 07/23/91             |                   | 07/30/91             |
| 16782.01            | P03-S021A              | SPNPRG1            | 07/23/91             |                   | 07/31/91             |
| 16782.02            | P03-S021A              | SPNTPH1            | 07/23/91             |                   | 08/02/91             |
| 16782.03            | P03-S021A              | SPNMET1            | 07/23/91             |                   | 07/29/91             |
|                     |                        | SPNP&P1            | 07/23/91             |                   | 07/30/91             |
|                     |                        | SPNPAH1            | 07/23/91             |                   | 08/01/91             |
| 1 ( 702 01          | DO2 00224              | SPNPHL1            | 07/23/91             |                   | 07/30/91             |
| 16783.01            | P03-S022A              | SPNPRG1            | 07/23/91             |                   | 07/31/91             |
| 16783.02            | P03-S022A<br>P03-S022A | SPNTPH1            | 07/23/91<br>07/23/91 |                   | 08/02/91<br>07/29/91 |
| 16783.03            | PU3-SU22A              | SPNMET1<br>SPNP&P1 |                      |                   | 07/29/91             |
|                     |                        | SPNP&P1<br>SPNPAH1 | 07/23/91<br>07/23/91 |                   | 08/01/91             |
|                     |                        | SPNPHL1            | 07/23/91             |                   | 07/30/91             |
| 16784.01            | P03-S028A              | SPNPRG1            | 07/23/91             |                   | 07/30/91             |
| 16784.02            | P03-S028A              | SPNTPH1            | 07/23/91             |                   | 08/02/91             |
| 16784.03            | P03-S028A              | SPNMET1            | 07/23/91             |                   | 07/29/91             |
| 10/04:03            | 103-3020A              | SPNP&P1            | 07/23/91             |                   | 07/30/91             |
|                     |                        | SPNPAH1            | 07/23/91             |                   | 08/01/91             |
|                     |                        | SPNPHL1            | 07/23/91             |                   | 07/30/91             |
| 16785.01            | P03-S029A              | SPNPRG1            | 07/23/91             |                   | 08/01/91             |
| 16785.02            | P03-S029A              | SPNTPH1            | 07/23/91             |                   | 08/02/91             |
| 16785.03            | P03-S029A              | SPNMET1            | 07/23/91             |                   | 07/29/91             |
|                     |                        | SPNP&P1            | 07/23/91             |                   | 07/30/91             |
|                     |                        | SPNPAH1            | 07/23/91             |                   | 08/01/91             |
|                     |                        |                    |                      |                   |                      |

| LAB<br>SAMPLE<br>ID | CLIENT<br>SAMPLE<br>ID | TEST<br>CODE | DATE<br>SAMPLED | DATE<br>EXTRACTED | DATE<br>ANALYZED |
|---------------------|------------------------|--------------|-----------------|-------------------|------------------|
|                     |                        | ***          |                 |                   |                  |
| 16785.03            | P03-S029A              | SPNPHL       | 1 07/23/91      |                   | 07/30/91         |
| 16786.01            | P03-S034A              | SPNPRG       | 1 07/23/91      |                   | 08/01/91         |
| 16786.02            | P03-S034A              | SPNTPH       | 1 07/23/91      |                   | 08/05/91         |
| 16786.03            | P03-S034A              | SPNMET       | 1 07/23/91      |                   | 07/29/91         |
|                     |                        | SPNP&F       | 1 07/23/91      |                   | 07/30/91         |
|                     |                        | SPNPAH       | 1 07/23/91      |                   | 08/01/91         |
|                     |                        | SPNPHI       | 1 07/23/91      |                   | 07/30/91         |

| LAB<br>SAMPLE        | CLIENT<br>SAMPLE            | TEST               | DATE                 | DATE      | DATE                 |
|----------------------|-----------------------------|--------------------|----------------------|-----------|----------------------|
| ID                   | ID                          | CODE               | SAMPLED              | EXTRACTED | ANALYZED             |
| 16959.01             | P03-GW026                   | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16959.03             | P03-GW026                   | WPNP&P1            | 07/24/91             |           | 07/29/91             |
|                      |                             | WPNPAH1            | 07/24/91             |           | 08/02/91             |
|                      |                             | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16959.04             | P03-GW026                   | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16959.05             | P03-GW026                   | WPNMET1            | 07/24/91             |           | 07/28/91             |
| 16960.01             | P03-GW027                   | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16960.03             | P03-GW027                   | WPNP&P1            | 07/24/91             |           | 07/29/91             |
|                      |                             | WPNPAH1            | 07/24/91             |           | 08/02/91             |
|                      |                             | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16960.04             | P03-GW027                   | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16960.05             | P03-GW027                   | WPNMET1            | 07/24/91             |           | 07/28/91             |
| 16961.01             | P03-GW027-DUP.              | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16961.03             | PO3-GWO27-DUP.              | WPNP&P1            | 07/24/91             |           | 07/29/91             |
|                      |                             | WPNPAH1            | 07/24/91             |           | 08/02/91             |
| 16061 07             | B02 (#1027 BUB              | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16961.04<br>16961.05 | PO3-GW027-DUP.              | WPNTPH1            | 07/24/91             |           | 08/01/91<br>07/28/91 |
| 16962.01             | PO3-GW027-DUP.<br>PO3-GW028 | WPNMET1<br>WPNPRG1 | 07/24/91<br>07/24/91 |           | 07/28/91             |
| 16962.01             | P03-GW028                   | WPNP&P1            | 07/24/91             |           | 07/29/91             |
| 10902.03             | FU3-G#U20                   | WPNPAH1            | 07/24/91             |           | 08/02/91             |
|                      |                             | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16962.04             | P03-GW028                   | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16962.05             | P03-GW028                   | WPNMET1            | 07/24/91             |           | 07/28/91             |
| 16963.01             | P03-GW029                   | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16963.03             | P03-GW029                   | WPNP&P1            | 07/24/91             |           | 07/29/91             |
|                      |                             | WPNPAH1            | 07/24/91             |           | 08/02/91             |
|                      |                             | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16963.04             | P03-GW029                   | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16963.05             | P03-GW029                   | WPNMET1            | 07/24/91             |           | 07/28/91             |
| 16964.01             | P03-GW034                   | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16964.03             | P03-GW034                   | WPNP&P1            | 07/24/91             |           | 07/29/91             |
|                      |                             | WPNPAH1            | 07/24/91             |           | 08/02/91             |
|                      |                             | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16964.04             | P03-GW034                   | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16964.05             | P03-GW034                   | WPNMET1            | 07/24/91             |           | 07/28/91             |
| 16965.01             | P03-S004A                   | SPNPRG1            | 07/24/91             |           | 08/01/91             |
| 16965.02             | P03-S004A                   | SPNTPH1            | 07/24/91             |           | 08/05/91             |
| 16965.03             | P03-S004A                   | SPNMET1            | 07/24/91             |           | 07/28/91             |
|                      |                             | SPNP&P1            | 07/24/91             |           | 07/30/91             |
|                      |                             | SPNPAH1            | 07/24/91             |           | 08/01/91             |
| 16066 01             | DO2 COOC+                   | SPNPHL1            | 07/24/91             | •         | 07/31/91             |
| 16966.01             | PO3-SO09A                   | SPNPRG1            | 07/24/91             |           | 08/01/91             |
| 16966.02             | P03-S009A                   | SPNTPH1            | 07/24/91             |           | 08/05/91             |
| 16966.03             | P03-S009A                   | SPNMET1            | 07/24/91             |           | 07/28/91             |
|                      |                             | SPNP&P1<br>SPNPAH1 | 07/24/91<br>07/24/91 |           | 07/30/91             |
|                      |                             | SPNPAHI            | 0//24/91             |           | 08/01/91             |

| LAB      | CLIENT         |         |          |           |          |
|----------|----------------|---------|----------|-----------|----------|
| SAMPLE   | SAMPLE         | TEST    | DATE     | DATE      | DATE     |
| ID       | ID             | CODE    | SAMPLED  | EXTRACTED | ANALYZED |
| 16966.03 | P03-S009A      | SPNPHL1 | 07/24/91 |           | 07/31/91 |
| 16967.01 | P03-S010A      | SPNPRG1 | 07/24/91 |           | 08/01/91 |
| 16967.02 | P03-S010A      | SPNTPH1 | 07/24/91 |           | 08/05/91 |
| 16967.03 | P03-S010A      | SPNMET1 | 07/24/91 |           | 07/28/91 |
|          |                | SPNP&P1 | 07/24/91 |           | 07/30/91 |
|          |                | SPNPAH1 | 07/24/91 |           | 08/01/91 |
|          |                | SPNPHL1 | 07/24/91 |           | 07/31/91 |
| 16968.01 | P03-S013A      | SPNPRG1 | 07/24/91 |           | 08/03/91 |
| 16968.02 | P03-S013A      | SPNTPH1 | 07/24/91 |           | 08/05/91 |
| 16968.03 | P03-S013A      | SPNMET1 | 07/24/91 |           | 07/28/91 |
|          |                | SPNP&P1 | 07/24/91 |           | 07/30/91 |
|          |                | SPNPAH1 | 07/24/91 |           | 08/01/91 |
|          |                | SPNPHL1 | 07/24/91 |           | 07/31/91 |
| 16969.01 | PO3-SO13A-DUP. | SPNPRG1 | 07/24/91 |           | 08/03/91 |
| 16969.02 | PO3-SO13A-DUP. | SPNTPH1 | 07/24/91 |           | 08/05/91 |
| 16969.03 | PO3-SO13A-DUP. | SPNMET1 | 07/24/91 |           | 07/28/91 |
|          |                | SPNP&P1 | 07/24/91 |           | 07/31/91 |
|          | •              | SPNPAH1 | 07/24/91 |           | 08/02/91 |
|          |                | SPNPHL1 | 07/24/91 |           | 07/31/91 |
| 16970.01 | P03-S014A      | SPNPRG1 | 07/24/91 |           | 08/05/91 |
| 16970.02 | P03-S014A      | SPNTPH1 | 07/24/91 |           | 08/05/91 |
| 16970.03 | P03-S014A      | SPNMET1 | 07/24/91 |           | 07/28/91 |
|          |                | SPNP&P1 | 07/24/91 |           | 07/31/91 |
| t        |                | SPNPAH1 | 07/24/91 |           | 08/02/91 |
|          |                | SPNPHL1 | 07/24/91 |           | 07/31/91 |
| 16971.01 | P03-S020A      | SPNPRG1 | 07/24/91 |           | 08/01/91 |
| 16971.02 | P03-S020A      | SPNTPH1 | 07/24/91 |           | 08/05/91 |
| 16971.03 | P03-S020A      | SPNMET1 | 07/24/91 |           | 07/28/91 |
|          |                | SPNP&P1 | 07/24/91 |           | 07/31/91 |
|          |                | SPNPAH1 | 07/24/91 |           | 08/02/91 |
|          |                | SPNPHL1 | 07/24/91 |           | 07/31/91 |
| 16972.01 | P03-S026A      | SPNPRG1 | 07/24/91 |           | 08/03/91 |
| 16972.02 | P03-S026A      | SPNTPH1 | 07/24/91 |           | 08/05/91 |
| 16972.03 | P03-S026A      | SPNMET1 | 07/24/91 |           | 07/28/91 |
|          |                | SPNP&P1 | 07/24/91 |           | 07/31/91 |
|          |                | SPNPAH1 | 07/24/91 |           | 08/02/91 |
| 16077 61 | 702 40434      | SPNPHL1 | 07/24/91 |           | 07/31/91 |
| 16973.01 | P03-S027A      | SPNPRG1 | 07/24/91 |           | 08/05/91 |
| 16973.02 | P03-S027A      | SPNTPH1 | 07/24/91 |           | 08/05/91 |
| 16973.03 | P03-S027A      | SPNMET1 | 07/24/91 |           | 07/28/91 |
|          |                | SPNP&P1 | 07/24/91 |           | 07/31/91 |
|          |                | SPNPAH1 | 07/24/91 |           | 08/02/91 |
|          |                | SPNPHL1 | 07/24/91 |           | 07/31/91 |

| LAB<br>SAMPLE | CLIENT<br>SAMPLE | TEST               | DATE                 | DATE      | DATE                 |
|---------------|------------------|--------------------|----------------------|-----------|----------------------|
| ID            | ID               | CODE               | SAMPLED              | EXTRACTED | ANALYZED             |
| 17066.01      | P03-GW023        | WPNPRG1            | 07/25/91             |           | 07/31/91             |
| 17066.01      | PO3-GW023        | WPNP&P1            | 07/25/91             |           | 07/31/91             |
| 1/000.03      | F03-GW023        | WPNPAH1            | 07/25/91             |           | 08/02/91             |
|               |                  | WPNPHL1            | 07/25/91             |           | 08/02/91             |
| 17066.04      | P03-GW023        | WPNTPH1            | 07/25/91             |           | 07/30/91             |
| 17066.05      | P03-GW023        | WPNMET1            | 07/25/91             |           | 07/31/91             |
| 17067.01      | P03-GW030        | WPNPRG1            | 07/25/91             |           | 07/31/91             |
| 17067.03      | P03-GW030        | WPNP&P1            | 07/25/91             |           | 07/31/91             |
|               |                  | WPNPAH1            | 07/25/91             |           | 08/02/91             |
|               |                  | WPNPHL1            | 07/25/91             |           | 08/02/91             |
| 17067.04      | P03-GW030        | WPNTPH1            | 07/25/91             |           | 07/30/91             |
| 17067.05      | P03-GW030        | WPNMET1            | 07/25/91             |           | 07/31/91             |
| 17068.01      | P03-S001A        | SPNPRG1            | 07/25/91             |           | 08/01/91             |
| 17068.02      | P03-S001A        | SPNTPH1            | 07/25/91             |           | 07/29/91             |
| 17068.03      | P03-S001A        | SPNMET1            | 07/25/91             |           | 07/31/91             |
|               |                  | SPNP&P1            | 07/25/91             |           | 07/31/91             |
|               |                  | SPNPAH1            | 07/25/91             |           | 08/02/91             |
|               |                  | SPNPHL1            | 07/25/91             |           | 08/02/91             |
| 17069.01      | P03-S007A        | SPNPRG1            | 07/25/91             |           | 08/02/91             |
| 17069.02      | P03-S007A        | SPNTPH1            | 07/25/91             | *         | 07/29/91             |
| 17069.03      | P03-S007A        | SPNMET1            | 07/25/91             |           | 07/31/91             |
|               |                  | SPNP&P1            | 07/25/91             |           | 07/31/91             |
|               |                  | SPNPAH1            | 07/25/91             |           | 08/02/91             |
| 17070 01      | P02 G0104        | SPNPHL1            | 07/25/91             |           | 08/03/91             |
| 17070.01      | P03-S012A        | SPNPRG1            | 07/25/91             |           | 08/02/91             |
| 17070.02      | P03-S012A        | SPNTPH1            | 07/25/91             |           | 07/29/91             |
| 17070.03      | P03-S012A        | SPNMET1<br>SPNP&P1 | 07/25/91<br>07/25/91 |           | 07/31/91<br>07/31/91 |
|               |                  | SPNPAH1            | 07/25/91             |           | 08/02/91             |
|               |                  | SPNPHL1            | 07/25/91             |           | 08/02/91             |
| 17071.01      | P03-S017A        | SPNPRG1            | 07/25/91             |           | 08/02/91             |
| 17071.01      | P03-S017A        | SPNTPH1            | 07/25/91             |           | 07/29/91             |
| 17071.02      | P03-S017A        | SPNMET1            | 07/25/91             |           | 07/31/91             |
| 1,0,1.03      | 103 801/11       | SPNP&P1            | 07/25/91             |           | 07/31/91             |
|               |                  | SPNPAH1            | 07/25/91             |           | 08/02/91             |
|               |                  | SPNPHL1            | 07/25/91             |           | 08/03/91             |
| 17072.01      | PO3-SO23A        | SPNPRG1            | 07/25/91             |           | 08/02/91             |
| 17072.02      | P03-S023A        | SPNTPH1            | 07/25/91             |           | 07/29/91             |
| 17072.03      | P03-S023A        | SPNMET1            | 07/25/91             |           | 07/31/91             |
|               |                  | SPNP&P1            | 07/25/91             |           | 07/31/91             |
|               |                  | SPNPAH1            | 07/25/91             |           | 08/02/91             |
|               |                  | SPNPHL1            | 07/25/91             |           | 08/03/91             |
| 17073.01      | P03-S030A        | SPNPRG1            | 07/25/91             |           | 08/02/91             |
| 17073.02      | P03-S030A        | SPNTPH1            | 07/25/91             |           | 07/29/91             |
| 17073.03      | P03-S030A        | SPNMET1            | 07/25/91             |           | 07/31/91             |
|               |                  | SPNP&P1            | 07/25/ <b>91</b>     |           | 07/31/91             |
|               |                  | SPNPAH1            | 07/25/91             |           | 08/02/91             |
|               |                  |                    |                      |           |                      |

| LAB<br>SAMPLE<br>ID | CLIENT<br>SAMPLE<br>ID | TEST<br>CODE | DATE<br>SAMPLED | DATE<br>EXTRACTED | DATE<br>ANALYZED |
|---------------------|------------------------|--------------|-----------------|-------------------|------------------|
|                     |                        | ~~~          |                 |                   |                  |
| 17073.03            | P03-S030A              | SPNPHL1      | 07/25/91        |                   | 08/03/91         |
| 17074.01            | P03-S031A              | SPNPRG1      | 07/25/91        |                   | 08/02/91         |
| 17074.02            | P03-S031A              | SPNTPH1      | 07/25/91        |                   | 07/29/91         |
| 17074.03            | P03-S031A              | SPNMET1      | 07/25/91        |                   | 07/31/91         |
|                     |                        | SPNP&P1      | 07/25/91        |                   | 07/31/91         |
|                     |                        | SPNPAH1      | 07/25/91        |                   | 08/02/91         |
|                     |                        | SPNPHL1      | 07/25/91        |                   | 08/03/91         |
| 17075.01            | P03-S032A              | SPNPRG1      | 07/25/91        |                   | 08/02/91         |
| 17075.02            | P03-S032A              | SPNTPH1      | 07/25/91        |                   | 07/29/91         |
| 17075.03            | P03-S032A              | SPNMET1      | 07/25/91        |                   | 07/31/91         |
|                     |                        | SPNP&P1      | 07/25/91        |                   | 07/31/91         |
|                     |                        | SPNPAH1      | 07/25/91        |                   | 08/02/91         |
|                     |                        | SPNPHL1      | 07/25/91        |                   | 08/03/91         |
| 17076.01            | P03-S033A              | SPNPRG1      | 07/25/91        |                   | 08/02/91         |
| 17076.02            | P03-S033A              | SPNTPH1      | 07/25/91        |                   | 07/29/91         |
| 17076.03            | P03-S033A              | SPNMET1      | 07/25/91        |                   | 07/31/91         |
|                     |                        | SPNP&P1      | 07/25/91        |                   | 07/31/91         |
|                     |                        | SPNPAH1      | 07/25/91        |                   | 08/02/91         |
|                     |                        | SPNPHL1      | 07/25/91        |                   | 08/03/91         |
|                     |                        |              |                 |                   |                  |

| LAB<br>SAMPLE<br>ID | CLIENT<br>SAMPLE<br>ID | TEST<br>CODE       | DATE<br>SAMPLED | DATE<br>EXTRACTED | DATE<br>ANALYZED     |
|---------------------|------------------------|--------------------|-----------------|-------------------|----------------------|
| 17297.01            | P03GW024               | WPNPRG1            | 07/26/91        |                   | 08/02/91             |
| 17297.01            | P03GW024               | WPNP&P1            |                 |                   | 07/31/91             |
| 1/2//.03            | 1030#024               | WPNPAH1            |                 |                   | 08/03/91             |
|                     |                        | WPNPHL1            |                 |                   | 08/03/91             |
| 17297.04            | P03GW024               | WPNTPH1            |                 |                   | 07/30/91             |
| 17297.05            | P03GW024               | WPNMET 1           |                 |                   | 07/31/91             |
| 17298.01            | P03GW021               | WPNPRG1            |                 |                   | 08/06/91             |
| 17298.03            | P03GW021               | WPNP&P1            |                 |                   | 07/31/91             |
|                     |                        | WPNPAH1            | 07/26/91        |                   | 08/03/91             |
|                     |                        | WPNPHL1            | 07/26/91        |                   | 08/03/91             |
| 17298.04            | P03GW021               | WPNTPH1            | 07/26/91        |                   | 07/30/91             |
| 17298.05            | P03GW021               | WPNMET1            | 07/26/91        |                   | 07/31/91             |
| 17299.01            | P03GW033               | WPNPRG1            | 07/26/91        |                   | 08/02/91             |
| 17299.03            | P03GW033               | WPNP&P1            |                 |                   | 07/31/91             |
|                     |                        | WPNPAH1            |                 |                   | 08/03/91             |
|                     |                        | WPNPHL1            |                 |                   | 08/03/91             |
| 17299.04            | P03GW033               | WPNTPH1            |                 |                   | 07/30/91             |
| 17299.05            | P03GW033               | WPNMET1            |                 |                   | 07/31/91             |
| 17300.01            | P03GW032               | WPNPRG1            |                 |                   | 08/02/91             |
| 17300.03            | PO3GW032               | WPNP&P1            |                 |                   | 07/31/91             |
|                     |                        | WPNPAH1            |                 |                   | 08/03/91             |
| 17200 04            | D00011000              | WPNPHL1            |                 |                   | 08/03/91             |
| 17300.04            | P03GW032               | WPNTPH1            |                 |                   | 07/30/91             |
| 17300.05            | P03GW032               | WPNMET1            |                 |                   | 07/31/91             |
| 17301.01            | P03GW031               | WPNPRG1            |                 |                   | 08/02/91             |
| 17301.03            | P03GW031               | WPNP&P1            |                 |                   | 07/31/91             |
|                     |                        | WPNPAH1<br>WPNPHL1 |                 |                   | 08/03/91<br>08/03/91 |
| 17301.04            | P03GW031               | WPNTPH1            |                 |                   | 08/03/91             |
| 17301.04            | P03GW031               | WPNMET1            |                 |                   | 08/01/91             |
| 17301.03            | P03S018A               | SPNPRG1            |                 |                   | 08/02/91             |
| 17302.01            | P03S018A               | SPNTPH1            |                 |                   | 03/02/91             |
| 17302.02            | P03S018A               | SPNMET1            |                 |                   | 07/30/91             |
| 17302.03            | 103301011              | SPNP&P1            |                 |                   | 07/31/91             |
|                     |                        | SPNPAH1            |                 |                   | 08/03/91             |
|                     |                        | SPNPHL1            |                 |                   | 08/06/91             |
| 17303.01            | PO3S019A               | SPNPRG1            |                 |                   | 08/02/91             |
| 17303.02            | P03S019A               | SPNTPH1            |                 |                   | 07/30/91             |
| 17303.03            | P03S019A               | SPNMET1            |                 |                   | 07/31/91             |
|                     |                        | SPNP&P1            |                 |                   | 07/31/91             |
|                     |                        | SPNPAH1            |                 |                   | 08/03/91             |
|                     |                        | SPNPHL1            |                 |                   | 08/06/91             |
| 17304.01            | P03S008A               | SPNPRG1            | 07/26/91        |                   | 08/02/91             |
| 17304.02            | P03S008A               | SPNTPH1            |                 |                   | 07/30/91             |
| 17304.03            | P03S008A               | SPNMET1            | 07/26/91        |                   | 07/31/91             |
|                     |                        | SPNP&P1            | 07/26/91        |                   | 07/31/91             |
|                     |                        | SPNPAH1            | 07/26/91        |                   | 08/03/91             |

| LAB<br>SAMPLE<br>ID | CLIENT<br>SAMPLE<br>ID | TEST<br>CODE | DATE<br>SAMPLED  | DATE<br>EXTRACTED | DATE<br>ANALYZED |
|---------------------|------------------------|--------------|------------------|-------------------|------------------|
| 17304.03            | P03S008A               | SPNPHL1      | 07/26/91         |                   | 08/06/91         |
| 17305.01            | P03S003A               | SPNPRG1      | 07/26/91         |                   | 08/02/91         |
| 17305.02            | P03S003A               | SPNTPH1      | 07/26/91         |                   | 07/30/91         |
| 17305.03            | P03S003A               | SPNMET1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNP&P1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNPAH1      | 07/26/91         |                   | 08/03/91         |
|                     |                        | SPNPHL1      | 07/26/91         |                   | 08/06/91         |
| 17306.01            | P03S002A               | \$PNPRG1     | 07/26/91         |                   | 08/02/91         |
| 17306.02            | P03S002A               | SPNTPH1      | 07/26/91         |                   | 07/30/91         |
| 17306.03            | P03S002A               | SPNMET1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNP&P1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNPAH1      | 07/26/91         |                   | 08/03/91         |
|                     |                        | SPNPHL1      | 07/26/91         |                   | 08/06/91         |
| 17307.01            | P03S005A               | SPNPRG1      | 07/26/91         |                   | 08/02/91         |
| 17307.02            | P03S005A               | SPNTPH1      | 07/26/91         |                   | 07/30/91         |
| 17307.03            | P03S005A               | SPNMET1      | 07/26/ <b>91</b> |                   | 07/31/91         |
|                     |                        | SPNP&P1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNPAH1      | 07/26/91         |                   | 08/03/91         |
|                     |                        | SPNPHL1      | 07/26/91         |                   | 08/06/91         |
| 17308.01            | P03S024A               | SPNPRG1      | 07/26/91         |                   | 08/05/91         |
| 17308.02            | P03S024A               | SPNTPH1      | 07/26/91         |                   | 07/30/91         |
| 17308.03            | P03S024A               | SPNMET1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNP&P1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNPAH1      | 07/26/91         |                   | 08/03/91         |
|                     |                        | SPNPHL1      | 07/26/91         |                   | 08/06/91         |
| 17309.01            | P03S025A               | SPNPRG1      | 07/26/91         |                   | 08/02/91         |
| 17309.02            | P03S025A               | SPNTPH1      | 07/26/91         |                   | 07/30/91         |
| 17309.03            | P03S025A               | SPNMET1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNP&P1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNPAH1      | 07/26/91         |                   | 08/03/91         |
| 17210 01            | D024005 AD             | SPNPHL1      | 07/26/91         |                   | 08/06/91         |
| 17310.01            | P03S025AD              | SPNPRG1      | 07/26/91         |                   | 08/02/91         |
| 17310.02            | P03S025AD              | SPNTPH1      | 07/26/91         |                   | 07/31/91         |
| 17310.03            | P03S025AD              | SPNMET1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNP&P1      | 07/26/91         |                   | 07/31/91         |
|                     |                        | SPNPAH1      | 07/26/91         |                   | 08/03/91         |
|                     |                        | SPNPHL1      | 07/26/91         |                   | 08/06/91         |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17068 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SOO1A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17306 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SOO2A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.3     |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17305 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SOO3A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.4     |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

MATRIX: SOLID SAMPLE ID LAB : EE-91-16965

SAMPLE ID CLIENT: PO3-SOO4A

SAMPLE LOCATION:

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.2     |   | 1.0        | MG/KG |
| Zinc      | 2.5     |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |
|           |         |   |            |       |

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17307 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SOO5A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.0     |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16778 MATRIX: SOLID SAMPLE ID CLIENT: PO3-SO06A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |
|           |         |   |            |       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17069 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SOO7A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 2.1     |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | 6.1     |   | 4.0        | MG/KG |
| Cadmium   | 0.53    |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17304 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SOO8A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16966 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-S009A

SAMPLE LOCATION:

| • • • | The Dogman |                                         |   |            |       |
|-------|------------|-----------------------------------------|---|------------|-------|
|       | PARAMETER  | RESULTS                                 | Q | QNT. LIMIT | UNITS |
|       |            | many more people units allow dates were | - |            |       |
|       | Arsenic    | ND                                      |   | 6.0        | MG/KG |
|       | Chromium   | 2.0                                     |   | 1.0        | MG/KG |
|       | Zinc       | ND                                      |   | 2.0        | MG/KG |
|       | Lead       | ND                                      |   | 4.0        | MG/KG |
|       | Cadmium    | ND                                      |   | 0.50       | MG/KG |
|       | Nickel     | ND                                      |   | 4.0        | MG/KG |
|       | Copper     | ND                                      |   | 2.5        | MG/KG |
|       | Silver     | ND                                      |   | 1.0        | MG/KG |
|       |            |                                         |   |            |       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16967 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO10A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT  | UNITS |
|-----------|---------|---|-------------|-------|
|           |         | _ |             |       |
| Arsenic   | ND      |   | <b>6.</b> 0 | MG/KG |
| Chromium  | ND      |   | 1.0         | MG/KG |
| Zinc      | 2.9     |   | 2.0         | MG/KG |
| Lead      | ND      |   | 4.0         | MG/KG |
| Cadmium   | ND      |   | 0.50        | MG/KG |
| Nickel    | ND      |   | 4.0         | MG/KG |
| Copper    | ND      |   | 2.5         | MG/KG |
| Silver    | ND      |   | 1.0         | MG/KG |

\_\_\_\_\_\_

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16779 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-S011A

SAMPLE LOCATION :

| <br>      |         |   |            |       |
|-----------|---------|---|------------|-------|
| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | 3.1     |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |
|           |         |   |            |       |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17070 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO12A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16968 MATRIX: SOLID SAMPLE ID CLIENT: PO3-SO13A

SAMPLE LOCATION :

| PARAMETER                                            | RESULTS | Q | QNT. LIMIT | UNITS |
|------------------------------------------------------|---------|---|------------|-------|
| white states about their states and court and courts |         | - |            |       |
| Arsenic                                              | ND      |   | 6.0        | MG/KG |
| Chromium                                             | 1.1     |   | 1.0        | MG/KG |
| Zinc                                                 | 5.7     |   | 2.0        | MG/KG |
| Lead                                                 | 13      |   | 4.0        | MG/KG |
| Cadmium                                              | 0.57    |   | 0.50       | MG/KG |
| Nickel                                               | ND      |   | 4.0        | MG/KG |
| Copper                                               | 9.7     |   | 2.5        | MG/KG |
| Silver                                               | ND      |   | 1.0        | MG/KG |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16969 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO13A-DUP.

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | 9.3     |   | 2.0        | MG/KG |
| Lead      | 22      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | 25      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16970 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO14A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT  | UNITS |
|-----------|---------|---|-------------|-------|
|           |         | - |             |       |
| Arsenic   | ND      |   | <b>6.</b> 0 | MG/KG |
| Chromium  | ND      |   | 1.0         | MG/KG |
| Zinc      | 9.2     |   | 2.0         | MG/KG |
| Lead      | 27      |   | 4.0         | MG/KG |
| Cadmium   | 0.66    |   | 0.50        | MG/KG |
| Nickel    | ND      |   | 4.0         | MG/KG |
| Copper    | ND      |   | 2.5         | MG/KG |
| Silver    | ND      |   | 1.0         | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16780 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-S015A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         |   |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | 3.0     |   | 2.0        | MG/KG |
| Lead      | 9.4     |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16781 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-S016A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17071 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO17A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.8     |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | 10      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17302 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SO18A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 2.3     |   | 1.0        | MG/KG |
| Zinc      | 13      |   | 2.0        | MG/KG |
| Lead      | 71      |   | 4.0        | MG/KG |
| Cadmium   | 0.82    |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | 21      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17303 MATRIX: SOLID

SAMPLE ID CLIENT: PO3S019A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         |   |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.0     |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16971 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO2OA

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.6     |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT SAMPLE ID LAB : EE-91-16782 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO21A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q    | QNT. LIMIT | UNITS |
|-----------|---------|------|------------|-------|
|           |         | **** |            |       |
| Arsenic   | ND      |      | 6.0        | MG/KG |
| Chromium  | 1.3     |      | 1.0        | MG/KG |
| Zinc      | ND      |      | 2.0        | MG/KG |
| Lead      | 15      |      | 4.0        | MG/KG |
| Cadmium   | ND      |      | 0.50       | MG/KG |
| Nickel    | ND      |      | 4.0        | MG/KG |
| Copper    | ND      |      | 2.5        | MG/KG |
| Silver    | ND      |      | 1.0        | MG/KG |

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16783 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO22A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | 6.2     |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17072 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO23A

| PARAMETER | RESULTS                                    | Q | QNT. LIMIT | UNITS |
|-----------|--------------------------------------------|---|------------|-------|
|           | total make spring moths soldle cooper make | - |            |       |
| Arsenic   | ND                                         |   | 6.0        | MG/KG |
| Chromium  | ND                                         |   | 1.0        | MG/KG |
| Zinc      | ND                                         |   | 2.0        | MG/KG |
| Lead      | ND                                         |   | 4.0        | MG/KG |
| Cadmium   | ND                                         |   | 0.50       | MG/KG |
| Nickel    | ND                                         |   | 4.0        | MG/KG |
| Copper    | ND                                         |   | 2.5        | MG/KG |
| Silver    | ND                                         |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17308 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SO24A

| PARAMETER | RESULTS                                 | Q | QNT. LIMIT | UNITS |
|-----------|-----------------------------------------|---|------------|-------|
|           | weight which reason nearly allege waves | _ |            |       |
| Arsenic   | ND                                      |   | 6.0        | MG/KG |
| Chromium  | 1.5                                     |   | 1.0        | MG/KG |
| Zinc      | ND                                      |   | 2.0        | MG/KG |
| Lead      | 22                                      |   | 4.0        | MG/KG |
| Cadmium   | ND                                      |   | 0.50       | MG/KG |
| Nickel    | ND                                      |   | 4.0        | MG/KG |
| Copper    | ND                                      |   | 2.5        | MG/KG |
| Silver    | ND                                      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17309 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SO25A

| PARAMETER                                       | RESULTS | Q | QNT. LIMIT | UNITS |
|-------------------------------------------------|---------|---|------------|-------|
| this real reals with the court out of the court |         |   |            |       |
| Arsenic                                         | ND      |   | 6.0        | MG/KG |
| Chromium                                        | ND      |   | 1.0        | MG/KG |
| Zinc                                            | 7.0     |   | 2.0        | MG/KG |
| Lead                                            | 23      |   | 4.0        | MG/KG |
| Cadmium                                         | 0.77    |   | 0.50       | MG/KG |
| Nickel                                          | ND      |   | 4.0        | MG/KG |
| Copper                                          | 13      |   | 2.5        | MG/KG |
| Silver                                          | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17310 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SO25AD

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | 6.7     |   | 2.0        | MG/KG |
| Lead      | 15      |   | 4.0        | MG/KG |
| Cadmium   | 0.74    |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | 8.5     |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16972 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO26A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | 2.0     |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16973 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO27A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | 1.0     |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | 14      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16784 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO28A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         |   |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16785 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO29A

SAMPLE LOCATION :

| <br>      |         |   |            |       |
|-----------|---------|---|------------|-------|
| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|           |         | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |
|           |         |   |            |       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17073 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO3OA

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17074 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO31A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17075 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO32A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         |   |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-17076 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO33A

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : EE-91-16786 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO34A

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | ONT LIMIT | UNITS |
|-----------|---------|---|-----------|-------|
|           |         | _ |           |       |
| Arsenic   | ND      |   | 6.0       | MG/KG |
| Chromium  | ND      |   | 1.0       | MG/KG |
| Zinc      | ND      |   | 2.0       | MG/KG |
| Lead      | ND      |   | 4.0       | MG/KG |
| Cadmium   | ND      |   | 0.50      | MG/KG |
| Nickel    | ND      |   | 4.0       | MG/KG |
| Copper    | ND      |   | 2.5       | MG/KG |
| Silver    | ND      |   | 1.0       | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

#### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

9101.780

| 7      | • | 1,0 | ~  | ١, |
|--------|---|-----|----|----|
| <br>ng | , | т.  | ₩. | ,  |

|           | E & E                          |                      |                       | Relative<br>Percent |
|-----------|--------------------------------|----------------------|-----------------------|---------------------|
| Parameter | Laboratory<br>No. 91-<br>16783 | Original<br>Analysis | Replicate<br>Analysis | Difference<br>(RPD) |
| Arsenic   |                                | ND                   | ND                    | NC                  |
| Chromium  |                                | ND                   | ND                    | NC                  |
| Zinc      |                                | 6.2                  | ND                    | NC                  |
| Lead      |                                | ND                   | ND                    | NC                  |
| Cadmium   |                                | ND                   | ND                    | NC                  |
| Nickel    |                                | ND                   | ND                    | NC                  |
| Copper    |                                | ND                   | ND                    | NC                  |
| Silver    |                                | ND                   | ND                    | NC                  |

ND = NOT DETECTED

NC = NOT CALCULABLE

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPD's ARE CALCULATED DIRECTLY FROM THE RAW DATA.

#### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

9101.792

| (  | m | ~ | , | v  | ~ | 1 |
|----|---|---|---|----|---|---|
| ١. | m | × | , | ĸ, | × | , |

| Parameter | E & E<br>Laboratory<br>No. 91-<br>16968 | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |
|-----------|-----------------------------------------|----------------------|-----------------------|--------------------------------------------|
| Arsenic   |                                         | ND                   | ND                    | NC                                         |
| Cadmium   |                                         | 0.57                 | ND                    | NC                                         |
| Chromium  |                                         | 1.1                  | ND                    | NC                                         |
| Copper    |                                         | 9.7                  | 10                    | 8.2                                        |
| Lead      |                                         | 13                   | 14                    | 8.8                                        |
| Nickel    |                                         | ND                   | ND                    | NC                                         |
| Silver    |                                         | ND                   | ND                    | NC                                         |
| Zinc      |                                         | 5.7                  | 5.5                   | 3.3                                        |

ND = NOT DETECTED

NC = NOT CALCULABLE

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPD'S ARE CALCULATED DIRECTLY FROM THE RAW DATA.

# QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

9101.824

| (mg/kg)   |                                         |                      |                       |                                            |  |  |
|-----------|-----------------------------------------|----------------------|-----------------------|--------------------------------------------|--|--|
| Parameter | E & E<br>Laboratory<br>No. 91-<br>17302 | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |  |  |
| Arsenic   |                                         | ND                   | ND                    | NC                                         |  |  |
| Chromium  |                                         | 2.3                  | 3.1                   | 30                                         |  |  |
| Zinc      |                                         | 13                   | 19                    | 41                                         |  |  |
| Lead      |                                         | 71                   | 76                    | 7.0                                        |  |  |
| Cadmium   |                                         | 0.82                 | 1.0                   | 20                                         |  |  |
| Nickel    |                                         | ND                   | ND                    | NC                                         |  |  |
| Copper    |                                         | 21                   | 33                    | 46                                         |  |  |
| Silver    |                                         | ND                   | ND                    | NC                                         |  |  |

ND = NOT DETECTED

NC = NOT CALCULABLE

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPD'S ARE CALCULATED DIRECTLY FROM THE RAW DATA.

### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOIL SAMPLES

9101.780

|   |    |     |     | • |
|---|----|-----|-----|---|
| • | ma | 71  | 200 | ) |
|   | mα | / 1 | ťσ  |   |
|   |    |     |     |   |

| Parameter | E & E<br>Laboratory<br>No. 91-<br>16783 | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|-----------|-----------------------------------------|-------------------|-----------------|----------------------|---------------------|
| Arsenic   |                                         | ND                | 200             | 190                  | 96                  |
| Chromium  |                                         | ND                | 20              | 21                   | 105                 |
| Zinc      |                                         | 6.2               | 50              | <b>5</b> 3           | 94                  |
| Lead      |                                         | ND                | 50              | 48                   | 96                  |
| Cadmium   |                                         | ND                | 5.0             | 5.0                  | 100                 |
| Nickel    |                                         | ND                | 50              | 48                   | 97                  |
| Copper    |                                         | ND                | 25              | 24                   | 97                  |
| Silver    |                                         | ND                | 5.0             | 4.3                  | 86                  |

ND = NOT DETECTED

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOLID SAMPLES

9101.792

95

95

4.8 53

| (mg/kg)   |                                         |                   |                 |                      |                     |
|-----------|-----------------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter | E & E<br>Laboratory<br>No. 91-<br>16968 | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| Arsenic   |                                         | ND                | 200             | 190                  | 95                  |
| Cadmium   |                                         | 0.57              | 5.0             | 5.0                  | 90                  |
| Chromium  |                                         | 1.1               | 20              | 23                   | 112                 |
| Copper    |                                         | 9.7               | 25              | 37                   | 110                 |
| Lead      |                                         | 13                | 50              | 60                   | 94                  |
| Nickel    |                                         | ND                | 50              | 49                   | 99                  |

50

50

ND = NOT DETECTED

Silver

Zinc

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

ND

5.7

### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOLID SAMPLES

9101.824

| (mg/kg)                                                  |                                         |                                     |                                     |                                     |                                    |
|----------------------------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|
| Parameter                                                | E & E<br>Laboratory<br>No. 91-<br>17302 | Original<br>Value                   | Amount<br>Added                     | Amount<br>Determined                | Percent<br>Recovery                |
| Arsenic<br>Chromium<br>Zinc<br>Lead<br>Cadmium<br>Nickel | ,                                       | ND<br>2.3<br>13<br>71<br>0.82<br>ND | 200<br>20<br>50<br>50<br>5.0<br>5.0 | 220<br>22<br>59<br>120<br>5.3<br>51 | 109<br>99<br>93<br>88<br>90<br>103 |
| Copper<br>Silver                                         |                                         | 21<br>ND                            | 25<br>5.0                           | 44                                  | 94<br>96                           |

ND = NOT DETECTED

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

<sup>\*\* =</sup> RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : METHOD BLANK MATRIX: SOLID

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         |   |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | ND      |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : METHOD BLANK MATRIX: SOLID

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | ONT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 6.0        | MG/KG |
| Chromium  | ND      |   | 1.0        | MG/KG |
| Zinc      | 2.8     |   | 2.0        | MG/KG |
| Lead      | ND      |   | 4.0        | MG/KG |
| Cadmium   | ND      |   | 0.50       | MG/KG |
| Nickel    | ND      |   | 4.0        | MG/KG |
| Copper    | ND      |   | 2.5        | MG/KG |
| Silver    | ND      |   | 1.0        | MG/KG |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

SAMPLE ID LAB : METHOD BLANK MATRIX: SOLID

| PARAMETER | RESULTS | Q | QNT. LIMIT  | UNITS |
|-----------|---------|---|-------------|-------|
|           |         | - |             |       |
| Arsenic   | ND      |   | 6.0         | MG/KG |
| Chromium  | ND      |   | 1.0         | MG/KG |
| Zinc      | ND      |   | 2.0         | MG/KG |
| Lead      | ND      |   | 4.0         | MG/KG |
| Cadmium   | ND      |   | 0.50        | MG/KG |
| Nickel    | ND      |   | 4.0         | MG/KG |
| Copper    | ND      |   | <b>2.</b> 5 | MG/KG |
| Silver    | ND      |   | 1.0         | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

SAMPLE ID LAB : METHOD BLANK MATRIX: SOLID

| PARAMETER                                                         | RESULTS | Q | QNT. LIMIT | UNITS |
|-------------------------------------------------------------------|---------|---|------------|-------|
| which distings alongs which wilder spiller spiller willer willer. |         |   |            |       |
| Arsenic                                                           | ND      |   | 6.0        | MG/KG |
| Chromium                                                          | ND      |   | 1.0        | MG/KG |
| Zinc                                                              | ND      |   | 2.0        | MG/KG |
| Lead                                                              | ND      |   | 4.0        | MG/KG |
| Cadmium                                                           | ND      |   | 0.50       | MG/KG |
| Nickel                                                            | ND      |   | 4.0        | MG/KG |
| Copper                                                            | ND      |   | 2.5        | MG/KG |
| Silver                                                            | ND      |   | 1.0        | MG/KG |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC TRPH

UNITS : MG/KG

PARAMETER : TRPH

| SAMPLE ID                     | RESULTS | Q QNT. LIMIT |
|-------------------------------|---------|--------------|
| EE-91-16965<br>PO3-S004A      | ND      | 5.0          |
| EE-91-16966<br>PO3-SOO9A      | ND      | 5.0          |
| EE-91-16967<br>PO3-SO10A      | ND      | 5.0          |
| EE-91-16968<br>PO3-SO13A      | 19000   | 5.0          |
| EE-91-16969<br>PO3-SO13A-DUP. | 16000   | 5.0          |
| EE-91-16970<br>P03-S014A      | 13000   | 5.0          |
| EE-91-16971<br>P03-S020A      | 17      |              |
| EE-91-16972<br>PO3-SO26A      | 950     | 5.0          |
| EE-91-16973<br>PO3-SO27A      | 1700    | 5.0          |
|                               |         |              |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17068 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO01A

PARAMETER
----TRPH RESULTS Q QNT. LIMIT UNITS

23 5.0 MG/KG

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17306 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SOO2A

PARAMETER RESULTS Q QNT. LIMIT UNITS 15 5.0 MG/KG 5.0 MG/KG TRPH

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : EE-91-17305 MATRIX MATRIX: SOLID

SAMPLE ID CLIENT: PO3SOO3A

RESULTS Q QNT. LIMIT UNITS PARAMETER \_\_\_\_ TRPH 15 5.0 MG/KG

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17307 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SOO5A

PARAMETER RESULTS Q QNT. LIMIT UNITS 23 5.0 MG/KG TRPH

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC TRPH

UNITS : MG/KG

PARAMETER : TRPH

| SAMPLE ID                | RESULTS | Q QNT. LIMIT |
|--------------------------|---------|--------------|
| EE-91-16778<br>P03-S006A | ND      | 5.0          |
| EE-91-16779<br>PO3-SO11A | ND      | 5.0          |
| EE-91-16780<br>PO3-SO15A | 480     | 5.0          |
| EE-91-16781<br>P03-S016A | ND      | 5.0          |
| EE-91-16782<br>PO3-SO21A | ND      | 5.0          |
| EE-91-16783<br>PO3-SO22A | ND      | 5.0          |
| EE-91-16784<br>PO3-SO28A | ND      | 5.0          |
| EE-91-16785<br>PO3-SO29A | 7.6     | 5.0          |
| EE-91-16786<br>P03-S034A | 11      | 5.0          |
|                          |         |              |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2 SAMPLE ID LAB : EE-91-17069 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SOO7A

 PARAMETER
 RESULTS
 Q QNT. LIMIT UNITS

 TRPH
 14
 5.0
 MG/KG

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17304 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SOO8A

RESULTS Q QNT. LIMIT UNITS PARAMETER ND 5.0 MG/KG TRPH 5.0 MG/KG

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17070 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO12A

PARAMETER
-----RESULTS Q QNT. LIMIT UNITS TRPH 20 5.0 MG/KG

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : EE-91-17071 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO17A

PARAMETER RESULTS Q QNT. LIMIT UNITS 5.0 MG/KG 230 TRPH

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17302 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SO18A

PARAMETER RESULTS Q QNT. LIMIT UNITS 2000 5.0 MG/KG \_\_\_\_ 5.0 MG/KG TRPH

QUALIFIERS: C = COMMENT D = NOT DETECTED D = COMMENT D = NOT DETECTED D = COMMENT D = COMENT D = COMMENT D = COM

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17303 MATRIX: SOLID

SAMPLE ID CLIENT: PO3S019A

PARAMETER
----TRPH

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : EE-91-17072 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO23A

PARAMETER RESULTS Q QNT. LIMIT UNITS

19 5.0 MG/KG TRPH

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17308 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SO24A

PARAMETER RESULTS Q QNT. LIMIT UNITS 3700 5.0 MG/KG TRPH · 5.0 MG/KG

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17309 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SO25A

PARAMETER TRPH

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17310 MATRIX: SOLID

SAMPLE ID CLIENT: PO3SO25AD

PARAMETER RESULTS Q QNT. LIMIT UNITS
----- - ----- ----- ----12000 5.0 MG/KG TRPH

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17073 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO3OA

PARAMETER RESULTS Q QNT. LIMIT UNITS
TRPH 21 5.0 MG/KG 5.0 MG/KG

\_\_\_\_

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : EE-91-17074 MATRIX MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO31A

RESULTS Q QNT. LIMIT UNITS PARAMETER TRPH 13 5.0 MG/KG

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : EE-91-17075 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO32A

PARAMETER
----TRPH RESULTS Q QNT. LIMIT UNITS
------ - ------ 5.0 MG/KG

\_\_\_\_\_\_

L = PRESENT BELOW STATED DETECTION LIMIT

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17076 MATRIX: SOLID

SAMPLE ID CLIENT: PO3-SO33A

PARAMETER
----TRPH 

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

NA = NOT APPLICABLE

# QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOLID SAMPLES

9101.780

| , |       | • |    | •  |
|---|-------|---|----|----|
| 1 | πσ    | , | Vσ | ٠, |
| • | 111.2 | , |    | ,  |

| E & E     |                       |                   | •               |                      |                     |  |
|-----------|-----------------------|-------------------|-----------------|----------------------|---------------------|--|
| Parameter | Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |
| TRPH      | 16784                 | ND                | 100             | 95                   | 92                  |  |
|           | BATCH QC              | 11                | 110             | 100                  | 84                  |  |
|           | 16786                 | 11                | 100             | 78                   | 65                  |  |
|           | BATCH QC              | 30                | 100             | 110                  | 83                  |  |

ND = NOT DETECTED

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOIL SAMPLES

9101.792

| (mg/kg)                          |                                |                   |                 |                      |                     |  |
|----------------------------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|--|
| Parameter                        | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |
| T. RECOVER<br>PETROLEU<br>HYDROC | M                              |                   |                 |                      |                     |  |
| ,                                | Batch QC<br>Batch QC           | 11<br>30          | 100<br>100      | 78<br>110            | 65<br>83            |  |
|                                  |                                |                   |                 |                      |                     |  |

ND = NOT DETECTED

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOLID SAMPLES

9101.807

| (mg/kg)  E & E  Laboratory Original Amount Amount Percent Parameter No. 91- Value Added Determined Recovery |                   |          |            |            |            |  |  |
|-------------------------------------------------------------------------------------------------------------|-------------------|----------|------------|------------|------------|--|--|
|                                                                                                             |                   |          |            |            |            |  |  |
|                                                                                                             | 17076<br>Batch QC | 11<br>ND | 140<br>130 | 150<br>140 | 103<br>109 |  |  |

ND = NOT DETECTED

<sup>\*\* =</sup> RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOLID SAMPLES

9101.824

| (mg/kg)                       |                                        |                          |                          |                           |                         |  |
|-------------------------------|----------------------------------------|--------------------------|--------------------------|---------------------------|-------------------------|--|
| Parameter                     | E & E<br>Laboratory<br>No. 91-         | Original<br>Value        | Amount<br>Added          | Amount<br>Determined      | Percent<br>Recovery     |  |
| T. Recovers Petroleum Hydroca | m                                      |                          |                          |                           |                         |  |
|                               | 17304<br>17310<br>Batch QC<br>Batch QC | ND<br>12000<br>9.0<br>ND | 110<br>130<br>130<br>100 | 110<br>8100<br>140<br>100 | 102<br>**<br>105<br>102 |  |

ND = NOT DETECTED

<sup>\*\* =</sup> RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

# QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

9101.780

|           |                                | (mg/kg)              | ,                     |                                            |
|-----------|--------------------------------|----------------------|-----------------------|--------------------------------------------|
| Parameter | E & E<br>Laboratory<br>No. 91- | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |
| TRPH      | 16783<br>16786                 | ND<br>11             | ND<br>ND              | NC<br>NC                                   |

ND = NOT DETECTED

NC = NOT CALCULABLE

#### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOIL SAMPLES

9101.792

| (mg/kg)                               |                                |                      |                       |                                            |  |  |
|---------------------------------------|--------------------------------|----------------------|-----------------------|--------------------------------------------|--|--|
| Parameter                             | E & E<br>Laboratory<br>No. 91- | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |  |  |
| T. RECOVERABLE PETROLEUM HYDROCARBONS | _                              | 11                   | ND                    | NC                                         |  |  |

ND = NOT DETECTED

NC = NOT CALCULABLE

### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

9101.807

| (mg/kg)                              |                                |                      |                       |                                            |  |  |
|--------------------------------------|--------------------------------|----------------------|-----------------------|--------------------------------------------|--|--|
| Parameter                            | E & E<br>Laboratory<br>No. 91- | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |  |  |
| T. Recoveral<br>Petroleum<br>Hydroca |                                |                      |                       |                                            |  |  |
|                                      | 17076                          | 11                   | ND                    | NC                                         |  |  |

ND = NOT DETECTED

NC = NOT CALCULABLE

### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

9101.824

| (mg/kg)                             |                                |                      |                       |                                            |  |  |
|-------------------------------------|--------------------------------|----------------------|-----------------------|--------------------------------------------|--|--|
| Parameter                           | E & E<br>Laboratory<br>No. 91- | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |  |  |
| T. Recovera<br>Petroleum<br>Hydroca |                                |                      |                       |                                            |  |  |
|                                     | 17310<br>Batch QC              | 12000<br>9100        | 14000<br>8900         | 16<br>2.7                                  |  |  |

ND = NOT DETECTED

NC = NOT CALCULABLE

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17068 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO01A

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         |   |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |
|                             |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17306 MATRIX : SOLID

SAMPLE ID CLIENT: PO3S002A

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         |   |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-17305

SAMPLE ID CLIENT: PO3SOO3A

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RESULTS | Q | QNT. LIMIT   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|--------------|
| - All Labor - Children - Angle - Annex - Marie - Marie - Children |         | _ |              |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND      |   | 1000         |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND      |   | 1000         |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND      |   | <b>1</b> 000 |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND      |   | 1000         |
| 1,2 - Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND      |   | 1000         |
| 1,3 - Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND      |   | 1000         |
| 1,4 - Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND      |   | 1000         |
| 1,1 - dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND      |   | 1000         |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000    |   | 1000         |
| Trans-1,2, - Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND      |   | 1000         |
| 1,1 - dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND      |   | 1000         |
| 1,1,1 - Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND      |   | 1000         |
| 1,2 - Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND      |   | 1000         |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND      |   | 1000         |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      |   | 1000         |
| chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND      |   | 1000         |

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16965 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO04A

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. | LIMIT |
|-----------------------------|---------|---|------|-------|
|                             |         | - |      |       |
| Benzene                     | ND      |   | 100  | 00    |
| Toluene                     | ND      |   | 100  | 00    |
| Ethylbenzene                | ND      |   | 100  | 00    |
| Total Xylenes               | ND      |   | 100  | 00    |
| 1,2 - Dichlorobenzene       | ND      |   | 100  | 00    |
| 1,3 - Dichlorobenzene       | ND      |   | 100  | 00    |
| 1,4 - Dichlorobenzene       | ND      |   | 100  | 00    |
| 1,1 - dichloroethene        | ND      |   | 100  | 00    |
| Methylene Chloride          | ND      |   | 100  | 00    |
| Trans-1,2, - Dichloroethene | ND      |   | 100  | 00    |
| 1,1 - dichloroethane        | ND      |   | 100  | 00    |
| 1,1,1 - Trichloroethane     | ND      |   | 100  | 00    |
| 1,2 - Dichloroethane        | ND      |   | 100  | 00    |
| Trichloroethene             | ND      |   | 100  | 00    |
| Tetrachloroethene           | ND      |   | 100  | 00    |
| chlorobenzene               | ND      |   | 100  | 00    |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17307 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SOO5A

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
| Benzene                     | ND      | _ | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroe thene            | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16778 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SOO6A

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | _ |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG TEST NAME : PNC PURGABLES- GC SAMPLE ID LAB : EE-91-17069 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SOO7A

| PARAMETER                              | RESULTS | Q | QNT. LIMIT |
|----------------------------------------|---------|---|------------|
| 1000 1000 1000 1000 1000 1000 1000 100 |         | _ |            |
| Benzene                                | ND      |   | 1000       |
| Toluen <b>e</b>                        | ND      |   | 1000       |
| Ethylbenzene                           | ND      |   | 1000       |
| Total Xylenes                          | ND      |   | 1000       |
| 1,2 - Dichlorobenzene                  | ND      |   | 1000       |
| 1,3 - Dichlorobenzene                  | ND      |   | 1000       |
| 1,4 - Dichlorobenzene                  | ND      |   | 1000       |
| 1,1 - dichloroethene                   | ND      |   | 1000       |
| Methylene Chloride                     | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene            | ND      |   | 1000       |
| 1,1 - dichloroethane                   | ND      |   | 1000       |
| 1,1,1 - Trichloroethane                | ND      |   | 1000       |
| 1,2 - Dichloroethane                   | ND      |   | 1000       |
| Trichloroethene                        | ND      |   | 1000       |
| Tetrachloroethene                      | ND      |   | 1000       |
| chlorobenzene                          | ND      |   | 1000       |
|                                        |         |   |            |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17304 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SOO8A

| RESULTS | Q                                        | QNT. LIMIT                               |
|---------|------------------------------------------|------------------------------------------|
|         | -                                        |                                          |
| ND      |                                          | 1000                                     |
|         | ND N | ND N |

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC SAMPLE ID LAB : EE-91-16966 UNITS : UG/NG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO09A

SAMPLE LOCATION :

| PARAMETER                       | RESULTS | Q | QNT. LIMIT |
|---------------------------------|---------|---|------------|
| Benzene                         | ND      | - | 1000       |
| Toluene                         | ND      |   | 1000       |
| Ethylbenzene                    | ND      |   | 1000       |
| Total Xylenes                   | ND      |   | 1000       |
| 1,2 - Dichlorobenzene           | ND      |   | 1000       |
| 1,3 - Dichlorobenzene           | ND      |   | 1000       |
| 1,4 - Dichlorobenzene           | ND      |   | 1000       |
| <pre>1,1 - dichloroethene</pre> | ND      |   | 1000       |
| Methylene Chloride              | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene     | ND      |   | 1000       |
| <pre>1,1 - dichloroethane</pre> | ND      |   | 1000       |
| 1,1,1 - Trichloroethane         | ND      |   | 1000       |
| 1,2 - Dichloroethane            | ND      |   | 1000       |
| Trichloroethene                 | ND      |   | 1000       |
| Tetrachloroethene               | ND      |   | 1000       |
| chlorobenzene                   | ND      |   | 1000       |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-16967

SAMPLE ID CLIENT: PO3-SO10A

SAMPLE LOCATION :

| PARAMETER                              | RESULTS | Q | QNT. I | TIMIL |
|----------------------------------------|---------|---|--------|-------|
| wing over spin wide wine date that the |         | - |        |       |
| Benzene                                | ND      |   | 1000   | )     |
| Toluene                                | ND      |   | 1000   | )     |
| Ethylbenzene                           | ND      |   | 1000   | )     |
| Total Xylenes                          | ND      |   | 1000   | )     |
| 1,2 - Dichlorobenzene                  | ND      |   | 1000   | )     |
| 1,3 - Dichlorobenzene                  | ND      |   | 1000   | )     |
| 1,4 - Dichlorobenzene                  | ND      |   | 1000   | )     |
| 1,1 - dichloroethene                   | ND      |   | 1000   | )     |
| Methylene Chloride                     | ND      |   | 1000   | )     |
| Trans-1,2, - Dichloroethene            | ND      |   | 1000   | )     |
| 1,1 - dichloroethane                   | ND      |   | 1000   | )     |
| 1,1,1 - Trichloroethane                | ND      |   | 1000   | )     |
| 1,2 - Dichloroethane                   | ND      |   | 1000   | )     |
| Trichloroethene                        | ND      |   | 1000   | )     |
| Tetrachloroethene                      | ND      |   | 1000   | )     |
| chlorobenzene                          | ND      |   | 1000   | )     |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16779 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO11A

SAMPLE LOCATION :

| PARAMETER                            | RESULTS | Q | QNT. | LIMIT |
|--------------------------------------|---------|---|------|-------|
| AND MANY AREA WARE AND AREA SHOP AND |         | _ |      |       |
| Benzene                              | ND      |   | 100  | 00    |
| Toluene                              | ND      |   | 10   | 00    |
| Ethylbenzene                         | ND      |   | 10   | 00    |
| Total Xylenes                        | ND      |   | 10   | 00    |
| 1,2 - Dichlorobenzene                | ND      |   | 10   | 00    |
| 1,3 - Dichlorobenzene                | ND      |   | 10   | 00    |
| 1,4 - Dichlorobenzene                | ND      |   | 10   | 00    |
| 1,1 - dichloroethene                 | ND      |   | 10   | 00    |
| Methylene Chloride                   | ND      |   | 10   | 00    |
| Trans-1,2, - Dichloroethene          | ND      |   | 10   | 00    |
| 1,1 - dichloroethane                 | ND      |   | 10   | 00    |
| 1,1,1 - Trichloroethane              | ND      |   | 10   | 00    |
| 1,2 - Dichloroethane                 | ND      |   | 100  | 00    |
| Trichloroethene                      | ND      |   | 10   | 00    |
| Tetrachloroethene                    | ND      |   | 10   | 00    |
| chlorobenzene                        | ND      |   | 10   | 00    |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17070 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO12A

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | - |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16968 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO13A

SAMPLE LOCATION :

| PARAMETER                 | RESULTS | Q | QNT. LIMIT |
|---------------------------|---------|---|------------|
|                           |         | - |            |
| Benzene                   | ND      |   | 20000      |
| Toluene                   | 30000   |   | 20000      |
| Ethylbenzene              | 24000   |   | 20000      |
| Total Xylenes             | 200000  |   | 20000      |
| 1,2 - Dichlorobenzene     | ND      |   | 20000      |
| 1,3 - Dichlorobenzene     | ND      |   | 20000      |
| 1,4 - Dichlorobenzene     | ND      |   | 20000      |
| 1,1 - dichloroethene      | ND      |   | 20000      |
| Methylene Chloride        | ND      |   | 20000      |
| Trans-1,2, - Dichloroethe | ne ND   |   | 20000      |
| 1,1 - dichloroethane      | ND      |   | 20000      |
| 1,1,1 - Trichloroethane   | ND      |   | 20000      |
| 1,2 - Dichloroethane      | ND      |   | 20000      |
| Trichloroethene           | ND      |   | 20000      |
| Tetrachloroethene         | ND      |   | 20000      |
| chlorobenzene             | ND      |   | 20000      |
|                           |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

5.4**4** 

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16969 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO13A-DUP.

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | _ |            |
| Benzene                     | ND      |   | 20000      |
| Toluene                     | PRESENT | L | 20000      |
| Ethylbenzene                | PRESENT | L | 20000      |
| Total Xylenes               | 150000  |   | 20000      |
| 1,2 - Dichlorobenzene       | ND      |   | 20000      |
| 1,3 - Dichlorobenzene       | ND      |   | 20000      |
| 1,4 - Dichlorobenzene       | ND      |   | 20000      |
| 1,1 - dichloroethene        | ND      |   | 20000      |
| Methylene Chloride          | ND      |   | 20000      |
| Trans-1,2, - Dichloroethene | ND      |   | 20000      |
| 1,1 - dichloroethane        | ND      |   | 20000      |
| 1,1,1 - Trichloroethane     | ND      |   | 20000      |
| 1,2 - Dichloroethane        | ND      |   | 20000      |
| Trichloroethene             | ND      |   | 20000      |
| Tetrachloroethene           | ND      |   | 20000      |
| chlorobenzene               | ND      |   | 20000      |
|                             |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16970 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO14A

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | - |            |
| Benzene                     | ND      |   | 5000       |
| Toluene                     | ND      |   | 5000       |
| Ethylbenzene                | 7100    |   | 5000       |
| Total Xylenes               | 43000   |   | 5000       |
| 1,2 - Dichlorobenzene       | ND      |   | 5000       |
| 1,3 - Dichlorobenzene       | ND      |   | 5000       |
| 1,4 - Dichlorobenzene       | ND      |   | 5000       |
| 1,1 - dichloroethene        | ND      |   | 5000       |
| Methylene Chloride          | ND      |   | 5000       |
| Trans-1,2, - Dichloroethene | ND      |   | 5000       |
| 1,1 - dichloroethane        | ND      |   | 5000       |
| 1,1,1 - Trichloroethane     | ND      |   | 5000       |
| 1,2 - Dichloroethane        | ND      |   | 5000       |
| Trichloroethene             | ND      |   | 5000       |
| Tetrachloroethene           | ND      |   | 5000       |
| chlorobenzene               | ND      |   | 5000       |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16780 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-S015A

SAMPLE LOCATION :

| PARAMETER                                        | RESULTS | Q | QNT. LIMIT |
|--------------------------------------------------|---------|---|------------|
| with will's Step days made with steps steps made |         | _ |            |
| Benzene                                          | ND      |   | 1000       |
| Toluene                                          | ND      |   | 1000       |
| Ethylbenzene                                     | ND      |   | 1000       |
| Total Xylenes                                    | ND      |   | 1000       |
| 1,2 - Dichlorobenzene                            | ND      |   | 1000       |
| 1,3 - Dichlorobenzene                            | ND      |   | 1000       |
| 1,4 - Dichlorobenzene                            | ND      |   | 1000       |
| 1,1 - dichloroethene                             | ND      |   | 1000       |
| Methylene Chloride                               | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene                      | ND      |   | 1000       |
| 1,1 - dichloroethane                             | ND      |   | 1000       |
| 1,1,1 - Trichloroethane                          | ND      |   | 1000       |
| 1,2 - Dichloroethane                             | ND      |   | 1000       |
| Trichloroethene                                  | ND      |   | 1000       |
| Tetrachloroethene                                | ND      |   | 1000       |
| chlorobenzene                                    | ND      |   | 1000       |
|                                                  |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-16781

SAMPLE ID CLIENT: PO3-SO16A

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
| ****                        |         | - |            |
| Benzene                     | ND      |   | 1000       |
| Tol <b>ue</b> ne            | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17071 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO17A

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | - |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17302 MATRIX : SOLID

SAMPLE ID CLIENT: PO3S018A

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         |   |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-17303

SAMPLE ID CLIENT: PO3S019A

| PARAMETER                               | RESULTS | Q | QNT. | LIMIT |
|-----------------------------------------|---------|---|------|-------|
| 100 100 100 100 100 100 100 100 100 100 |         | - |      |       |
| Benzene                                 | ND      |   | 100  | 00    |
| Toluene                                 | ND      |   | 100  | 00    |
| Ethylbenzene                            | ND      |   | 100  | 00    |
| Total Xylenes                           | ND      |   | 100  | 00    |
| 1,2 - Dichlorobenzene                   | ND      |   | 100  | 00    |
| 1,3 - Dichlorobenzene                   | ND      |   | 100  | 00    |
| 1,4 - Dichlorobenzene                   | ND      |   | 100  | 00    |
| 1,1 - dichloroethene                    | ND      |   | 100  | 00    |
| Methylene Chloride                      | ND      |   | 100  | 00    |
| Trans-1,2, - Dichloroethene             | ND      |   | 100  | 00    |
| 1,1 - dichloroethane                    | ND      |   | 100  | 00    |
| 1,1,1 - Trichloroethane                 | NĎ      |   | 100  | 00    |
| 1,2 - Dichloroethane                    | ND      |   | 100  | 00    |
| Trichloroethene                         | ND      |   | 100  | 00    |
| Tetrachloroethene                       | ND      |   | 100  | 00    |
| chlorobenzene                           | ND      |   | 100  | 00    |

L = PRESENT BELOW STATED DETECTION LIMIT

JOB NUMBER :9101.792 TEST CODE :SPNPRG1

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16971 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO2OA

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | _ |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16782 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO21A

SAMPLE LOCATION :

| PARAMETER                                        | RESULTS | Q | QNT. LIMIT |
|--------------------------------------------------|---------|---|------------|
| The range over space paint page store contrastes |         |   |            |
| Benzene                                          | ND      |   | 1000       |
| Toluene                                          | ND      |   | 1000       |
| Ethylbenzene                                     | ND      |   | 1000       |
| Total Xylenes                                    | ND      |   | 1000       |
| 1,2 - Dichlorobenzene                            | ND      |   | 1000       |
| 1,3 - Dichlorobenzene                            | ND      |   | 1000       |
| 1,4 - Dichlorobenzene                            | ND      |   | 1000       |
| 1,1 - dichloroethene                             | ND      |   | 1000       |
| Methylene Chloride                               | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene                      | ND      |   | 1000       |
| 1,1 - dichloroethane                             | ND      |   | 1000       |
| 1,1,1 - Trichloroethane                          | ND      |   | 1000       |
| 1,2 - Dichloroethane                             | ND      |   | 1000       |
| Trichloroethene                                  | ND      |   | 1000       |
| Tetrachloroethene                                | ND      |   | 1000       |
| chlorobenzene                                    | ИD      |   | 1000       |
|                                                  |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16783 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO22A

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | _ |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17072 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO23A

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | - |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |
|                             |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17308 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO24A

| PARAMETER                                  | RESULTS | Q | QNT. LIMIT |
|--------------------------------------------|---------|---|------------|
| THE WARD COME STOP AGENT MADE AND WHAT THE |         |   |            |
| Benzene                                    | ND      |   | 5000       |
| Toluene                                    | ND      |   | 5000       |
| Ethylbenzene                               | ND      |   | 5000       |
| Total Xylenes                              | 10000   |   | 5000       |
| 1,2 - Dichlorobenzene                      | ND      |   | 5000       |
| 1,3 - Dichlorobenzene                      | ND      |   | 5000       |
| 1,4 - Dichlorobenzene                      | ND      |   | 5000       |
| 1,1 - dichloroethene                       | ND      |   | 5000       |
| Methylene Chloride                         | ND      |   | 5000       |
| Trans-1,2, - Dichloroethene                | ND      |   | 5000       |
| 1,1 - dichloroethane                       | ND      |   | 5000       |
| 1,1,1 - Trichloroethane                    | ND      |   | 5000       |
| 1,2 - Dichloroethane                       | ND      |   | 5000       |
| Trichloroethene                            | ND      |   | 5000       |
| Tetrachloroethene                          | ND      |   | 5000       |
| chlorobenzene                              | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-17309

SAMPLE ID CLIENT: PO3SO25A

| PARAMETER                                                                                                                            | RESULTS                              | Q | QNT. LIMIT                                |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---|-------------------------------------------|
| PARAMETER Benzene Toluene Ethylbenzene Total Xylenes 1,2 - Dichlorobenzene                                                           | ND<br>39000<br>16000<br>110000<br>ND | - | 10000<br>10000<br>10000<br>10000<br>10000 |
| 1,3 - Dichlorobenzene 1,4 - Dichlorobenzene 1,1 - dichloroethene Methylene Chloride Trans-1,2, - Dichloroethene 1,1 - dichloroethane | ND<br>ND<br>ND<br>ND<br>ND<br>ND     |   | 10000<br>10000<br>10000<br>10000<br>10000 |
| 1,1,1 - Trichloroethane 1,2 - Dichloroethane Trichloroethene Tetrachloroethene chlorobenzene                                         | ND<br>ND<br>ND<br>ND<br>ND           |   | 10000<br>10000<br>10000<br>10000<br>10000 |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17310 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO25AD

| PARAMETER                           | RESULTS | Q | QNT. LIMIT |
|-------------------------------------|---------|---|------------|
| No. 100 AND AND AND AND AND AND AND |         | - |            |
| Benzene                             | ND      |   | 10000      |
| Toluene                             | 39000   |   | 10000      |
| Ethylbenzene                        | 18000   |   | 10000      |
| Total Xylenes                       | 130000  |   | 10000      |
| 1,2 - Dichlorobenzene               | ND      |   | 10000      |
| 1,3 - Dichlorobenzene               | ND      |   | 10000      |
| 1,4 - Dichlorobenzene               | ND      |   | 10000      |
| 1,1 - dichloroethene                | ND      |   | 10000      |
| Methylene Chloride                  | ND      |   | 10000      |
| Trans-1,2, - Dichloroethene         | ND      |   | 10000      |
| 1,1 - dichloroethane                | ND      |   | 10000      |
| 1,1,1 - Trichloroethane             | ND      |   | 10000      |
| 1,2 - Dichloroethane                | ND      |   | 10000      |
| Trichloroethene                     | ND      |   | 10000      |
| Tetrachloroethene                   | ND      |   | 10000      |
| chlorobenzene                       | ND      |   | 10000      |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PURGABLES- GC SAMPLE ID LAB : EE-91-16972

SAMPLE ID CLIENT: PO3-SO26A

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | _ |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |
|                             |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET · WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16973 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO27A

SAMPLE LOCATION :

| PARAMETER                                         | RESULTS | Q | QNT. LIMIT |
|---------------------------------------------------|---------|---|------------|
| digity yeary early white delite delite delite and |         | - |            |
| Benzene                                           | ND      |   | 2000       |
| Toluene                                           | ND      |   | 2000       |
| Ethylbenzene                                      | ND      |   | 2000       |
| Total Xylenes                                     | 2500    |   | 2000       |
| 1,2 - Dichlorobenzene                             | ND      |   | 2000       |
| 1,3 - Dichlorobenzene                             | ND      |   | 2000       |
| 1,4 - Dichlorobenzene                             | ND      |   | 2000       |
| 1,1 - dichloroethene                              | ND      |   | 2000       |
| Methylene Chloride                                | ND      |   | 2000       |
| Trans-1,2, - Dichloroethene                       | ND      |   | 2000       |
| 1,1 - dichloroethane                              | ND      |   | 2000       |
| 1,1,1 - Trichloroethane                           | ND      |   | 2000       |
| 1,2 - Dichloroethane                              | ND      |   | 2000       |
| Trichloroethene                                   | ND      |   | 2000       |
| Tetrachloroethene                                 | ND      |   | 2000       |
| chlorobenzene                                     | ND      |   | 2000       |
|                                                   |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16784 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO28A

SAMPLE LOCATION :

| PARAMETER    |                | RESULTS | Q | QNT. LIMIT |
|--------------|----------------|---------|---|------------|
|              |                |         | - |            |
| Benzene      |                | ND      |   | 1000       |
| Toluene      |                | ND      |   | 1000       |
| Ethylbenzene |                | ND      |   | 1000       |
| Total Xylene | s              | ND      |   | 1000       |
| 1,2 - Dichlo | robenzene      | ND      |   | 1000       |
| 1,3 - Dichlo | robenzene      | ND      |   | 1000       |
| 1,4 - Dichlo | robenzene      | ND      |   | 1000       |
| 1,1 - dichlo | roethene       | ND      |   | 1000       |
| Methylene Ch | lori <b>de</b> | ND      |   | 1000       |
| Trans-1,2, - | Dichloroethene | ND      |   | 1000       |
| 1,1 - dichlo | roethane       | ND      |   | 1000       |
| 1,1,1 - Tric | hloroethane    | ND      |   | 1000       |
| 1,2 - Dichlo | roethane       | ND      |   | 1000       |
| Trichloroeth | ene            | ND      |   | 1000       |
| Tetrachloroe | thene          | ND      |   | 1000       |
| chlorobenzen | e              | ND      |   | 1000       |
|              |                |         |   |            |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16785 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO29A

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | - |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |
|                             |         |   |            |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PURGABLES- GC SAMPLE ID LAB : EE-91-17073

SAMPLE ID CLIENT: PO3-SO3OA

| PARAMETER                  | RESULTS | Q | QNT. LIMIT |
|----------------------------|---------|---|------------|
|                            |         | _ |            |
| Benzene                    | ND      |   | 1000       |
| Toluene                    | ND      |   | 1000       |
| Ethylbenzene               | ND      |   | 1000       |
| Total Xylenes              | ND      |   | 1000       |
| 1,2 - Dichlorobenzene      | ND      |   | 1000       |
| 1,3 - Dichlorobenzene      | ИD      |   | 1000       |
| 1,4 - Dichlorobenzene      | ND      |   | 1000       |
| 1,1 - dichloroethene       | ND      |   | 1000       |
| Methylene Chloride         | ND      |   | 1000       |
| Trans-1,2, - Dichloroethen | e ND    |   | 1000       |
| 1,1 - dichloroethane       | ND      |   | 1000       |
| 1,1,1 - Trichloroethane    | ND      |   | 1000       |
| 1,2 - Dichloroethane       | ND      |   | 1000       |
| Trichloroethene            | ND      |   | 1000       |
| Tetrachloroethene          | ND      |   | 1000       |
| chlorobenzene              | ND      |   | 1000       |
|                            |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17074 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO31A

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | - |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |
|                             |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17075 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO32A

| RESULTS | Q                                        | QNT. LIMIT                               |
|---------|------------------------------------------|------------------------------------------|
|         | _                                        |                                          |
| ND      |                                          | 1000                                     |
|         | ND N | ND N |

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN VET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-17076 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO33A

| PARAMETER                   | RESULTS | Q | QNT. | LIMIT |
|-----------------------------|---------|---|------|-------|
|                             |         | - |      |       |
| Benzene                     | ND      |   | 100  | 00    |
| Toluene                     | ND      |   | 100  | 00    |
| Ethylbenzene                | ND      |   | 100  | 00    |
| Total Xylenes               | ND      |   | 100  | 00    |
| 1,2 - Dichlorobenzene       | ND      |   | 100  | 00    |
| 1,3 - Dichlorobenzene       | ND      |   | 100  | 00    |
| 1,4 - Dichlorobenzene       | ND      |   | 100  | 00    |
| 1,1 - dichloroethene        | ND      |   | 100  | 00    |
| Methylene Chloride          | ND      |   | 100  | 00    |
| Trans-1,2, - Dichloroethene | ND      |   | 100  | 00    |
| 1,1 - dichloroethane        | ND      |   | 100  | 00    |
| 1,1,1 - Trichloroethane     | ND      |   | 100  | 00    |
| 1,2 - Dichloroethane        | ND      |   | 100  | 00    |
| Trichloroethene             | ND      |   | 100  | 00    |
| Tetrachloroethene           | ND      |   | 100  | 00    |
| chlorobenzene               | ND      |   | 100  | 00    |
|                             |         |   |      |       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : EE-91-16786 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO34A

SAMPLE LOCATION:

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | - |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |
|                             |         |   |            |

## QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD) OF SOIL MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MSD) (Sample # 16778)

9101.780

|                          |                   | (ug/k | g)              |      |                      |     |                     |     |
|--------------------------|-------------------|-------|-----------------|------|----------------------|-----|---------------------|-----|
|                          | Ā                 |       | Amount<br>Added |      | Amount<br>Determined |     | Percent<br>Recovery |     |
| Parameter                | Original<br>Value | MS    | MSD             | MS   | MSD                  | MS  | MSD                 | RPD |
| Benzene                  | ND                | 2500  | 2500            | 2300 | 2300                 | 92  | 92                  | 0   |
| Toluene                  | ND                | 2500  | 2500            | 2400 | 2400                 | 96  | 96                  | 0   |
| Ethyl Benzene            | ND                | 2500  | 2500            | 2300 | 2300                 | 92  | 92                  | 0   |
| 1,2-Dichlorobenzene      | ND                | 5000  | 5000            | 4400 | 4400                 | 88  | 88                  | 0   |
| 1,3-Dichlorobenzene      | ND                | 5000  | 5000            | 4500 | 4400                 | 90  | 88                  | 2.2 |
| 1,4-Dichlorobenzene      | ND                | 5000  | 5000            | 4600 | 4500                 | 92  | 90                  | 2.2 |
| 1,1-Dichloroethene       | ND                | 2500  | 2500            | 630  | 560                  | 25* | 22*                 | 12  |
| Methylene Chloride       | \ ND              |       |                 |      |                      |     |                     |     |
| Trans-1,2-Dichloroethene | / ND              | 5000  | 5000            | 5000 | 4800                 | 100 | 96                  | 4.1 |
| 1,1-Dichloroethane       | ND                | 2500  | 2500            | 2600 | 2700                 | 104 | 108                 | 3.8 |
| 1,1,1-Trichloroethane    | ND                | 2500  | 2500            | 2400 | 2400                 | 96  | 96                  | 0   |
| 1,2-Dichloroethane       | ND                | 2500  | 2500            | 2400 | 2600                 | 96  | 104                 | 8.0 |
| Trichloroethene          | ND                | 2500  | 2500            | 2500 | 2600                 | 100 | 104                 | 3.9 |
| Tetrachloroethene        | ND                | 2500  | 2500            | 2600 | 2500                 | 104 | 100                 | 3.9 |

<sup>\*</sup> Poor recovery due to possible matrix interference and/or improper peak integration.

# QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD) OF SOIL MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MSD) (Sample # 17068)

9101.807

|                          |                   | (ug/k           | g)   |                      |      |                     |     |     |  |
|--------------------------|-------------------|-----------------|------|----------------------|------|---------------------|-----|-----|--|
|                          | 0-1-1-1           | Amount<br>Added |      | Amount<br>Determined |      | Percent<br>Recovery |     |     |  |
| Parameter                | Original<br>Value | MS              | MSD  | MS                   | MSD  | MS                  | MSD | RPD |  |
| Benzene                  | ND                | 2500            | 2500 | 2400                 | 2300 | 96                  | 92  | 4.3 |  |
| Toluene                  | ND                | 2500            | 2500 | 2400                 | 2200 | 96                  | 88  | 8.7 |  |
| Ethyl Benzene            | ND                | 2500            | 2500 | 2200                 | 2000 | 88                  | 80  | 9.5 |  |
| 1,2-Dichlorobenzene      | ND                | 5000            | 5000 | 3900                 | 3500 | 78                  | 70  | 11  |  |
| 1,3-Dichlorobenzene      | ND                | 5000            | 5000 | 3700                 | 3200 | 74                  | 64  | 14  |  |
| 1,4-Dichlorobenzene      | ND                | 5000            | 5000 | 4000                 | 3400 | 80                  | 68  | 16  |  |
| 1,1-Dichloroethene       | ND                | 2500            | 2500 | 1200                 | 1000 | 48                  | 40  | 18  |  |
| Methylene Chloride       | ND                | 2500            | 2500 | 2600                 | 2600 | 104                 | 104 | 0   |  |
| Trans-1,2-Dichloroethene | ND                | 2500            | 2500 | 2600                 | 2600 | 104                 | 104 | 0   |  |
| 1,1-Dichloroethane       | ND                | 2500            | 2500 | 2300                 | 2200 | 92                  | 88  | 4.4 |  |
| 1,1,1-Trichloroethane    | ND                | 2500            | 2500 | 2300                 | 2200 | 92                  | 88  | 4.4 |  |
| 1,2-Dichloroethane       | ND                | 2500            | 2500 | 2000                 | 1900 | 80                  | 76  | 5.1 |  |
| Trichloroethene          | ND                | 2500            | 2500 | 2100                 | 1900 | 84                  | 76  | 10  |  |
| Tetrachloroethene        | ND                | 2500            | 2500 | 2000                 | 1700 | 80                  | 68  | 16  |  |

# QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD) OF SOIL MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MSD) (Sample # 17304)

9101.824

|                          |          | (ug/k      | g)   |              |      |              |             |     |
|--------------------------|----------|------------|------|--------------|------|--------------|-------------|-----|
|                          | Original | Amo<br>Add |      | Amo<br>Deter |      | Perc<br>Reco | ent<br>very |     |
| Parameter                | Value    | MS         | MSD  | MS           | MSD  | MS           | MSD         | RPD |
| Benzene                  | ND       | 2500       | 2500 | 2600         | 2500 | 104          | 100         | 3.9 |
| Toluene                  | ND       | 2500       | 2500 | 2600         | 2600 | 104          | 104         | 0   |
| Ethyl Benzene            | ND       | 2500       | 2500 | 2500         | 2500 | 100          | 100         | 0   |
| 1,2-Dichlorobenzene      | ND       | 5000       | 5000 | 4900         | 5200 | 98           | 104         | 5.9 |
| 1,3-Dichlorobenzene      | ND       | 5000       | 5000 | 5000         | 5400 | 100          | 108         | 7.7 |
| 1,4-Dichlorobenzene      | ND       | 5000       | 5000 | 5100         | 5400 | 102          | 108         | 5.7 |
| 1,1-Dichloroethene       | ND       | 2500       | 2500 | 2700         | 2500 | 108          | 100         | 7.7 |
| Methylene Chloride       | ND       | 2500       | 2500 | 2900         | 2700 | 116          | 108         | 7.1 |
| Trans-1,2-Dichloroethene | e ND     | 2500       | 2500 | 2600         | 2500 | 104          | 100         | 3.9 |
| 1,1-Dichloroethane       | ND       | 2500       | 2500 | 2600         | 2500 | 104          | 100         | 3.9 |
| 1,1,1-Trichloroethane    | ND       | 2500       | 2500 | 2600         | 2500 | 104          | 100         | 3.9 |
| 1,2-Dichloroethane       | ND       | 2500       | 2500 | 2500         | 2400 | 100          | 96          | 4.1 |
| Trichloroethene          | ND       | 2500       | 2500 | 2700         | 3000 | 108          | 120         | 10  |
| Tetrachloroethene        | ND       | 2500       | 2500 | 2500         | 2500 | 100          | 100         | 0   |

| Compound           | E & E<br>Laboratory<br>No. 91- | Percent<br>Recovery |  |
|--------------------|--------------------------------|---------------------|--|
| Trifluorotoluene   | 16778                          | 107                 |  |
|                    | 16779                          | 110                 |  |
|                    | 16780                          | 106                 |  |
|                    | 16781                          | 104                 |  |
|                    | 16782                          | 102                 |  |
|                    | 16783                          | 99                  |  |
|                    | 16784                          | 98                  |  |
|                    | 16785                          | 100                 |  |
|                    | 16786                          | 97                  |  |
|                    | Blank                          | 100                 |  |
| 1,4-Dichlorobutane | 16778                          | 112                 |  |
| ,                  | 16779                          | 104                 |  |
|                    | 16780                          | 98                  |  |
|                    | 16781                          | 98                  |  |
|                    | 16782                          | 98                  |  |
|                    | 16783                          | 104                 |  |
|                    | 16784                          | 98                  |  |
|                    | 16785                          | 94                  |  |
|                    | 16786                          | 95                  |  |
|                    | Blank                          | 100                 |  |

| Compound           | E & E<br>Laboratory<br>No. 91- | Percent<br>Recovery |  |
|--------------------|--------------------------------|---------------------|--|
| Trifluorotoluene   | 16965                          | 100                 |  |
|                    | 16966                          | 100                 |  |
|                    | 16967                          | 90                  |  |
|                    | 16968                          | 143                 |  |
|                    | 16969                          | 129                 |  |
|                    | 16970                          | 104                 |  |
|                    | 16971                          | 100                 |  |
|                    | 16972                          | 180                 |  |
|                    | 16973                          | 133                 |  |
|                    | Method Blank                   |                     |  |
|                    | Method Blank                   |                     |  |
|                    | Method Blank                   | •                   |  |
|                    | Method Blank                   | #4 100              |  |
| 1,4-Dichlorobutane | 16965                          | 94                  |  |
|                    | 16966                          | 93                  |  |
|                    | 16967                          | 85                  |  |
|                    | 16968                          | 86                  |  |
|                    | 16969                          | 90                  |  |
|                    | 16970                          | 106                 |  |
|                    | 16971                          | 86                  |  |
|                    | 16972                          | 91                  |  |
|                    | 16973                          | 122                 |  |
|                    | Method Blank                   |                     |  |
|                    | Method Blank                   |                     |  |
|                    | Method Blank                   |                     |  |
|                    | Method Blank                   | #4 100              |  |

| Compound           | E & E<br>Laboratory<br>No. 91- | Percent<br>Recovery |  |
|--------------------|--------------------------------|---------------------|--|
| Trifluorotoluene   | 17068                          | 100                 |  |
|                    | 17069                          | 93                  |  |
|                    | 17070                          | 93                  |  |
|                    | 17071                          | 100                 |  |
|                    | 17072                          | 90                  |  |
|                    | 17073                          | 83                  |  |
|                    | 17074                          | 93                  |  |
|                    | 17075                          | 90                  |  |
|                    | 17076                          | 97                  |  |
|                    | Method Blank #                 |                     |  |
|                    | Method Blank #                 | 2 100               |  |
| 1,4-Dichlorobutane | 17068                          | 84                  |  |
|                    | 17069                          | 86                  |  |
|                    | 17070                          | 84                  |  |
|                    | 17071                          | 7 <b>8</b>          |  |
|                    | 17072                          | 79                  |  |
|                    | 17073                          | 72                  |  |
|                    | 17074                          | 124                 |  |
|                    | 17075                          | 111                 |  |
|                    | 17076                          | 124                 |  |
|                    | Method Blank #                 | 1 100               |  |
|                    | Method Blank #                 | 2 100               |  |

| Compound           | E & E<br>Laboratory<br>No. 91-     | Percent<br>Recovery |  |
|--------------------|------------------------------------|---------------------|--|
| Trifluorotoluene   | 17302                              | 142                 |  |
|                    | 17303                              | 97                  |  |
|                    | 17304                              | 95                  |  |
|                    | 17305                              | 86                  |  |
|                    | 17306                              | 94                  |  |
|                    | 17307                              | 89                  |  |
|                    | 17308                              | 97                  |  |
|                    | 17309                              | 125                 |  |
|                    | 17310                              | 122                 |  |
|                    | Method Blank #1                    |                     |  |
| ·                  | Method Blank #2                    | 100                 |  |
| 1,4-Dichlorobutane | 17302                              | 98                  |  |
|                    | 17303                              | 94                  |  |
|                    | 17304                              | 101                 |  |
|                    | 17305                              | 96                  |  |
|                    | 17306                              | 100                 |  |
|                    | 17307                              | 117                 |  |
|                    | 17308                              | 118                 |  |
|                    | 17309                              | 110                 |  |
|                    | 17310                              | 104                 |  |
|                    | Method Blank #1<br>Method Blank #2 |                     |  |

#### QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY OF WATER MATRIX SPIKE (MS) (Sample # Blank Spike)

9101.780

| ( | u | g | / | L | ) |
|---|---|---|---|---|---|
|---|---|---|---|---|---|

| Parameter    | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|--------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Benzene      |                                | ND                | 20              | 20                   | 100                 |
| Toluene      |                                | ND                | 20              | 18                   | 90                  |
| Ethyl Benzen | e                              | ND                | 20              | 19                   | 95                  |
| 1,2-Dichloro | benzene                        | ND                | 20              | 17                   | 85                  |
| 1,3-Dichloro | benzene                        | ND                | 20              | 17                   | 85                  |
| 1,4-Dichloro | benzene                        | ND                | 20              | 18                   | <b>9</b> 0          |
| 1,1-Dichloro |                                | ND                | 20              | 29                   | 145                 |
| Methylene Ch | loride                         | \                 |                 |                      |                     |
| Trans-1,2-Di | chloroethene                   | / ND              | 40              | 31                   | 7 <b>8</b>          |
| 1,1-Dichloro | ethane                         | ND                | 20              | 16                   | 80                  |
| 1,1,1-Trichl | oroeth <b>ane</b>              | ND                | 20              | 20                   | 100                 |
| 1,2-Dichloro | ethane                         | ND                | 20              | 21                   | 105                 |
| Trichloroeth | ene                            | ND                | 20              | 21                   | 105                 |
| Tetrachloroe | thene                          | ND                | 20              | 20                   | 100                 |
|              |                                |                   |                 |                      |                     |

#### QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY OF WATER MATRIX SPIKE (MS) (Sample # Blank Spike)

9101.824

| ( | ug | / | L | ) |
|---|----|---|---|---|
|   |    |   |   |   |

| Parameter     | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|---------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Benzene       |                                | ND                | 20              | 21                   | 105                 |
| Toluene       |                                | ND                | 20              | <b>2</b> 0           | 100                 |
| Ethyl Benzene | <b>!</b>                       | ND                | 20              | 20                   | 100                 |
| 1,2-Dichlorob | enzene                         | ND                | 20              | 21                   | 105                 |
| 1,3-Dichlorob | enzene                         | ND                | 20              | 20                   | 100                 |
| 1,4-Dichlorob | enzene                         | ND                | 20              | 20                   | 100                 |
| 1,1-Dichloroe | thene                          | ND                | 20              | 16                   | 80                  |
| Methylene Chl | oride                          | ND                | 20              | 19                   | 95                  |
| Trans-1,2-Dic | hloroethene                    | ND                | 20              | 20                   | 100                 |
| 1,1-Dichloroe | thane                          | ND                | 20              | 21                   | 105                 |
| 1,1,1-Trichlo | roethane                       | ND                | 20              | 21                   | 105                 |
| 1,2-Dichloroe | thane                          | ND                | 20              | 23                   | 115                 |
| Trichloroethe | ne                             | ND                | 20              | 23                   | 115                 |
| Tetrachloroet | hene                           | ND                | 20              | 22                   | 110                 |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : METHOD BLANK

| PARAMETER                            | RESULTS | Q | QNT. | LIMIT |
|--------------------------------------|---------|---|------|-------|
| AND MAIN AND AND AND AND AND AND AND |         | - |      |       |
| Benzene                              | ND      |   | 100  | 00    |
| Toluene                              | ND      |   | 100  | 00    |
| Ethylbenzene                         | ND      |   | 100  | 00    |
| Total Xylenes                        | ND      |   | 100  | 00    |
| 1,2 - Dichlorobenzene                | ND      |   | 100  | 00    |
| 1,3 - Dichlorobenzene                | ND      |   | 100  | 00    |
| 1,4 - Dichlorobenzene                | ND      |   | 100  | 00    |
| 1,1 - dichloroethene                 | ND      |   | 100  | 00    |
| Methylene Chloride                   | ND      |   | 100  | 00    |
| Trans-1,2, - Dichloroethene          | ND      |   | 100  | 00    |
| 1,1 - dichloroethane                 | ND      |   | 100  | 00    |
| 1,1,1 - Trichloroethane              | ND      |   | 100  | 00    |
| 1,2 - Dichloroethane                 | ND      |   | 100  | 00    |
| Trichloroethene                      | ИD      |   | 100  | 00    |
| Tetrachloroethene                    | ND      |   | 100  | 00    |
| chlorobenzene                        | ND      |   | 100  | 00    |

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PURGABLES- GC UNITS : UG/KG
SAMPLE ID LAB : METHOD BLANK 1 MATRIX : SOLID

SAMPLE LOCATION :

| PARAMETER                                | RESULTS | Q | QNT. LIMIT |
|------------------------------------------|---------|---|------------|
| New way with state that the same and the |         | - |            |
| Benzene                                  | ND      |   | 1000       |
| Toluene                                  | ND      |   | 1000       |
| Ethylbenzene                             | ND      |   | 1000       |
| Total Xylenes                            | ND      |   | 1000       |
| 1,2 - Dichlorobenzene                    | ND      |   | 1000       |
| 1,3 - Dichlorobenzene                    | ND      |   | 1000       |
| 1,4 - Dichlorobenzene                    | ND      |   | 1000       |
| 1,1 - dichloroethene                     | ND      |   | 1000       |
| Methylene Chloride                       | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene              | ND      |   | 1000       |
| 1,1 - dichloroethane                     | ND      |   | 1000       |
| 1,1,1 - Trichloroethane                  | ND      |   | 1000       |
| 1,2 - Dichloroethane                     | ND      |   | 1000       |
| Trichloroethene                          | ND      |   | 1000       |
| Tetrachloroethene                        | ND      |   | 1000       |
| chlorobenzene                            | ND      |   | 1000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK 2 MATRIX : SOLID

SAMPLE LOCATION :

| PARAMETER                   | RESULTS | Q | QNT. LIMIT |
|-----------------------------|---------|---|------------|
|                             |         | - |            |
| Benzene                     | ND      |   | 1000       |
| Toluene                     | ND      |   | 1000       |
| Ethylbenzene                | ND      |   | 1000       |
| Total Xylenes               | ND      |   | 1000       |
| 1,2 - Dichlorobenzene       | ND      |   | 1000       |
| 1,3 - Dichlorobenzene       | ND      |   | 1000       |
| 1,4 - Dichlorobenzene       | ND      |   | 1000       |
| 1,1 - dichloroethene        | ND      |   | 1000       |
| Methylene Chloride          | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene | ND      |   | 1000       |
| 1,1 - dichloroethane        | ND      |   | 1000       |
| 1,1,1 - Trichloroethane     | ND      |   | 1000       |
| 1,2 - Dichloroethane        | ND      |   | 1000       |
| Trichloroethene             | ND      |   | 1000       |
| Tetrachloroethene           | ND      |   | 1000       |
| chlorobenzene               | ND      |   | 1000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PURGABLES- GC UNITS : UG/KG
SAMPLE ID LAB : METHOD BLANK 3 MATRIX : SOLID

SAMPLE LOCATION :

| PARAMETER                                  | RESULTS | Q | QNT. LIMIT |
|--------------------------------------------|---------|---|------------|
| OWN COME AND MANY COME COME COME COME COME |         | - |            |
| Benzene                                    | ND      |   | 1000       |
| Toluene                                    | ND      |   | 1000       |
| Ethylbenzene                               | ND      |   | 1000       |
| Total Xylenes                              | ND      |   | 1000       |
| 1,2 - Dichlorobenzene                      | ND      |   | 1000       |
| 1,3 - Dichlorobenzene                      | ND      |   | 1000       |
| 1,4 - Dichlorobenzene                      | ND      |   | 1000       |
| 1,1 - dichloroethene                       | ND      |   | 1000       |
| Methylene Chloride                         | ND      |   | 1000       |
| Trans-1,2, - Dichloroethene                | ND      |   | 1000       |
| 1,1 - dichloroethane                       | ND      |   | 1000       |
| 1,1,1 - Trichloroethane                    | ND      |   | 1000       |
| 1,2 - Dichloroethane                       | ND      |   | 1000       |
| Trichloroethene                            | ND      |   | 1000       |
| Tetrachloroethene                          | ND      |   | 1000       |
| chlorobenzene                              | ND      |   | 1000       |
|                                            |         |   |            |

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK 4 MATRIX : SOLID

SAMPLE LOCATION :

| PARAMETER                                        | RESULTS | Q | QNT. | LIMIT |  |
|--------------------------------------------------|---------|---|------|-------|--|
| with spape spape with signic small within Artist |         | - |      |       |  |
| Benzene                                          | ND      |   | 1000 |       |  |
| Toluene                                          | ND      |   | 1000 |       |  |
| Ethylbenzene                                     | ND      |   | 1000 |       |  |
| Total Xylenes                                    | ND      |   | 1000 |       |  |
| 1,2 - Dichlorobenzene                            | ND      |   | 1000 |       |  |
| 1,3 - Dichlorobenzene                            | ND      |   | 1000 |       |  |
| 1,4 - Dichlorobenzene                            | ND      |   | 1000 |       |  |
| 1,1 - dichloroethene                             | ND      |   | 1000 |       |  |
| Methylene Chloride                               | ND      |   | 10   | 00    |  |
| Trans-1,2, - Dichloroethene                      | ND      |   | 10   | 00    |  |
| 1,1 - dichloroethane                             | ND      |   | 10   | 00    |  |
| 1,1,1 - Trichloroethane                          | ND      |   | 1000 |       |  |
| 1,2 - Dichloroethane                             | ND      |   | 1000 |       |  |
| Trichloroethene                                  | ND      |   | 1000 |       |  |
| Tetrachloroethene                                | ŅD      |   | 1000 |       |  |
| chlorobenzene                                    | ND      |   | 10   | 00    |  |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK #1 MATRIX : SOLID

| PARAMETER                   | RESULTS | Q | QNT. | LIMIT |  |
|-----------------------------|---------|---|------|-------|--|
| any any any any and all any |         | - |      |       |  |
| Benzene                     | ND      |   | 1000 |       |  |
| Toluene                     | ND      |   | 1000 |       |  |
| Ethylbenzene                | ND      |   | 1000 |       |  |
| Total Xylenes               | ND      |   | 1000 |       |  |
| 1,2 - Dichlorobenzene       | ND      |   | 1000 |       |  |
| 1,3 - Dichlorobenzene       | ND      |   | 1000 |       |  |
| 1,4 - Dichlorobenzene       | ND      |   | 1000 |       |  |
| 1,1 - dichloroethene        | ND      |   | 1000 |       |  |
| Methylene Chloride          | ND      |   | 1000 |       |  |
| Trans-1,2, - Dichloroethene | ND      |   | 1000 |       |  |
| 1,1 - dichloroethane        | ND      |   | 1000 |       |  |
| 1,1,1 - Trichloroethane     | ND      |   | 1000 |       |  |
| 1,2 - Dichloroethane        | ND      |   | 1000 |       |  |
| Trichloroethene             | ND      |   | 1000 |       |  |
| Tetrachloroethene           | ND      |   | 1000 |       |  |
| chlorobenzene               | ND      |   | 1000 | 0     |  |

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK #2 MATRIX : SOLID

| PARAMETER                   | RESULTS | Q    | QNT. LIMIT |  |  |
|-----------------------------|---------|------|------------|--|--|
|                             |         | -    |            |  |  |
| Benzene                     | ND      |      | 1000       |  |  |
| Toluene                     | ND      |      | 1000       |  |  |
| Ethylbenzene                | ND      | 1000 |            |  |  |
| Total Xylenes               | ND      | 1000 |            |  |  |
| 1,2 - Dichlorobenzene       | ND      | 1000 |            |  |  |
| 1,3 - Dichlorobenzene       | ND      | 1000 |            |  |  |
| 1,4 - Dichlorobenzene       | ND      |      | 1000       |  |  |
| 1,1 - dichloroethene        | ND      |      | 1000       |  |  |
| Methylene Chloride          | ND      | 1000 |            |  |  |
| Trans-1,2, - Dichloroethene | ND      | 1000 |            |  |  |
| 1,1 - dichloroethane        | ND      | 1000 |            |  |  |
| 1,1,1 - Trichloroethane     | ND      |      | 1000       |  |  |
| 1,2 - Dichloroethane        | ND      |      | 1000       |  |  |
| Trichloroethene             | ND      | 1000 |            |  |  |
| Tetrachloroethene           | ND      | 1000 |            |  |  |
| chlorobenzene               | ND      |      | 1000       |  |  |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK #1 MATRIX : SOLID

| PARAMETER                   | RESULTS | Q    | QNT. LIMIT |  |  |
|-----------------------------|---------|------|------------|--|--|
|                             |         | _    |            |  |  |
| Benzene                     | ND      |      | 1000       |  |  |
| Toluene                     | ND      | 1000 |            |  |  |
| Ethylbenzene                | ND      | 1000 |            |  |  |
| Total Xylenes               | ND      | 1000 |            |  |  |
| 1,2 - Dichlorobenzene       | ND      | 1000 |            |  |  |
| 1,3 - Dichlorobenzene       | ND      | 1000 |            |  |  |
| 1,4 - Dichlorobenzene       | ND      | 1000 |            |  |  |
| 1,1 - dichloroethene        | ND      | 1000 |            |  |  |
| Methylene Chloride          | ND      | 1000 |            |  |  |
| Trans-1,2, - Dichloroethene | ND      |      | 1000       |  |  |
| 1,1 - dichloroethane        | ND      | 1000 |            |  |  |
| 1,1,1 - Trichloroethane     | ND      | 1000 |            |  |  |
| 1,2 - Dichloroethane        | ND      | 1000 |            |  |  |
| Trichloroethene             | ND      | 1000 |            |  |  |
| Tetrachloroethene           | ND      |      | 1000       |  |  |
| chlorobenzene               | ND      |      | 1000       |  |  |

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PURGABLES- GC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK #2 MATRIX : SOLID

| PARAMETER                   | RESULTS | Q | QNT. | LIMIT |  |
|-----------------------------|---------|---|------|-------|--|
| Benzene                     | ND      | - | 1000 |       |  |
| Toluene                     | ND      |   | 1000 |       |  |
| Ethylbenzene                | ND      |   | 1000 |       |  |
| Total Xylenes               | ND      |   | 1000 |       |  |
| 1,2 - Dichlorobenzene       | ND      |   | 1000 |       |  |
| 1,3 - Dichlorobenzene       | ND      |   | 1000 |       |  |
| 1,4 - Dichlorobenzene       | ND      |   | 1000 |       |  |
| 1,1 - dichloroethene        | ND      |   | 1000 |       |  |
| Methylene Chloride          | ND      |   | 1000 |       |  |
| Trans-1,2, - Dichloroethene | ND      |   | 1000 |       |  |
| 1,1 - dichloroethane        | ND      |   | 1000 |       |  |
| 1,1,1 - Trichloroethane     | ND      |   | 1000 |       |  |
| 1,2 - Dichloroethane        | ND      |   | 1000 |       |  |
| Trichloroethene             | ND      |   | 1000 |       |  |
| Tetrachloroethene           | ND      |   | 1000 |       |  |
| ch1orobenzene               | ND      |   | 10   | 00    |  |

\_\_\_\_\_\_

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17068 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-S001A

RESULTS Q QNT. LIMIT
----- - 1000 PARAMETER \_\_\_\_\_

Total as Benzo-a-pyrene ND

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17306 MATRIX : SOLID

SAMPLE ID CLIENT: PO3S002A

PARAMETER RESULTS Q QNT. LIMIT
Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-17305 TEST NAME : PNC PAH - LC

SAMPLE ID CLIENT: PO3S003A

PARAMETER RESULTS Q QNT. LIMIT ND 1000 Total as Benzo-a-pyrene

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16965 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO04A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT
Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ESTIMATED VALUE D = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17307 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SOO5A

PARAMETER RESULTS Q QNT. LIMIT ----\_\_\_\_\_ Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16778 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SOO6A

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT
----- - 1000 PARAMETER 1000 Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

RESULTS IN WET WEIGHT
TEST NAME : PNC PAH - LC UNITS : UG/KG
SAMPLE ID LAB : EE-91-17069 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SOO7A

PARAMETER RESULTS Q QNT. LIMIT
-----Total as Benzo-a-pyrene ND 1000 PARAMETER

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17304 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SOO8A

PARAMETER RESULTS Q QNT. LIMIT ND 1000 ----

Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16966 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO09A

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT
----- - 1000 PARAMETER

Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :SPNPAH1

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16967 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO1OA

SAMPLE LOCATION :

PARAMETER

RESULTS Q QNT. LIMIT

ND 1000

Total as Benzo-a-pyrene ND

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16779 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO11A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT
-----Total as Benzo-a-pyrene ND 1000 PARAMETER

\_\_\_\_\_\_

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-17070 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO12A

RESULTS Q QNT. LIMIT PARAMETER ND 1000 ------Total as Benzo-a-pyrene ND

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16968 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO13A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT 11000 1000 \_\_\_\_ Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :SPNPAH1

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16969 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO13A-DUP.

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT
Total as Benzo-a-pyrene 10000 1000

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16970 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO14A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT 2800 1000 ----Total as Benzo-a-pyrene

JOB NUMBER: 9101.780 TEST CODE :SPNPAH1

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-16780

SAMPLE ID CLIENT: PO3-SO15A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT
----Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16781 MATRIX : SOLID SAMPLE ID CLIEBER: PO2 SOLICA

SAMPLE ID CLIENT: PO3-SO16A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT
-----Total as Benzo-a-pyrene ND 1000

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17071 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO17A

PARAMETER RESULTS Q QNT. LIMIT ND 1000 \_\_\_\_\_ Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ESTIMATED VALUE D = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-17302 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO18A

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_ 

Total as Benzo-a-pyrene 1000 ND

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

RESULTS IN WEI WEIGHT
TEST NAME : PNC PAH - LC UNITS : UG/KG
SAMPLE ID LAB : EE-91-17303 MATRIX : SOLID

SAMPLE ID CLIENT: PO3S019A

\_\_\_\_\_EL RESULTS Q QNT. LIMIT
----- - 1000 PARAMETER

Total as Benzo-a-pyrene ND

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16971 MATRIX : SOLID SAMPLE ID CLIENT: POR CORO.

SAMPLE ID CLIENT: PO3-SO2OA

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT PARAMETER Total as Benzo-a-pyrene ND 1000

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16782 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO21A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT
Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16783 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO22A

SAMPLE LOCATION :

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17072 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO23A

PARAMETER RESULTS Q QNT. LIMIT ND 1000 \_\_\_\_\_

Total as Benzo-a-pyrene ND

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17308 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO24A

PARAMETER RESULTS Q QNT. LIMIT

3200 1000 Total as Benzo-a-pyrene

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-17309 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO25A

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_ \_\_\_\_ \_\_\_\_ Total as Benzo-a-pyrene 8600 1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-17310 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO25AD

RESULTS Q QNT. LIMIT PARAMETER \_\_\_\_\_ Total as Benzo-a-pyrene 9000 1000

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16972 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO26A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16973 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO27A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT 1300 1000 Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16784 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO28A

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT
----ND 1000 PARAMETER ----Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16785 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO29A

SAMPLE LOCATION:

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_ Total as Benzo-a-pyrene ND 1000

TEST CODE :SPNPAH1

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

PARAMETER

\_\_\_\_

TEST NAME : PNC PAH - LC

UNITS : UG/KG MATRIX : SOLID

-----

SAMPLE ID LAB : EE-91-17073 SAMPLE ID CLIENT: PO3-SO3OA

RESULTS Q QNT. LIMIT

Total as Benzo-a-pyrene

ND

1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-17074

SAMPLE ID CLIENT: PO3-SO31A

RESULTS Q QNT. LIMIT PARAMETER

Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17075 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO32A

PARAMETER RESULTS Q ONT. LIMIT -----

Total as Benzo-a-pyrene ND 1000

\_\_\_\_\_

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PAH - LC TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-17076

SAMPLE ID CLIENT: PO3-SO33A

PARAMETER RESULTS Q QNT. LIMIT

Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :SPNPAH1

JOB NUMBER :9101.780

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16786 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO34A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT

Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED
J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

|            |                                |                   |                 |                      | 9101.780            |  |  |
|------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|--|--|
|            | (ug)                           |                   |                 |                      |                     |  |  |
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |  |
| Benzo(a)py | rene<br>Batch QC               | ND                | 50              | 40                   | 80                  |  |  |

| 9 | 1 | 0 | 1 | 7 | 9 | 2 |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |

| (ug)       |                                |                   |                 |                      |                     |  |
|------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|--|
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |
| Benzo(a)py | rene<br>16965                  | ND                | 50              | 40                   | 80                  |  |

9101.807

| (ug)        |                                |                   |                 |                      |                     |  |  |
|-------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|--|--|
| Parameter   | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |  |
| Benzo(a)py: | rene                           |                   |                 |                      |                     |  |  |
|             | 17076 MS                       | ND                | 50              | 50                   | 100                 |  |  |

9101.824

| (ug)       |                                |                   |                 |                      |                     |  |
|------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|--|
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |
| Benzo(a)py | rene<br>17310                  | ND                | 50              | 47                   | 94                  |  |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK 1 MATRIX : SOLID

RESULTS Q QNT. LIMIT PARAMETER ND 1000 Total as Benzo-a-pyrene

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK 2 MATRIX : SOLID

PARAMETER RESULTS Q QNT. LIMIT Total as Benzo-a-pyrene ND 1000

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK 3 MATRIX : SOLID

RESULTS Q QNT. LIMIT PARAMETER \_\_\_\_\_ Total as Benzo-a-pyrene ND 1000

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PAH - LC UNITS TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK 1 MATRIX : SOLID UNITS : UG/KG

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT PARAMETER Total as Benzo-a-pyrene ND 1000 \_\_\_\_\_

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PAH - LC UNITS UNITS : UG/KG SAMPLÉ ID LAB : METHOD BLANK 2 MATRIX : SOLID

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_ \_\_\_\_\_ 1000 Total as Benzo-a-pyrene ND

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PAH - LC UNITS

UNITS : UG/KG

SAMPLE ID LAB : METHOD BLANK 3

MATRIX : SOLID

SAMPLE LOCATION:

PARAMETER

RESULTS Q QNT. LIMIT ------

Total as Benzo-a-pyrene

ND

1000

JOB NUMBER: 9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC

UNITS : UG/KG

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK #1 MATRIX : SOLID

PARAMETER -----

RESULTS Q QNT. LIMIT

Total as Benzo-a-pyrene

ND 1000

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK #2 MATRIX : SOLID

RESULTS Q QNT. LIMIT PARAMETER ND 1000 \_\_\_\_\_\_ Total as Benzo-a-pyrene

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC UNITS : UG/KG TEST NAME : PNC PAH - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK #3 MATRIX : SOLID

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_ \_\_\_\_\_

ND 1000 Total as Benzo-a-pyrene

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ROT DETECTED

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PAH - LC SAMPLE ID LAB : METHOD BLANK UNITS : UG/KG MATRIX : SOLID

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_

Total as Benzo-a-pyrene ND 1000

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17068 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO01A

PARAMETER RESULTS Q QNT. LIMIT

Total as Trichlorophenol ND 2000

\_\_\_\_\_\_\_\_

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17306 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO02A

PARAMETER RESULTS Q QNT. LIMIT

ND . Total as Trichlorophenol 2000

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17305 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SOO3A

PARAMETER RESULTS Q QNT. LIMIT

ND 2000 \_\_\_\_\_\_

Total as Trichlorophenol

JOB NUMBER :9101.792 TEST CODE :SPNPHL1

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-16965 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO04A

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT
----ND 2000 PARAMETER -----

Total as Trichlorophenol

\_\_\_\_\_

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17307 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SOO5A

PARAMETER RESULTS Q QNT. LIMIT
-----Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-16778 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO06A

SAMPLE LOCATION:

PARAMETER RESULTS Q QNT. LIMIT ----\_\_\_\_ Total as Trichlorophenol ND 2000

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17069 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SOO7A

PARAMETER RESULTS Q QNT. LIMIT 2000

Total as Trichlorophenol ND

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17304 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3SOO8A

PARAMETER RESULTS Q QNT. LIMIT -----\_\_\_\_\_ Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ESTIMATED VALUE D = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16966 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO09A

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT PARAMETER -----

ND 2000 Total as Trichlorophenol ND

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG-SAMPLE ID LAB : EE-91-16967 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO10A

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT PARAMETER \_\_\_\_\_

ND 2000 Total as Trichlorophenol ND

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-16779

SAMPLE ID CLIENT: PO3-SO11A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_

Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ESTIMATED VALUE D = ALSO PRESENT IN BLANK

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17070 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO12A

PARAMETER RESULTS Q QNT. LIMIT
-----Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16968 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO13A

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT PARAMETER Total as Trichlorophenol 360000 2000

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16969 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO13A-DUP.

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT PARAMETER \_\_\_\_\_

Total as Trichlorophenol 230000 2000

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ROT DETECTED D = ROT DETECTED D = ROT DETECTED D = ROT DETECTED

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16970 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO14A

SAMPLE LOCATION :

QUALIFIERS: C = COMMENT DETECTED DETEC

JOB NUMBER: 9101.780

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

UNITS : UG/KG TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-16780 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO15A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT

\_\_\_\_ Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-16781 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO16A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_ Total as Trichlorophenol ND 2000

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17071 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO17A

PARAMETER RESULTS Q QNT. LIMIT

Total as Trichlorophenol 12000 2000

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17302 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO18A

RESULTS Q QNT. LIMIT PARAMETER \_\_\_\_\_

30000 Total as Trichlorophenol 2000

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17303 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO19A

PARAMETER RESULTS Q QNT. LIMIT Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT DETECTED DETEC

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16971 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO2OA

SAMPLE LOCATION:

RESULTS Q QNT. LIMIT
------ - -----ichlorophenol ND 2000 PARAMETER -----

Total as Trichlorophenol ND

JOB NUMBER :9101.780

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-16782

SAMPLE ID CLIENT: PO3-SO21A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT

Total as Trichlorophenol ND 2000

JOB NUMBER :9101.780

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16783 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO22A

SAMPLE LOCATION:

PARAMETER \_\_\_\_\_ RESULTS Q QNT. LIMIT

\_\_\_\_\_

2000

Total as Trichlorophenol ND

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ESTIMATED VALUE D = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17072 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO23A

PARAMETER RESULTS Q QNT. LIMIT

Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17308 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO24A

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_ \_\_\_\_\_\_ Total as Trichlorophenol 130000 2000

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER: 9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17309 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO25A

RESULTS Q QNT. LIMIT ----- 2000 PARAMETER \_\_\_\_\_

Total as Trichlorophenol

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17310 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO25AD

RESULTS Q QNT. LIMIT PARAMETER -----

Total as Trichlorophenol 360000 2000

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16972 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO26A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT
Total as Trichlorophenol 13000 2000

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-16973 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO27A

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT PARAMETER -----

Total as Trichlorophenol 61000 2000

JOB NUMBER :9101.780

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-16784 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO28A

SAMPLE LOCATION:

RESULTS Q QNT. LIMIT PARAMETER

Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ROT DETECTED D = ROT DETECTED D = ROT DETECTED D = ROT DETECTED

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-16785 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO29A

SAMPLE LOCATION:

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_ \_\_\_\_\_ Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE : SPNPHL1

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17073 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO3OA

QUALIFIERS: C = COMMENT D = NOT DETECTED D = COMMENT D = COMMENT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17074 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO31A

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_ -----Total as Trichlorophenol ND 2000

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : EE-91-17075 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO32A

PARAMETER RESULTS Q QNT. LIMIT

Total as Trichlorophenol ND 2000

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

UNITS : UG/KG TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17076

SAMPLE ID CLIENT: PO3-SO33A

RESULTS Q QNT. LIMIT PARAMETER

Total as Trichlorophenol ND 2000

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-16786 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO34A

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_ Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT DETECTED DETEC

9101.780

| (ug)                          |                                       |                                              |                                                           |                                                                             |  |  |
|-------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| E & E<br>aboratory<br>No. 91- | Original<br>Value                     | Amount<br>Added                              | Amount<br>Determined                                      | Percent<br>Recovery                                                         |  |  |
| orophenol                     | , , , , , , , , , , , , , , , , , , , |                                              |                                                           |                                                                             |  |  |
| 778                           | ND                                    | 100                                          | 80                                                        | 80                                                                          |  |  |
|                               | aboratory                             | Aboratory Original No. 91- Value  Lorophenol | Laboratory Original Amount No. 91- Value Added Lorophenol | Laboratory Original Amount Amount No. 91- Value Added Determined Lorophenol |  |  |

9101.972

| (ug)                           |                       |                                         |                                                      |                                                                        |  |
|--------------------------------|-----------------------|-----------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|--|
| E & E<br>Laboratory<br>No. 91- | Original<br>Value     | Amount<br>Added                         | Amount<br>Determined                                 | Percent<br>Recovery                                                    |  |
| hlorophenol                    |                       |                                         |                                                      |                                                                        |  |
| 16965                          | ND                    | 100                                     | 66                                                   | 66                                                                     |  |
|                                | Laboratory<br>No. 91- | E & E Laboratory Original No. 91- Value | E & E Laboratory Original Amount No. 91- Value Added | E & E Laboratory Original Amount Amount No. 91- Value Added Determined |  |

9101.807

|                                | (ug)                                 |                                                     |                                                            |                                                                                    |
|--------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|
| E & E<br>Laboratory<br>No. 91- | Original<br>Value                    | Amount<br>Added                                     | Amount<br>Determined                                       | Percent<br>Recovery                                                                |
| hlorophenol                    |                                      |                                                     |                                                            |                                                                                    |
| 17068 MS                       | ND                                   | 100                                                 | 89                                                         | 89                                                                                 |
|                                | Laboratory<br>No. 91-<br>hlorophenol | E & E Laboratory Original No. 91- Value hlorophenol | Laboratory Original Amount No. 91- Value Added hlorophenol | E & E Laboratory Original Amount Amount No. 91- Value Added Determined hlorophenol |

9101.824

| (ug)      |                                |                   |                 |                      |                     |
|-----------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| 2,4,6-Tri | chlorophenol                   | -                 | ,               |                      |                     |
|           | 17302 MS                       | ND                | 100             | 79                   | 79                  |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK MATRIX : SOLID

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_ \_\_\_\_

Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT

C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : METHOD BLANK UNITS : UG/KG MATRIX : SOLID

SAMPLE LOCATION:

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_

Total as Trichlorophenol ND 2000

QUALIFIERS: C = COMMENT DETECTED DETEC

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : METHOD BLANK UNITS : UG/KG MATRIX : SOLID

RESULTS Q QNT. LIMIT PARAMETER

Total as Trichlorophenol ND 2000

QUALIFIERS: C  $\Rightarrow$  COMMENT ND = NOT DETECTED J  $\Rightarrow$  ESTIMATED VALUE B  $\Rightarrow$  ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PHENOL - LC UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK MATRIX : SOLID

RESULTS Q QNT. LIMIT PARAMETER

2000 Total as Trichlorophenol ND

QUALIFIERS: C = COMMENT D = NOT DETECTED D = COMMENT D = NOT DETECTED D = COMMENT D = COMENT D = COMMENT D = COM

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG TEST NAME : PNC PEST./PCB
SAMPLE ID LAB : EE-91-17068 MATRIX : UG/KG

SAMPLE ID CLIENT: PO3-SO01A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

TEST CODE :SPNP&P1

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17306 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO02A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | · ND    |   | 1000       |
| Total PCBs | ND      |   | 5000       |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-17305

SAMPLE ID CLIENT: PO3SOO3A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         |   |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-16965 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SOO4A

SAMPLE LOCATION:

| PARAMETER  | RESULTS                                   | Q   | QNT. LIMIT |
|------------|-------------------------------------------|-----|------------|
|            | all the said work ways could did no sales | *** |            |
| Heptachlor | ND                                        |     | 1000       |
| Lindane    | ND                                        |     | 1000       |
| Aldrin     | ND                                        |     | 1000       |
| 4,4 - DDT  | ND                                        |     | 1000       |
| Dieldrin   | ND                                        |     | 1000       |
| Endrin     | ND                                        |     | 1000       |
| Chlordane  | ND                                        |     | 1000       |
| 4,4-DDE    | ND                                        |     | 1000       |
| Total PCBs | ND                                        |     | 5000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17307 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SOO5A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
| ****       |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-16778 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SOO6A

SAMPLE LOCATION :

| PARAMETER               | RESULTS | Q | QNT. LIMIT |
|-------------------------|---------|---|------------|
| *** *** *** = = = = = = |         |   |            |
| Heptachlor              | ND      |   | 1000       |
| Lindane                 | ND      |   | 1000       |
| Aldrin                  | ND      |   | 1000       |
| 4,4 - DDT               | ND      |   | 1000       |
| Dieldrin                | ND      |   | 1000       |
| Endrin                  | NĎ      |   | 1000       |
| Chlordane               | ND      |   | 1000       |
| 4,4-DDE                 | ND      |   | 1000       |
| Total PCBs              | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-17069

SAMPLE ID CLIENT: PO3-SOO7A

| PARAMETER   | RESULTS | Q | QNT. LIMIT |
|-------------|---------|---|------------|
|             |         | _ |            |
| Heptachlor  | ND      |   | 1000       |
| Lindane     | ND      |   | 1000       |
| Aldrin      | ND      |   | 1000       |
| 4,4 - DDT   | ND      |   | 1000       |
| Dieldrin    | ND      |   | 1000       |
| Endrin      | ND      |   | 1000       |
| Chlordane . | ND      |   | 1000       |
| 4,4-DDE     | ND      |   | 1000       |
| Total PCBs  | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17304 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SOO8A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-16966 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO09A

SAMPLE LOCATION :

| PARAMETER                               | RESULTS | Q | QNT. LIMIT |
|-----------------------------------------|---------|---|------------|
| THE |         | _ |            |
| Heptachlor                              | ND      |   | 1000       |
| Lindane                                 | ND      |   | 1000       |
| Aldrin                                  | ND      |   | 1000       |
| 4,4 - DDT                               | ND      |   | 1000       |
| Dieldrin                                | ND      |   | 1000       |
| Endrin                                  | ND      |   | 1000       |
| Chlordane                               | ND      |   | 1000       |
| 4,4-DDE                                 | ND      |   | 1000       |
| Total PCBs                              | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-16967
SAMPLE ID CLIEBURG 200 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO1OA

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-16779

SAMPLE ID CLIENT: PO3-SO11A

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :SPNP&P1

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17070 MATRIX : SOLID SAMPLE ID CLIENT: P03-S0124

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         |   |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE :SPNP&P1

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-16968 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO13A

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         |   |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-16969 UNITS : UG/KG MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO13A-DUP.

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT DETECTED DETEC

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-16970 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO14A

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
| <b></b>    |         |   |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.780

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-16780

SAMPLE ID CLIENT: PO3-SO15A

SAMPLE LOCATION:

| PARAMETER  | RESULTS | Q   | QNT. LIMIT |
|------------|---------|-----|------------|
|            |         | *** |            |
| Heptachlor | ND      |     | 1000       |
| Lindane    | ND      |     | 1000       |
| Aldrin     | ND      |     | 1000       |
| 4,4 - DDT  | ND      |     | 1000       |
| Dieldrin   | ND      |     | 1000       |
| Endrin     | ND      |     | 1000       |
| Chlordane  | ND      |     | 1000       |
| 4,4-DDE    | ND      |     | 1000       |
| Total PCBs | ND      |     | 5000       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

UNITS : UG/KG TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-16781 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO16A

SAMPLE LOCATION:

| PARAMETER  | RESULTS                                | Q | QNT. LIMIT   |
|------------|----------------------------------------|---|--------------|
|            | ************************************** | _ |              |
| Heptachlor | ND                                     |   | 1000         |
| Lindane    | ND                                     |   | 1000         |
| Aldrin     | ND                                     |   | 1000         |
| 4,4 - DDT  | ND                                     |   | 1000         |
| Dieldrin   | ND                                     |   | 1000         |
| Endrin     | ND                                     |   | 1000         |
| Chlordane  | ND                                     |   | 1000         |
| 4,4-DDE    | ND                                     |   | <b>100</b> 0 |
| Total PCBs | ND                                     |   | <b>500</b> 0 |

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE :SPNP&P1

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17071 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO17A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17302 MATRIX : SOLID

SAMPLE ID CLIENT: PO3S018A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         |   |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |
|            |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17303 MATRIX : SOLID

SAMPLE ID CLIENT: PO3S019A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-16971

SAMPLE ID CLIENT: PO3-SO2OA

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT D = NOT DETECTED D = COMMENT D = COMMENT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-16782 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO21A

SAMPLE LOCATION:

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-16783 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO22A

SAMPLE LOCATION:

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT DETECTED DETEC

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-17072

SAMPLE ID CLIENT: PO3-SO23A

| PARAMETER                                                                                                   | RESULTS | Q | QNT. LIMIT |
|-------------------------------------------------------------------------------------------------------------|---------|---|------------|
| with the wife with with with with the same and the same same and the same same same same same same same sam |         | - |            |
| Heptachlor                                                                                                  | ND      |   | 1000       |
| Lindane                                                                                                     | ND      |   | 1000       |
| Aldrin                                                                                                      | ND      |   | 1000       |
| 4,4 - DDT                                                                                                   | ND      |   | 1000       |
| Dieldrin                                                                                                    | ND      |   | 1000       |
| Endrin                                                                                                      | ND      |   | 1000       |
| Chlordane                                                                                                   | ND      |   | 1000       |
| 4,4-DDE                                                                                                     | ND      |   | 1000       |
| Total PCBs                                                                                                  | ND      |   | 5000       |

TEST CODE :SPNP&P1 JOB NUMBER: 9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17308 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO24A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |
|            |         |   |            |

TEST CODE :SPNP&P1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17309 MATRIX : SOLID

SAMPLE ID CLIENT: PO3SO25A

| PARAMETER           | RESULTS | Q | QNT. LIMIT |
|---------------------|---------|---|------------|
| *** *** *** *** *** |         | - |            |
| <b>Heptachlor</b>   | ND      |   | 1000       |
| Lindane             | ND      |   | 1000       |
| Aldrin              | ND      |   | 1000       |
| 4,4 - DDT           | ND      |   | 1000       |
| Dieldrin            | ND      |   | 1000       |
| Endrin              | ND      |   | 1000       |
| Chlordane           | ND      |   | 1000       |
| 4,4-DDE             | ND      |   | 1000       |
| Total PCBs          | ND      |   | 5000       |

TEST CODE :SPNP&P1 JOB NUMBER: 9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-17310

SAMPLE ID CLIENT: PO3SO25AD

| PARAMETER  | RESULTS                             | Q        | QNT. LIMIT |
|------------|-------------------------------------|----------|------------|
|            | water study study samps samps games | <u> </u> |            |
| Heptachlor | ND                                  |          | 1000       |
| Lindane    | ND                                  |          | 1000       |
| Aldrin     | ND                                  |          | 1000       |
| 4,4 - DDT  | ND                                  |          | 1000       |
| Dieldrin   | ND                                  |          | 1000       |
| Endrin     | ND                                  |          | 1000       |
| Chlordane  | ND                                  |          | 1000       |
| 4,4-DDE    | ND                                  |          | 1000       |
| Total PCBs | ND                                  |          | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER: 9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-16972 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO26A

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
| ~          |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

TEST CODE :SPNP&P1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-16973

SAMPLE ID CLIENT: PO3-SO27A

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

TEST CODE :SPNP&P1 JOB NUMBER :9101.780

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-16784 UNITS : UG/KG MATRIX : UG/KG

SAMPLE ID CLIENT: PO3-SO28A

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |
|            |         |   |            |

JOB NUMBER :9101.780

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-16785 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO29A

SAMPLE LOCATION:

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE :SPNP&P1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17073 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO3OA

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT DETECTED DETEC

JOB NUMBER: 9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : EE-91-17074 MATRIX : SOLID

SAMPLE ID CLIENT: PO3-SO31A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND .    |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

-----

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

UNITS : UG/KG MATRIX : SOLID TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-17075

SAMPLE ID CLIENT: PO3-SO32A

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-17076

SAMPLE ID CLIENT: PO3-SO33A

| PARAMETER  | RESULTS | Q | ONT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.780

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG MATRIX : SOLID SAMPLE ID LAB : EE-91-16786

SAMPLE ID CLIENT: PO3-SO34A

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SOIL MATRIX SPIKE (Sample # 16778)

9101.780

| Compound   | Original<br>Result | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|------------|--------------------|-----------------|----------------------|---------------------|
|            | (ug                | ;/kg)           |                      |                     |
| Heptachlor | ND                 | 400             | 410                  | 102                 |
| Lindane    | ND                 | 400             | 391                  | 98                  |
| Aldrin     | ND                 | 400             | 446                  | 112                 |
| 4,4'-DDT   | ND                 | 1000            | 1072                 | 107                 |
| Dieldrin   | ND                 | 1000            | 1107                 | 110                 |
| Endrin     | ND                 | 1000            | 1164                 | 116                 |
| PCB-1254   | ND                 | 5000            | 6052                 | 121                 |

# QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SOIL MATRIX SPIKE (Sample # BATCH QC)

9101.792

| Compound   | Original<br>Result | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|------------|--------------------|-----------------|----------------------|---------------------|
|            | (ug                | ;/kg)           |                      |                     |
| Heptachlor | ND                 | 400             | 410                  | 102                 |
| Lindane    | ND                 | 400             | 391                  | 98                  |
| Aldrin     | ND                 | 400             | 446                  | 112                 |
| 4,4'-DDT   | ND                 | 1000            | 1072                 | 107                 |
| Dieldrin   | ND                 | 1000            | 1107                 | 110                 |
| Endrin     | ND                 | 1000            | 1164                 | 116                 |
| PCB-1254   | ND                 | 5000            | 6052                 | 121                 |

# QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SOIL MATRIX SPIKE (Sample # 17074)

9101.807

| Compound   | Original<br>Result | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|------------|--------------------|-----------------|----------------------|---------------------|
| 1          | (ug                | /kg)            |                      |                     |
| Heptachlor | ND                 | 400             | 422                  | 106                 |
| Lindane    | ND                 | 400             | 383                  | 96                  |
| Aldrin     | ND                 | 400             | 427                  | 107                 |
| 4,4'-DDT   | ND                 | 1000            | 1064                 | 106                 |
| Dieldrin   | ND                 | 1000            | 1069                 | 107                 |
| Endrin     | ND                 | 1000            | 1129                 | 113                 |
| PCB-1254   | ND                 | 5000            | 5806                 | 116                 |

# QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SOIL MATRIX SPIKE (Sample # 17310)

9101.824

| Compound   | Original<br>Result | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|------------|--------------------|-----------------|----------------------|---------------------|
|            | (ug                | /kg)            |                      |                     |
| Heptachlor | ND                 | 400             | 465                  | 116                 |
| Lindane    | ND                 | 400             | 406                  | 102                 |
| Aldrin     | ND                 | 400             | 453                  | 113                 |
| 4,4'~DDT   | ND                 | 1000            | 1080                 | 108                 |
| Dieldrin   | ND                 | 1000            | 1160                 | 116                 |
| Endrin     | ND                 | 1000            | 1178                 | 118                 |
| PCB-1254   | ND                 | 5000            | 5505                 | 110                 |

TEST CODE :SPNP&P1 JOB NUMBER :9101.780

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

RESULTS IN WET WEIGHT

UNITS : UG/KG TEST NAME : PNC PEST./PCB SAMPLE ID LAB : METHOD BLANK MATRIX : SOLID

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE :SPNP&P1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK 598/175 MATRIX : SOLID

SAMPLE LOCATION :

| PARAMETER  | RESULTS                                    | Q | QNT. LIMIT |
|------------|--------------------------------------------|---|------------|
|            | made water water study which value address | - |            |
| Heptachlor | ND                                         |   | 1000       |
| Lindane    | ND                                         |   | 1000       |
| Aldrin     | ND                                         |   | 1000       |
| 4,4 - DDT  | ND                                         |   | 1000       |
| Dieldrin   | ND                                         |   | 1000       |
| Endrin     | ND                                         |   | 1000       |
| Chlordane  | ND                                         |   | 1000       |
| 4,4-DDE    | ND                                         |   | 1000       |
| Total PCBs | ND                                         |   | 5000       |

JOB NUMBER: 9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK MATRIX : SOLID

| PARAMETER                       | RESULTS | Q | QNT. LIMIT |
|---------------------------------|---------|---|------------|
| AND METER WITH HOME SHEET SHEET |         | - |            |
| Heptachlor                      | ND      |   | 1000       |
| Lindane                         | ND      |   | 1000       |
| Aldrin                          | ND      |   | 1000       |
| 4,4 - DDT                       | ND      |   | 1000       |
| Dieldrin                        | ND      |   | 1000       |
| Endrin                          | ND      |   | 1000       |
| Chlordane                       | ND      |   | 1000       |
| 4,4-DDE                         | ND      |   | 1000       |
| Total PCBs                      | ND      |   | 5000       |

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ROT DETECTED D = ROT DETECTED D = ROT DETECTED D = ROT DETECTED

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

RESULTS IN WET WEIGHT

TEST NAME : PNC PEST./PCB UNITS : UG/KG SAMPLE ID LAB : METHOD BLANK MATRIX : SOLID

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         |   |            |
| Heptachlor | ND      |   | 1000       |
| Lindane    | ND      |   | 1000       |
| Aldrin     | ND      |   | 1000       |
| 4,4 - DDT  | ND      |   | 1000       |
| Dieldrin   | ND      |   | 1000       |
| Endrin     | ND      |   | 1000       |
| Chlordane  | ND      |   | 1000       |
| 4,4-DDE    | ND      |   | 1000       |
| Total PCBs | ND      |   | 5000       |

#### APPENDIX J

TEMPORARY MONITORING WELL GROUNDWATER SAMPLING ANALYTICAL SCREENING RESULTS

#### **MEMORANDUM**

TO: John Barksdale

FROM: Gary Hahn 1721ch

DATE: August 12, 1991

SUBJECT: UH-8000 Pensacola Report

RE: 9101.792

CC: Lab File

Attached is the laboratory report of the analysis conducted on fifteen samples received at the Analytical Services Center on July 25, 1991. Analysis was performed according to the screening procedures set forth in "Generic Quality Assurance Project Plan, Contamination Assessments and Remedial Activities, Naval Air Station Pensacola, Pensacola, Florida," July 1990.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/jp Enclosure

#### MEMORANDUM

TO:

John Barksdale

FROM:

Gary Hahn Jary ilakaler

DATE:

August 9, 1991

SUBJECT: UH-8000 Pensacola Report

RE:

9101.807

CC:

Lab File

Attached is the laboratory report of the analysis conducted on eleven samples received at the Analytical Services Center on July 26, 1991. Analysis was performed according to the screening procedures set forth in "Generic Quality Assurance Project Plan, Contamination Assessments and Remedial Activities, Naval Air Station Pensacola, Pensacola, Florida," July 1990.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/kr Enclosure

#### **MEMORANDUM**

TO:

John Barksdale

FROM:

Gary Hahn Wary Haky ker

DATE:

August 12, 1991

SUBJECT:

UH-8000 Pensacola Report

RE:

9101.824

CC:

Lab File

Attached is the laboratory report of the analysis conducted on fourteen samples received at the Analytical Services Center on July 27, 1991. Analysis was performed according to the screening procedures set forth in "Generic Quality Assurance Project Plan, Contamination Assessments and Remedial Activities, Naval Air Station Pensacola, Pensacola, Florida," July 1990.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/kr Enclosure

# ecology and environment, inc. 368 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14088, TEL. 718/684 8060 International Specialists in the Environment

ANALYZE ACCEPTING TO SITE SPECIFIC GAPP SEE JACK MILLER

#### CHAIN-OF-CUSTODY RECORD

Page 1 of 1

| Project No.       |         | Project   |      |      |               |          |                            |                                                       | Project Manage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | _     |                                          |                  |                 |               | 7       | //////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|-------------------|---------|-----------|------|------|---------------|----------|----------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------------------------------------------|------------------|-----------------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| UH80              |         | NAS       | 92   | A    | A             | <u> </u> | TCH 2                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J. BARKSDA       | 4LE_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |       |                                          |                  |                 |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Samplers          | Saman   |           | ·    |      |               |          |                            |                                                       | Field Team Le<br>Scot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T JONELIC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                  |                 |               |         | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>;</b> |
| STATION<br>NUMBER | DATE    | TIME      | S/   | MPL  |               |          | SAMPLE IN                  | FORMATION                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OITATS           | N LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NUMBER<br>OF    |       | JAKE.                                    | ر<br>م<br>میراند | 1 31<br>10 (10) | )<br>2)<br>2) |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| NUMBER            |         |           | COMP | GRAB | AIR           | EXPE     | CTED COMPO                 | JND\$ (Concentrati                                    | ion) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CON-<br>TAINERS | /;    | 186                                      | 1/4              | <b>98</b>       | See !         | 18      | our /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| swoz8             | or/zd   | 1100      |      | X    |               |          | LUN                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO3GNOZ          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5               | X     | Х                                        | ı                | X               | <             |         | VOAs LOT: 112 3043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 6WUZ4             |         |           |      | X.   |               |          | يديها                      | namentennyyyssä minnä saksianka siin na nasti opysiin | TOTAL CONTINUES AND A SECURE OF STATE OF STATE OF SECURE | PC36~02          | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5               | ٨     | ٨                                        | K                | ٨               | ٨             | A.      | QC, Q355C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 5m034             |         |           |      | X    |               |          | LON                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7036W03          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5               | K     | x                                        | X                | X               | ٨             | ٨       | 1/2 GALLIN AMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|                   |         |           |      |      |               |          |                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |                                          |                  |                 |               |         | WT: 1093042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|                   |         |           |      |      |               |          |                            | •                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |                                          |                  |                 |               |         | Q4 10280C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                   |         |           |      |      |               |          |                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | _     |                                          |                  |                 |               |         | LITRE AMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|                   |         |           |      |      |               |          |                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |                                          |                  |                 | <u>L</u>      |         | LOT: 1057051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|                   |         |           |      |      |               |          |                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | _     |                                          |                  |                 | l             |         | ac: 10141C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                   |         |           | _    |      |               |          |                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |                                          |                  |                 |               |         | LITRE PLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                   |         |           |      |      |               |          |                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | estamonto de la compansión de la compans |                 |       | _                                        |                  |                 |               |         | LOT: 1092021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -        |
|                   |         |           |      | L    |               |          | ALLEN CHIEF THE CONTRACTOR |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |                                          |                  |                 |               |         | OC: 102300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                   |         |           | _    |      |               |          |                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | and and provide the second special sections are second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |       |                                          |                  |                 |               |         | and the second s |          |
|                   |         | ļ         |      |      |               |          |                            | Parado Primario A. de                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | TOTAL BROKES OF THE STATE OF TH |                 |       |                                          |                  |                 |               |         | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| Relingdite        | OC.     | Signature | 1    | - 1  |               | Time:    | Received By (              | Signature)                                            | Relinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | By (Signature)   | Dute/Time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Received        | і Ву: | 15ign                                    | ature            | :)              | <b>!</b>      |         | Ship Via:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| Relinquish        | ed By ( | Signature | )    |      | ate/          | Time:    | Received By (              | Signature i                                           | Helinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | By (Signature)   | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Received        | Ву    | Sign                                     | aline            | i               |               | <u></u> | FEDERAL EXPRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -                 | . 5     |           | 1    | ٦,   |               | Time:    | Received For L             | aboratoni Bu                                          | Relinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9. (5.matura)    | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Received        | Ene   | 1 1                                      |                  | . A.            |               | .   6   | BL/Airbill Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oate.    |
| Relinquish<br>Fid | Ex      | ver       |      |      | )- <i>)</i> 1 | -9/0930  | (Signature)                | H. Idewa                                              | ( V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oy. (algoritore) | Offs, tuils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Signatur       | e)    | 1.400                                    | 14111            | y 69            |               |         | 0776546820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07/24/91 |

\*See CONCENTRATION RANGE on back of form.

VDA at 5°C UPOR VECLIFY.

Out LAB VS



ANALYZE ALLIE SITE SPECIFIC GAPP SEE JACK MILLER 9101.792

Range 14959 -> 14973

#### CHAIN-OF-CUSTODY RECORD

| Project No.<br>UHBO3 | 1        | Project 1<br>NAS |          | Рни        | \S€     | 1 BAT                                   | CH 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | Manager:<br>_ЮHN | BARKSDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |       |       |          |         |          |                          |                                         |
|----------------------|----------|------------------|----------|------------|---------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|-------|----------|---------|----------|--------------------------|-----------------------------------------|
| Samplers (S          |          |                  |          |            |         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field T                                 | eam Leade        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |       |       | /        | 30/     |          | REMA                     | RKS                                     |
| STATION L            | DATE     | TIME             | SA       | MPL<br>YPE |         |                                         | SAMPLE INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  | AGITATZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NUMBER<br>OF           |       | 105.  |          | ALES TO |          |                          |                                         |
| NUMBER               |          |                  | COMP     | GRAB       | R A     | EXPI                                    | ECTED COMPOUNDS (Concent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ration) *                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CON-<br>TAINERS        | /     | 9/    | 1        | July of | 1        | N ROY                    |                                         |
| en0260               | 37/14    | 1440             |          | ٨          |         |                                         | LON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                  | PU3GNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5_                     | Χ     | - 1   |          | - 1     | 1        | C VOAS LOT: 1123063      |                                         |
| 6W027 C              | 7/24     | 1400             |          | ×          |         |                                         | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                  | 7036WO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                      | χ     | X.    | ĸ        | K X     | ( x      | QC: 10355C               |                                         |
| ,4027DC              | 17/24    | 1400             |          | ٨          | _       |                                         | WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | An Westernam                            |                  | POBGWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                      | X     | X     | x        | X       | <   x    | 1/2 BALLIN AMBER         | ~~~                                     |
|                      |          |                  |          | _          | _       |                                         | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |       |       |          | _       | $\perp$  | LUT: 1093042             |                                         |
|                      |          |                  |          | _          | $\perp$ |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |       |       |          |         | _        | ac . 10280c              |                                         |
|                      |          |                  |          | -          |         | <b>.</b>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 1734 W  |                        | _     | -     |          |         | -        | LIME AMBER               |                                         |
|                      |          |                  |          | _          |         | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |       |       |          |         |          | LOT: 105'7051            | *************************************** |
|                      |          |                  |          | -          |         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARKET THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OT TH |                        |       |       | $\dashv$ |         | +        | GC: 10141C               |                                         |
|                      |          |                  | -        |            |         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |       |       | -        |         |          | LITRE POLY               |                                         |
|                      |          |                  |          |            | -+      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  | and the same and declared bloom in the same and the same  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |       |       |          |         | -        | LOT: 1092021             | ······································  |
|                      |          |                  |          |            | - -     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |       |       |          |         |          | ac: 10230c               | · · · · · · · · · · · · · · · · · · ·   |
|                      |          |                  |          |            |         | <u></u>                                 | Wall of the second seco |                                         |                  | THE R. LEWIS CO., LANSING, S. P. LEWIS CO., LANSING, S. P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |       |       |          |         |          | 1                        |                                         |
|                      |          |                  |          |            | -1      |                                         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                  | The state of the second | va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |       |       |          |         |          |                          |                                         |
| Relinguisher         | )<br>(   | gnatule)         |          |            |         | me: 1700<br>4/91                        | Received By: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relino                                  | jurahed By:      | (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date/Time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Received               | Ву    | Signa | ture)    |         | <b>-</b> | Ship Via  FEDERAL EXPRES |                                         |
| Rylinguished         | d By: (S | ignature)        | <b>3</b> |            | ate/Ti  |                                         | Received By: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reling                                  | uished By.       | (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date/Time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Received               | Ву: ( | Signa | ture)    |         |          |                          |                                         |
| Relinguished         | A Bu ic  | anature!         |          | - _        | ate/Ti  | me:                                     | Received For Alaboratory By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relini                                  | wished Rv        | (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hecewed                | For   | abor  | ator     | Bv:     |          | BL/Airbill Number:       | Date:                                   |
| •                    | -        | -                |          | - 1        |         |                                         | Received For Laboratory By<br>(Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | in annual man    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the state of t | fleceived<br>(Signatur | ei    |       | _10. [   | ~,      |          | 0776516816               | C7/24/9                                 |

"See CONCENTRATION RANGE on back of form.

EXTRA VOA INCLUDED FOR TEMPERATURE MEASUREMENT

VOA at 5°C upon receipt at LAB W



ANALYZE ACCURDING TO SITE SPECIFIC GAPP SEE JACK MILLER

#### CHAIN-OF-CUSTODY RECORD

Page \_ l of \_ l

| Project | No.:       |          | Project           | Name     | ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                      |                                                                              | Project Manager: | · · · · · · · · · · · · · · · · · · · |           |                       |           |       |          |              |            |                           |
|---------|------------|----------|-------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|------------------------------------------------------------------------------|------------------|---------------------------------------|-----------|-----------------------|-----------|-------|----------|--------------|------------|---------------------------|
| UHE     | 03         | 0        | NA                | 52       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 344      | SE 1 3A              | HC4 2                                                                        | NHO              | BARKSDAC                              | ٤         |                       |           |       |          |              | /          |                           |
| Sample  |            | Signatur | 2                 | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                                                                              | Field Team Lead  | et:                                   |           |                       |           |       |          | /            | /:         | -/s5/s/x5/                |
| No.     |            | South    | وكالمرك           | <b>~</b> | ٠ `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XŦ       | ut to                | ren                                                                          | SCOTT            | TONELICA                              | <         |                       |           |       | /        | 19 <i>/</i>  | 15°        | REMARKS                   |
| STATI   | ON<br>ER   | DATE     | TIME              | COMP     | GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA<br>GRABA | E        |                      | SAMPLE INFORMATION                                                           |                  | STATIO                                | LOCATION  | NUMBER<br>OF<br>CON-  |           | Š     | 188      | ر مار<br>زون | 34/<br>39/ | 19737<br>9737             |
| ļ       | _          |          |                   | 8        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ā        | EXP                  | PECTED COMPOUNDS (Concentratio                                               | n) •             |                                       |           | TAINERS               | <u> </u>  | 1986  | 24       | Resi         | 9/1        | <i>y x</i> y              |
| 3 640   | ю <u>(</u> | XY25     |                   |          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L        |                      | LOW                                                                          |                  | 70361                                 | 1030      | 5                     | K         | X     | <u> </u> | ٨            | X          | K VOAS LUT: 1/23063       |
| GNO     | 23         | 7/25     |                   |          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                      | LOW                                                                          |                  | Po3G1                                 | 1023      | 5                     | K         | x     | ኦ        | K            | K          | X ac: 10355C              |
|         |            |          |                   | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                                                                              |                  | ·····                                 |           |                       |           |       |          |              |            | YZ GALLON AMBER           |
|         |            |          |                   | <u>L</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L        | <u> </u>             |                                                                              |                  |                                       |           | <u> </u>              |           |       |          |              |            | 67:1071061                |
|         |            |          |                   | 1_       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                                                                              |                  |                                       |           |                       |           |       |          |              |            | ac: 10180C                |
| L       |            |          |                   |          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                      |                                                                              |                  |                                       |           |                       |           |       |          |              |            | LITRE AMBER               |
| l       |            |          |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                                                                              |                  |                                       |           |                       |           |       |          |              |            | LOT: KG7051               |
|         |            |          |                   | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                                                                              |                  |                                       |           |                       |           |       |          |              |            | GC: 10141C                |
|         |            |          |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                                                                              |                  |                                       |           |                       | L_        |       |          |              |            | LITRE POLY                |
|         |            |          |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u> |                      |                                                                              |                  |                                       |           |                       |           |       |          |              |            | toT: 1148011              |
|         |            |          |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      | . 1 K. W.                                                                    |                  |                                       |           |                       |           |       |          |              |            | ac: 10384C                |
|         |            |          |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                                                                              |                  |                                       |           |                       |           |       |          |              |            |                           |
|         |            |          |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      | <u></u>                                                                      |                  |                                       |           |                       |           |       |          |              |            |                           |
|         |            |          |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                                                                              |                  |                                       |           |                       |           |       |          |              |            |                           |
| 156     |            |          | ) ur              | `        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04/      | /Time:<br>25/91 17Ce |                                                                              | Relinquished By  |                                       | Date/Time | Received              |           | _     |          |              |            | Ship Via: FEDERAL EXPRESS |
| Relino  | uishe      | d By: (S | Signature         | •)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date     | /Time:               | Received By: (Signature)                                                     | Relinquished By  | : (Signature)                         | Date/Time | Received              | Ву:       | Signa | iture)   | ١.           |            | BL/Airbill Number: Dam:   |
| i       | -          |          | Signature<br>ANSS |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date     | 1 1093               | Received For Laboratory By: (Signature) (Appl M. D. De Guller of Filed Files | Relinquished By  | : (Signature)                         | Date/Time | Received<br>(Signatur | For<br>e) | Labor | aton     | Ву:          |            | 0776546875 07/25/91       |

\*See CONCENTRATION RANGE on back of form.

VDATEMPA AT 7°C UPON Veceipt at (AB VIS 234055

ecology and environment, inc.
300 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14080, TEL. 716/084 8080/
International Specialists in the Environment

9101.824 1524

CZI

SITE SPECIFIC GAPP SEE JACK MILLER S-WAIFRS 9-50/LS CHAIN-OF-CUSTODY RECORD

Page \_\_Lof \_\_L

| ſ   | Project No               | Project Name:         |                                              |             |         |          |                                                                         | Project Manager:                  |                |                                                |                                       |                 |                             |          |              |                  | 7          | /////      |                           |          |
|-----|--------------------------|-----------------------|----------------------------------------------|-------------|---------|----------|-------------------------------------------------------------------------|-----------------------------------|----------------|------------------------------------------------|---------------------------------------|-----------------|-----------------------------|----------|--------------|------------------|------------|------------|---------------------------|----------|
|     |                          | HBO30 NASP PHASE I BA |                                              |             | SE I BA | TC+ 20   | CH ZO JOHN BARKSDAZE                                                    |                                   |                |                                                |                                       |                 |                             |          | /            |                  |            |            |                           |          |
|     | Sampler                  | John Juth mell        |                                              |             |         | fullx    | nell                                                                    | Field Team Leader: STOTT DONELICK |                |                                                |                                       |                 |                             | Jak.     |              | 700              | 346        | REMARKS    |                           |          |
|     | STATION<br>NUMBER        | DATE                  | TIME                                         | S/          | IYPI    | Ę        |                                                                         | SAMPLE INFORMATION                |                | STATION LOCATION                               |                                       | NUMBER<br>OF    |                             | /        |              | ر<br>مرکزی       | )<br>};}{} | 2.35°23    | */ <sub>1</sub> z/        |          |
|     | NUMBER                   | DATE                  | I I I I                                      | COMP        | GRAI    | 4        | EXP                                                                     | ECTED COMPOUNOS (Concentration    | <u> </u>       | •/4/10/1                                       |                                       | CON-<br>TAINERS | /,                          | 22.00    | 200          | 12.14<br>12.14   | 99         |            | , air                     |          |
| 3 [ | <b>emos</b> 4            | 07/26                 | 1500                                         | Ĺ           | X       |          |                                                                         | 10N                               | [17297         | FO3GWO2                                        | 4                                     | 5               | K                           | ĸ        | K            | X                | K          | X          | VCA+ LOT: 1123063         |          |
| 23  | 5H021                    | 07/16                 | 1615                                         | <u> </u>    | X.      | L        |                                                                         | LON                               | 17298/         | POBGNOZ                                        | . (                                   | 5               | ×                           | X        | X            | ×                | ኢ          | X          | UC: 10355C                |          |
|     |                          |                       |                                              | _           |         |          |                                                                         | _,                                |                |                                                | · · · · · · · · · · · · · · · · · · · |                 |                             |          |              |                  |            |            | 1/2 GALLOW AMBER          |          |
|     |                          | <u> </u>              |                                              | <u> </u>    |         | L        |                                                                         |                                   |                |                                                |                                       |                 |                             |          | <u> </u>     | _                |            |            | LOT: 1071061              |          |
| Į   |                          |                       |                                              | _           | _       | <u> </u> | <u> </u>                                                                |                                   |                |                                                |                                       |                 |                             |          |              | <u> </u>         |            |            | ac: 10180c                |          |
| ]   |                          | <u> </u>              | <u> </u>                                     | _           | L       | $\perp$  |                                                                         |                                   |                | ļ <u>.                                    </u> |                                       |                 |                             |          |              | <u> </u>         |            |            | LITRE AMBER               |          |
|     |                          |                       |                                              | ·           |         |          |                                                                         |                                   | 1              |                                                |                                       | <u> </u>        |                             |          | LOT: 1057051 |                  |            |            |                           |          |
|     |                          | <u> </u>              |                                              | <u> </u>    | ļ_      | 1        |                                                                         |                                   |                |                                                |                                       |                 |                             |          |              | <u> </u>         |            |            | ac: 10141C                |          |
| ĺ   |                          | <u> </u>              | <u> </u>                                     | ļ           | L.      | 1        | _                                                                       | <u> </u>                          |                |                                                |                                       |                 |                             |          |              |                  |            |            | LITRE POLY                | <b>.</b> |
|     |                          |                       | ļ                                            | <u> </u>    | _       | ↓_       |                                                                         |                                   |                |                                                |                                       |                 |                             |          |              | $\downarrow_{-}$ |            |            | LOT: 1148011              | ·        |
|     |                          |                       | <u> </u>                                     | <u> </u>    | ┖       | _        |                                                                         |                                   |                |                                                |                                       | ļ               | i                           |          |              | <u> </u>         |            |            | ac: 10384c                |          |
|     |                          |                       | ļ <u>'</u>                                   | <u> </u>    |         | _        | ļ                                                                       |                                   |                |                                                |                                       |                 |                             |          |              | ļ                |            |            |                           |          |
| ١   |                          |                       | <u> </u>                                     | ļ           | _       | -        |                                                                         |                                   | <del></del>    |                                                |                                       |                 |                             |          |              | <u> </u>         | L.         |            |                           |          |
| ļ   | Deline de                | 1 8 (                 |                                              | <u>L</u>    | L,      |          | e/Time:                                                                 | Received By: (Signature)          | Relinquished B | (Sing at 112)                                  | Date/Time:                            | Received        |                             | <u>(</u> | L            | <u> </u>         |            |            |                           |          |
| 1   | Religement Bu            |                       | تسعط                                         | •           | - 1     |          | /26/91 1700                                                             | · -                               | Lenudamea B    | y. (olghature)                                 | Date/ Filling.                        | neceived        | By:                         | , aign   | ature        | .,               |            | - 1        | nip Via:<br>FEDERAL EXPRE | -<       |
|     |                          |                       |                                              |             |         |          | e/Time:                                                                 | Received By: (Signature)          | Relinquished B | y: (Signature)                                 | Date/Time:                            | Received        | Ву:                         | Sign     | Blure        | )                |            | L          | PENEICHE EKPRE            |          |
| ļ   | <u> </u>                 |                       | <u>.                                    </u> |             | _       | _        | 17                                                                      | 0                                 | <u> </u>       |                                                |                                       |                 |                             |          |              |                  |            |            | L/Airbilf Number:         | Date:    |
|     | Relinquished By: (Signat |                       | EKP.                                         | KP. 7/27/91 |         | 27/91    | Received For Laboratory By: (Signature)  K. March Indinator Field Files | Relinquished 8                    | y: (oignature) | Date/Time:                                     | Received I<br>(Signature              |                 | d For Laboratory By:<br>re) |          |              |                  |            | 0776546945 | 07/26/91                  |          |

\*See CONCENTRATION RANGE on back of form.

EXTRA VOA INCLUDED FOR TEMPERATURE ANALYSIS & (8°C - 1/61/91 PM)



ANALYZE ACCORDING TO SITE SPECIFIC QAPP SEE JACK MILLER

#### CHAIN-OF-CUSTODY RECORD

Page 1 of 1

| Proje        | l i              |       |            |    | Project Manager:                    |          |                     |                                                        | Г               |                                              |            |               |                          | $\overline{}$ | /////                                  |                |            |                      |            |                    |                                                |              |             |            |                          |
|--------------|------------------|-------|------------|----|-------------------------------------|----------|---------------------|--------------------------------------------------------|-----------------|----------------------------------------------|------------|---------------|--------------------------|---------------|----------------------------------------|----------------|------------|----------------------|------------|--------------------|------------------------------------------------|--------------|-------------|------------|--------------------------|
|              | 803              |       | NAS        | 2  | P                                   | IAS      | E I BA              | TCH                                                    | 2               |                                              |            |               | ے                        | BHN.          | BARK                                   | SDALE          | <b>-</b>   |                      | 1          |                    |                                                |              |             | /          | //234//                  |
| Samp         | Jobn ha Blan     |       |            | '  | Field Team Leader:  SCOTT TENELICIZ |          |                     |                                                        |                 |                                              | /          | Jy<br>V       | 292                      | 7/23<br>00549 | REMARKS  NOA LOT: 112 3003             |                |            |                      |            |                    |                                                |              |             |            |                          |
| STAT         | TATION DATE      |       | TIME       | SA | MPLE<br>YPE                         | R A      |                     | SAMPLE INFORMATION  EXPECTED COMPOUNDS (Concentration) |                 | n) •                                         |            |               | STATION LOCATION OF CON- |               |                                        |                | وعويد      |                      |            |                    | 7 3<br>6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 7 3.7<br>3.7 |             |            |                          |
|              |                  |       |            | 8  | GRAB                                |          | EX                  |                                                        |                 |                                              |            |               |                          |               | TAINERS                                | $\angle$       | 1/6        | ¥ ,                  | 188        | N N                |                                                | <u> </u>     |             |            |                          |
| 3 <u>6mo</u> | 33               | one   | 0940       | _  | X                                   | <u> </u> |                     |                                                        | Lon             | 1                                            |            | /             |                          | 299           | تـــــــــــــــــــــــــــــــــــــ | P036+          | 1033       | 5                    | X          | X                  | X                                              | X            | X           | X          | VOA: LOT: 1123063        |
| 3 640        | 32               | othe  | 1000       |    | K                                   | Ļ.       |                     |                                                        | Lon             | <u>.                                    </u> |            |               | 17                       | 300           | <u> </u>                               | 703GV          | V032       |                      | K          | X                  | X                                              | X            | Х           | X          | GC: 10355C               |
| 3 646        | <u>231</u>       | 07/26 | 1030       |    | K                                   | _        |                     |                                                        | w               | <u>ہ۔</u>                                    |            |               | _ل_                      | 301/          |                                        | P036+          | 1031       | 5                    | ٨          | X                  | X                                              | X            | X           | X.         | LOALLON AMBER            |
|              |                  | ·     | ļ          | _  |                                     | <u> </u> | ļ                   |                                                        |                 |                                              |            |               | $\succeq$                |               | ļ                                      | <del></del>    |            | <b>_</b>             | L          | $oldsymbol{\perp}$ | -                                              | <u> </u>     | _           | ļ          | 607: 1071061             |
| _            |                  |       |            | _  |                                     | <u> </u> | ļ                   |                                                        |                 |                                              |            |               |                          |               | ļ                                      |                |            |                      |            | <u> </u>           | L.                                             | ļ            |             | <b> </b>   | GC: 10180C               |
| <u> </u>     |                  |       |            |    |                                     | 1_       | <u> </u>            |                                                        |                 |                                              |            |               |                          |               | <u> </u>                               |                |            |                      | <u> </u>   |                    | <u> </u>                                       | L            |             |            | LITRE AMBER              |
|              |                  |       |            |    |                                     | L        | <u> </u>            |                                                        |                 |                                              |            |               |                          |               | <u> </u>                               |                |            |                      | L          | <u> </u>           | L                                              | <u> </u>     |             |            | LOT 1 105705 1           |
|              |                  |       |            | _  |                                     | $\perp$  |                     |                                                        |                 |                                              |            |               |                          |               |                                        |                | _          | 4                    |            |                    |                                                |              | GC: 10141 C |            |                          |
| -            |                  | ļ     |            |    |                                     | ╙        |                     |                                                        |                 |                                              |            |               |                          |               |                                        |                |            |                      |            |                    |                                                | <u> </u>     | LITAE POLY  |            |                          |
|              |                  |       |            |    |                                     | L        | <u> </u>            |                                                        |                 |                                              |            |               |                          |               | <u> </u>                               |                |            |                      | _          | μτ; 1148011        |                                                |              | ωτ; 1148011 |            |                          |
| <u> </u>     |                  |       |            | _  |                                     | _        | <u> </u>            |                                                        |                 |                                              |            |               |                          |               | ļ                                      |                |            | _                    | <u> </u> _ | <u> </u>           | ļ                                              | <u> </u>     |             | ļ          | CC: 10384C               |
|              | ,                |       |            |    |                                     |          | ļ                   |                                                        |                 |                                              |            |               |                          |               | 1                                      |                |            |                      | <u> </u>   | <u> </u>           | <u> </u>                                       |              |             |            |                          |
| ļ            |                  |       |            |    |                                     |          | <u> </u>            |                                                        |                 |                                              |            |               |                          |               | ļ                                      |                |            |                      | <u> </u>   |                    |                                                | <u> </u>     |             | _          |                          |
|              |                  | L     |            |    | L,                                  |          |                     | To.                                                    |                 | 14:                                          |            |               | 1                        |               | <u></u>                                | <del>- ,</del> |            | <del></del>          | <u> </u>   | <u> </u>           | <u> </u>                                       | <u> </u>     |             | <u>L</u> , |                          |
| Aelig        | 0                | 20    | equiure)   |    | - 1                                 |          | Time:<br>26/51 1700 |                                                        | ived By:<br>F.E |                                              | ature)     |               | Reli                     | nguished f    | By: (Signa                             | ture)          | Date/Time: | Received             | d By:      | (Sign              | ature                                          | 1)           |             |            | Ship Via:                |
| Reli         | Relinquished By: |       | Signature) |    |                                     |          | Time:               | Received By: (Signature)                               |                 | Relinquished B                               | ly: (Signa | tur <b>e)</b> | Date/Time:               | Received      | 1 By                                   | By: (Signature |            | (ure)                |            | $\exists$          | FEDERAL EXPRESS                                |              |             |            |                          |
|              |                  |       |            |    | _                                   | n        | (Y:)                |                                                        |                 | . 1 -6 -                                     | P · ·      |               |                          |               | 16.                                    |                | 0/*        |                      |            | 1 -1 -             |                                                |              |             | [          | BL/Airbill Number: Date: |
|              | F,               | E.    | Signature) |    |                                     | 7/2      | 1/91 945            | (Sign                                                  | **** 7          | Mara                                         | ratory By: |               | Heli                     | nquished (    | ay: (Signa                             | trate)         | Date/Time: | Received<br>(Signatu | re}        | £ abo              | irator                                         | у ву:        |             |            | 0776546956 07/26/91      |

\*See CONCENTRATION RANGE on back of form.

EXTRA VOA INCLUDED FOR TEMPERATURE MEASUREMENT

234055

## Ecology and Environment, Inc. SAMPLE TRACKING REPORT

| LAB<br>SAMPLE        | CLIENT<br>SAMPLE | TEST               | DATE                 | DATE      | DATE                 |
|----------------------|------------------|--------------------|----------------------|-----------|----------------------|
| ID                   | ID               | CODE               | SAMPLED              | EXTRACTED | ANALYZED             |
| 16959.01             | P03-GW026        | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16959.03             | P03-GW026        | WPNP&P1            | 07/24/91             |           | 07/29/91             |
| 10,37.03             | 105-4#020        | WPNPAH1            | 07/24/91             |           | 08/02/91             |
|                      |                  | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16959.04             | P03-GW026        | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16959.05             | P03-GW026        | WPNMET1            | 07/24/91             |           | 07/28/91             |
| 16960.01             | P03-GW027        | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16960.03             | P03-GW027        | WPNP&P1            | 07/24/91             |           | 07/29/91             |
|                      |                  | WPNPAH1            | 07/24/91             |           | 08/02/91             |
|                      |                  | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16960.04             | P03-GW027        | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16960.05             | P03-GW027        | WPNMET1            | 07/24/91             |           | 07/28/91             |
| 16961.01             | PO3-GWO27-DUP.   | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16961.03             | PO3-GWO27-DUP.   | WPNP&P1            | 07/24/91             |           | 07/29/91             |
|                      |                  | WPNPAH1<br>WPNPHL1 | 07/24/91<br>07/24/91 |           | 08/02/91<br>07/30/91 |
| 16961.04             | PO3-GWO27-DUP.   | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16961.04             | PO3-GW027-DUP.   | WPNTFT1            | 07/24/91             |           | 07/28/91             |
| 16962.01             | PO3-GW028        | WPNPRG1            | 07/24/91             |           | 07/28/91             |
| 16962.03             | P03-GW028        | WPNP&P1            | 07/24/91             |           | 07/29/91             |
| 10702103             | 103 0020         | WPNPAH1            | 07/24/91             |           | 08/02/91             |
|                      |                  | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16962.04             | P03-GW028        | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16962.05             | P03-GW028        | WPNMET1            | 07/24/91             |           | 07/28/91             |
| 16963.01             | P03-GW029        | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16963.03             | P03-GW029        | WPNP&P1            | 07/24/91             |           | 07/29/91             |
|                      |                  | WPNPAH1            | 07/24/91             |           | 08/02/91             |
|                      |                  | WPNPHL1            | 07/24/91             |           | 07/30/91             |
| 16963.04             | P03-GW029        | WPNTPH1            | 07/24/91             |           | 08/01/91             |
| 16963.05             | P03-GW029        | WPNMET1            | 07/24/91             |           | 07/28/91             |
| 16964.01             | P03-GW034        | WPNPRG1            | 07/24/91             |           | 07/31/91             |
| 16964.03             | P03-GW034        | WPNP&P1            | 07/24/91             |           | 07/29/91             |
|                      |                  | WPNPAH1            | 07/24/91             |           | 08/02/91             |
| 16064 04             | P03-GW034        | WPNPHL1<br>WPNTPH1 | 07/24/91<br>07/24/91 |           | 07/30/91<br>08/01/91 |
| 16964.04<br>16964.05 | P03-GW034        | WPNMET1            | 07/24/91             |           | 08/01/91             |
| 16965.01             | P03-S004A        | SPNPRG1            | 07/24/91             |           | 08/01/91             |
| 16965.02             | P03-S004A        | SPNTPH1            | 07/24/91             |           | 08/05/91             |
| 16965.03             | P03-S004A        | SPNMET1            | 07/24/91             |           | 07/28/91             |
|                      | 100 000 111      | SPNP&P1            | 07/24/91             |           | 07/30/91             |
|                      |                  | SPNPAH1            | 07/24/91             |           | 08/01/91             |
|                      |                  | SPNPHL1            | 07/24/91             |           | 07/31/91             |
| 16966.01             | P03-S009A        | SPNPRG1            | 07/24/91             |           | 08/01/91             |
| 16966.02             | P03-S009A        | SPNTPH1            | 07/24/91             |           | 08/05/91             |
| 16966.03             | P03-S009A        | SPNMET1            | 07/24/91             |           | 07/28/91             |
|                      |                  | SPNP&P1            | 07/24/91             |           | 07/30/91             |
|                      |                  | SPNPAH1            | 07/24/91             |           | 08/01/91             |

## Ecology and Environment, Inc. SAMPLE TRACKING REPORT

| LAB<br>SAMPLE<br>ID | CLIENT<br>SAMPLE<br>ID |     | TEST<br>CODE       | DATE<br>SAMPLED      | DATE<br>EXTRACTED | DATE<br>ANALYZED     |
|---------------------|------------------------|-----|--------------------|----------------------|-------------------|----------------------|
| 17066.01            | P03-GW023              |     | WPNPRG1            | 07/25/91             |                   | 07/31/91             |
| 17066.03            | P03-GW023              |     | WPNP&P1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | WPNPAH1            | 07/25/91             |                   | 08/02/91             |
|                     |                        |     | WPNPHL1            | 07/25/91             |                   | 08/02/91             |
| 17066.04            | P03-GW023              |     | WPNTPH1            | 07/25/91             |                   | 07/30/91             |
| 17066.05            | P03-GW023              |     | WPNMET1            | 07/25/91             |                   | 07/31/91             |
| 17067.01            | P03-GW030              |     | WPNPRG1            | 07/25/91             |                   | 07/31/91             |
| 17067.03            | P03-GW030              |     | WPNP&P1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | WPNPAH1            | 07/25/91             |                   | 08/02/91             |
| _                   |                        |     | WPNPHL1            | 07/25/91             |                   | 08/02/91             |
| 17067.04            | P03-GW030              |     | WPNTPH1            | 07/25/91             |                   | 07/30/91             |
| 17067.05            | P03-GW030              |     | WPNMET1            | 07/25/91             |                   | 07/31/91             |
| 17068.01            | P03-S001A              |     | SPNPRG1            | 07/25/91             |                   | 08/01/91             |
| 17068.02            | P03-S001A              |     | SPNTPH1            | 07/25/91             |                   | 07/29/91             |
| 17068.03            | P03-S001A              |     | SPNMET1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | SPNP&P1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | SPNPAH1<br>SPNPHL1 | 07/25/91<br>07/25/91 |                   | 08/02/91<br>08/02/91 |
| 17069.01            | P03-S007A              |     | SPNPRG1            | 07/25/91             |                   | 08/02/91             |
| 17069.01            | P03-S007A              |     | SPNTPH1            | 07/25/91             |                   | 07/29/91             |
| 17069.02            | P03-S007A              |     | SPNMET1            | 07/25/91             |                   | 07/23/31             |
| 17007.03            | 103-30071              |     | SPNP&P1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | SPNPAH1            | 07/25/91             |                   | 08/02/91             |
|                     |                        |     | SPNPHL1            | 07/25/91             |                   | 08/03/91             |
| 17070.01            | P03-S012A              |     | SPNPRG1            | 07/25/91             |                   | 08/02/91             |
| 17070.02            | P03-S012A              |     | SPNTPH1            | 07/25/91             |                   | 07/29/91             |
| 17070.03            | P03-S012A              |     | SPNMET1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | SPNP&P1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | SPNPAH1            | 07/25/91             |                   | 08/02/91             |
|                     |                        |     | SPNPHL1            | 07/25/91             |                   | 08/03/91             |
| 17071.01            | P03-S017A              |     | SPNPRG1            | 07/25/91             |                   | 08/02/91             |
| 17071.02            | P03-S017A              |     | SPNTPH1            | 07/25/91             |                   | 07/29/91             |
| 17071.03            | P03-S017A              |     | SPNMET1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | SPNP&P1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | SPNPAH1            | 07/25/91             |                   | 08/02/91             |
| 17070 01            |                        |     | SPNPHL1            | 07/25/91             |                   | 08/03/91             |
| 17072.01            | P03-S023A              |     | SPNPRG1            | 07/25/91             |                   | 08/02/91             |
| 17072.02            | P03-S023A              |     | SPNTPH1            | 07/25/91             |                   | 07/29/91             |
| 17072.03            | P03-S023A              |     | SPNMET1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | SPNP&P1<br>SPNPAH1 | 07/25/91<br>07/25/91 |                   | 07/31/91<br>08/02/91 |
|                     |                        |     | SPNPAH1<br>SPNPHL1 | 07/25/91             |                   | 08/02/91             |
| 17073.01            | P03-S030A              | · · | SPNPRG1            | 07/25/91             |                   | 08/03/91             |
| 17073.01            | P03-S030A              |     | SPNTPH1            | 07/25/91             |                   | 07/29/91             |
| 17073.02            | P03-S030A              |     | SPNMET1            | 07/25/91             |                   | 07/31/91             |
| 1.0.0.00            | 100 000011             |     | SPNP&P1            | 07/25/91             |                   | 07/31/91             |
|                     |                        |     | SPNPAH1            | 07/25/91             |                   | 08/02/91             |
|                     |                        |     |                    | <b>,</b>             |                   |                      |

## Ecology and Environment, Inc. SAMPLE TRACKING REPORT

| LAB<br>SAMPLE<br>ID  | CLIENT<br>SAMPLE<br>ID | С | EST<br>ODE       | DATE<br>SAMPLED      | DATE<br>EXTRACTED | DATE<br>ANALYZED     |
|----------------------|------------------------|---|------------------|----------------------|-------------------|----------------------|
| 17297.01             | P03GW024               |   | PNPRG1           | 07/26/91             |                   | 08/02/91             |
| 17297.03             | P03GW024               |   | PNP&P1           | 07/26/91             |                   | 07/31/91             |
|                      |                        |   | PNPAH1           | 07/26/91             |                   | 08/03/91             |
|                      |                        |   | PNPHL1           | 07/26/91             |                   | 08/03/91             |
| 17297.04             | P03GW024               | V | PNTPH1           | 07/26/91             |                   | 07/30/91             |
| 17297.05             | P03GW024               | W | PNMET1           | 07/26/91             |                   | 07/31/91             |
| 17298.01             | P03GW025               |   | PNPRG1           | 07/26/91             |                   | 08/06/91             |
| 17298.03             | P03GW025               |   | PNP&P1           | 07/26/91             |                   | 07/31/91             |
|                      |                        |   | PNPAH1           | 07/26/91             |                   | 08/03/91             |
| 47-00                |                        |   | PNPHL1           | 07/26/91             |                   | 08/03/91             |
| 17298.04             | P03GW025               |   | PNTPH1           | 07/26/91             |                   | 07/30/91             |
| 17298.05             | P03GW025               |   | PNMET1           | 07/26/91             |                   | 07/31/91             |
| 17299.01             | P03GW033               |   | PNPRG1           | 07/26/91             |                   | 08/02/91             |
| 17299.03             | P03GW033               |   | PNP&P1<br>PNPAH1 | 07/26/91<br>07/26/91 |                   | 07/31/91<br>08/03/91 |
|                      |                        |   | PNPHL1           | 07/26/91             |                   | 08/03/91             |
| 17299.04             | P03GW033               |   | PNTPH1           | 07/26/91             |                   | 07/30/91             |
| 17299.05             | P03GW033               |   | PNMET1           | 07/26/91             |                   | 07/31/91             |
| 17300.01             | P03GW032               |   | PNPRG1           | 07/26/91             |                   | 08/02/91             |
| 17300.03             | P03GW032               |   | PNP&P1           | 07/26/91             |                   | 07/31/91             |
|                      |                        |   | PNPAH1           | 07/26/91             |                   | 08/03/91             |
|                      |                        | W | PNPHL1           | 07/26/91             |                   | 08/03/91             |
| 17300.04             | P03GW032               | W | PNTPH1           | 07/26/91             |                   | 07/30/91             |
| 17300.05             | P03GW032               | W | PNMET1           | 07/26/91             |                   | 07/31/91             |
| 17301.01             | P03GW031               | W | PNPRG1           | 07/26/91             |                   | 08/02/91             |
| 17301.03             | P03GW031               |   | PNP&P1           | 07/26/91             |                   | 07/31/91             |
|                      |                        |   | PNPAH1           | 07/26/91             |                   | 08/03/91             |
| 470-4                |                        |   | PNPHL1           | 07/26/91             |                   | 08/03/91             |
| 17301.04             | P03GW031               |   | PNTPH1           | 07/26/91             |                   | 08/01/91             |
| 17301.05             | P03GW031               | - | PNMET1           | 07/26/91             |                   | 07/31/91             |
| 17302.01<br>17302.02 | P03S018A               |   | PNPRG1<br>PNTPH1 | 07/26/91<br>07/26/91 |                   | 08/02/91             |
| 17302.02             | P03S018A<br>P03S018A   |   | PNIPHI<br>PNMET1 | 07/26/91             |                   | 07/30/91<br>07/31/91 |
| 1/302.03             | F022010W               | = | PNP&P1           |                      |                   | 07/31/91             |
|                      |                        |   | PNPAH1           | 07/26/91             |                   | 08/03/91             |
|                      |                        |   | PNPHL1           | 07/26/91             |                   | 08/06/91             |
| 17303.01             | P03S019A               |   | PNPRG1           | 07/26/91             |                   | 08/02/91             |
| 17303.02             | P03S019A               |   | PNTPH1           | 07/26/91             |                   | 07/30/91             |
| 17303.03             | P03S019A               |   | PNMET1           | 07/26/91             |                   | 07/31/91             |
|                      |                        |   | PNP&P1           | 07/26/91             |                   | 07/31/91             |
|                      |                        | S | PNPAH1           | 07/26/91             |                   | 08/03/91             |
|                      |                        | S | PNPHL1           | 07/26/91             |                   | 08/06/91             |
| 17304.01             | P03S00 <b>8</b> A      |   | PNPRG1           | 07/26/91             |                   | 08/02/91             |
| 17304.02             | P03S008A               |   | PNTPH1           | 07/26/91             |                   | 07/30/91             |
| 17304.03             | P03S008A               |   | PNMET1           | 07/26/91             |                   | 07/31/91             |
|                      |                        |   | PNP&P1           | 07/26/91             |                   | 07/ <b>31/91</b>     |
|                      |                        | S | PNPAH1           | 07/26/91             |                   | 0 <b>8</b> /03/91    |

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17066 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW023

| PARAMETER | RESULTS                                  | Q | QNT. LIMIT | UNITS |
|-----------|------------------------------------------|---|------------|-------|
|           | water space prove minut while come milks |   |            |       |
| Arsenic   | ND                                       |   | 60         | UG/L  |
| Chromium  | 140                                      |   | 10         | UG/L  |
| Zinc      | 64                                       |   | 20         | UG/L  |
| Lead      | 160                                      |   | 40         | UG/L  |
| Cadmium   | 11                                       |   | 5.0        | UG/L  |
| Nickel    | 64                                       |   | 40         | UG/L  |
| Copper    | 72                                       |   | 25         | UG/L  |
| Silver    | ND                                       |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

NA = NOT APPLICABLE

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-17297 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW024

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | 78      |   | 10         | UG/L  |
| Zinc      | 84      |   | 20         | UG/L  |
| Lead      | 1800    |   | 40         | UG/L  |
| Cadmium   | ND      |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | 89      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

NA = NOT APPLICABLE

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-17298 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW025

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         |   |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | 19      |   | 10         | UG/L  |
| Zinc      | 56      |   | 20         | UG/L  |
| Lead      | 740     |   | 40         | UG/L  |
| Cadmium   | 15      |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | 62      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

NA = NOT APPLICABLE

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : EE-91-16959 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW026

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           | ****    | _ |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | ND      |   | 10         | UG/L  |
| Zinc      | 31      |   | 20         | UG/L  |
| Lead      | 95      |   | 40         | UG/L  |
| Cadmium   | ND      |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |
|           |         |   |            |       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB :EE-91-16960 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW027

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | - |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | 150     |   | 10         | UG/L  |
| Zinc      | 62      |   | 20         | UG/L  |
| Lead      | 560     |   | 40         | UG/L  |
| Cadmium   | 7.9     |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | 160     |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : EE-91-16961 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW027-DUP.

SAMPLE LOCATION :

| PARAMETER | RESULTS                               | Q | QNT. LIMIT | UNITS |
|-----------|---------------------------------------|---|------------|-------|
|           | · · · · · · · · · · · · · · · · · · · | - |            |       |
| Arsenic   | ND                                    |   | 60         | UG/L  |
| Chromium  | 150                                   |   | 10         | UG/L  |
| Zinc      | 75                                    |   | 20         | UG/L  |
| Lead      | 580                                   |   | 40         | UG/L  |
| Cadmium   | 9.5                                   |   | 5.0        | UG/L  |
| Nickel    | 41                                    |   | 40         | UG/L  |
| Copper    | 180                                   |   | 25         | UG/L  |
| Silver    | ND                                    |   | 10         | UG/L  |

\_\_\_\_\_ QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-16962 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW028

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | ND      |   | 10         | UG/L  |
| Zinc      | 24      |   | <b>2</b> 0 | UG/L  |
| Lead      | ND      |   | 40         | UG/L  |
| Cadmium   | ND      |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | <b>2</b> 5 | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT ND = NOT DETECTED D = COMMENT D = COMENT D = COMMENT D = COMMENT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : EE-91-16963 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW029

SAMPLE LOCATION :

| PARAMETER | RESULTS                                   | Q | QNT. LIMIT | UNITS |
|-----------|-------------------------------------------|---|------------|-------|
|           | table alless while while table terms were |   |            |       |
| Arsenic   | ND                                        |   | 60         | UG/L  |
| Chromium  | ND                                        |   | 10         | UG/L  |
| Zinc      | 24                                        |   | 20         | UG/L  |
| Lead      | ND                                        |   | 40         | UG/L  |
| Cadmium   | ND                                        |   | 5.0        | UG/L  |
| Nickel    | ND                                        |   | 40         | UG/L  |
| Copper    | ND                                        |   | 25         | UG/L  |
| Silver    | ND                                        |   | 10         | UG/L  |
|           |                                           |   |            |       |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17067 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW030

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | 58      |   | 10         | UG/L  |
| Zinc      | 33      |   | 20         | UG/L  |
| Lead      | ND .    |   | 40         | UG/L  |
| Cadmium   | 5.3     |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-17301 MATRIX: WATER

SAMPLE ID CLIENT: PO3GWO31

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           | -       | - |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | 12      |   | 10         | UG/L  |
| Zinc      | ND      |   | 20         | UG/L  |
| Lead      | ND      |   | 40         | UG/L  |
| Cadmium   | ND ·    |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17300 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW032

| PARAMETER | RESULTS                               | Q | QNT. LIMIT | UNITS |
|-----------|---------------------------------------|---|------------|-------|
|           | water same their webs with Hills with | ~ |            |       |
| Arsenic   | ND                                    |   | 60         | UG/L  |
| Chromium  | 11                                    |   | 10         | UG/L  |
| Zinc      | 30                                    |   | 20         | UG/L  |
| Lead      | ND                                    |   | 40         | UG/L  |
| Cadmium   | 5.0                                   |   | 5.0        | UG/L  |
| Nickel    | ND                                    |   | 40         | UG/L  |
| Copper    | ND                                    |   | 25         | UG/L  |
| Silver    | ND                                    |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17299 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW033

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           | -       | _ |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | 14      |   | 10         | UG/L  |
| Zinc      | ND      |   | 20         | UG/L  |
| Lead      | ND      |   | 40         | UG/L  |
| Cadmium   | 7.3     |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-16964 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW034

SAMPLE LOCATION :

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           |         | _ |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | 25      |   | 10         | UG/L  |
| Zinc      | 24      |   | 20         | UG/L  |
| Lead      | ND      |   | 40         | UG/L  |
| Cadmium   | ND      |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | 25         | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

9101.824

| (ug/L) |  |
|--------|--|
|--------|--|

| Parameter | E & E<br>Laboratory<br>No. 91-<br>17299 | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|-----------|-----------------------------------------|-------------------|-----------------|----------------------|---------------------|
| Arsenic   |                                         | ND                | 2000            | <b>2</b> 100         | 107                 |
| Chromium  |                                         | 14                | 200             | 2 <b>2</b> 0         | 105                 |
| Zinc      |                                         | ND                | 500             | 480                  | 97                  |
| Lead      |                                         | ND                | 500             | 480                  | 95                  |
| Cadmium   |                                         | 7.3               | 50              | 58                   | 102                 |
| Nickel    |                                         | ND                | 500             | 480                  | 96                  |
| Copper    |                                         | ND                | 250             | 240                  | 96                  |
| Silver    |                                         | ND                | 50              | 48                   | 96                  |

ND = NOT DETECTED

\*\* = RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

#### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF WATER SAMPLES

9101.824

|                     |                                         | (ug/L)               |                       |                                            |
|---------------------|-----------------------------------------|----------------------|-----------------------|--------------------------------------------|
| Parameter           | E & E<br>Laboratory<br>No. 91-<br>17299 | Original<br>Analysis | Replicate<br>Analysis | Relative<br>Percent<br>Difference<br>(RPD) |
| Arsenic<br>Chromium |                                         | ND<br>14             | ND<br>15              | NC<br>4.6                                  |
| Zinc                |                                         | ND                   | ND                    | NC                                         |
| Lead<br>Cadmium     |                                         | ND<br>7.3            | ND<br>ND              | NC<br>NC                                   |
| Nickel<br>Copper    |                                         | ND<br>ND             | ND<br>ND              | NC<br>NC                                   |
| Silver              |                                         | ND                   | ND                    | NC                                         |

ND = NOT DETECTED

NC = NOT CALCULABLE

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

SAMPLE LOCATION :

| PARAMETER | RESULTS                            | Q | QNT. LIMIT | UNITS |
|-----------|------------------------------------|---|------------|-------|
|           | 4040 4000 100p may name made 1000; | - |            |       |
| Arsenic   | ND                                 |   | 60         | UG/L  |
| Chromium  | ND                                 |   | 10         | UG/L  |
| Zinc      | 28                                 |   | 20         | UG/L  |
| Lead      | ND                                 |   | 40         | UG/L  |
| Cadmium   | ND                                 |   | 5.0        | UG/L  |
| Nickel    | ND                                 |   | 40         | UG/L  |
| Copper    | ND                                 |   | 25         | UG/L  |
| Silver    | ND                                 |   | 10         | UG/L  |
|           |                                    |   |            |       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

| PARAMETER | RESULTS             | Q | QNT. LIMIT | UNITS |
|-----------|---------------------|---|------------|-------|
|           | *** *** *** *** *** | - |            |       |
| Arsenic   | ND                  |   | 60         | UG/L  |
| Chromium  | ND                  |   | 10         | UG/L  |
| Zinc      | ND                  |   | 20         | UG/L  |
| Lead      | ND                  |   | 40         | UG/L  |
| Cadmium   | ND                  |   | 5.0        | UG/L  |
| Nickel    | ND                  |   | 40         | UG/L  |
| Copper    | ND                  |   | 25         | UG/L  |
| Silver    | ND                  |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

| PARAMETER | RESULTS | Q | QNT. LIMIT | UNITS |
|-----------|---------|---|------------|-------|
|           | -       | _ |            |       |
| Arsenic   | ND      |   | 60         | UG/L  |
| Chromium  | ND      |   | 10         | UG/L  |
| Zinc      | ND      |   | 20         | UG/L  |
| Lead      | ND      |   | 40         | UG/L  |
| Cadmium   | ND      |   | 5.0        | UG/L  |
| Nickel    | ND      |   | 40         | UG/L  |
| Copper    | ND      |   | <b>2</b> 5 | UG/L  |
| Silver    | ND      |   | 10         | UG/L  |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17066 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW023

RESULTS Q QNT. LIMIT UNITS
----- - - ----- 1.0 MG/L PARAMETER 1.0 MG/L TRPH

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB :EE-91-17297 MATRIX MATRIX: WATER

SAMPLE ID CLIENT: PO3GW024

PARAMETER
----TRPH 

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17298 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW025

RESULTS Q QNT. LIMIT UNITS PARAMETER -----TRPH 11 1.0 MG/L

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

TEST CODE : WPNTPH1

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC TRPH

UNITS : MG/L

PARAMETER : TRPH

| SAMPLE ID                     | RESULTS | Q QNT. | LIMIT |
|-------------------------------|---------|--------|-------|
| EE-91-16959<br>P03-GW026      | 7.3     |        | 1.0   |
| EE-91-16960<br>P03-GW027      | 5.2     |        | 1.0   |
| EE-91-16961<br>P03-GW027-DUP. | 4.4     |        | 1.0   |
| EE-91-16962<br>P03-GW028      | ND      |        | 1.0   |
| EE-91-16963<br>P03-GW029      | ND      |        | 1.0   |
| EE-91-16964<br>P03-GW034      | ND      |        | 1.0   |
| METHOD BLANK                  | ND      |        | 1.0   |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17067 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW030

PARAMETER RESULTS Q QNT. LIMIT UNITS ------TRPH ND 1.0 MG/L

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17301 MATRIX: WATER

SAMPLE ID CLIENT: PO3GWO31

PARAMETER ----1.0 MG/L TRPH

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-17300 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW032

RESULTS Q QNT. LIMIT UNITS PARAMETER ND TRPH 1.0 MG/L

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
SAMPLE ID LAB : EE-91-17299 MATRIX

MATRIX: WATER

SAMPLE ID CLIENT: PO3GW033

RESULTS Q QNT. LIMIT UNITS
----- - ----- ----- ND 1.0 MG/L PARAMETER 1.0 MG/L TRPH

L = PRESENT BELOW STATED DETECTION LIMIT

9101.792

| (mg/L)                         |                                |                   |                 |                      |                     |  |
|--------------------------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|--|
| Parameter                      | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |  |
| T. RECOVERA PETROLEUM HYDROCAR |                                | ND                | 2.2             | 2.0                  | 95                  |  |

ND = NOT DETECTED

9101.807

|                                     |                                | (mg/L)            |                 |                      |                     |
|-------------------------------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter                           | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| T. Recovera<br>Petroleum<br>Hydroca | m,                             |                   |                 |                      |                     |
|                                     | Batch QC                       | ND                | 1.3             | 1.2                  | 92                  |

ND = NOT DETECTED

\*\* = RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

9101.824

|                       |                                | (mg/L)            |                 |                      |                     |
|-----------------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter             | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| T. Recovers Petroleum | n.                             |                   |                 |                      |                     |
|                       | Batch QC<br>Batch QC           | ND<br>ND          | 1.3             | 1.2                  | 92<br>95            |

ND = NOT DETECTED

<sup>\*\* =</sup> RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

TEST CODE : WPNTPH1

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC TRPH

UNITS : MG/L

PARAMETER : TRPH

SAMPLE ID

RESULTS Q QNT. LIMIT

\_\_\_\_\_

METHOD BLANK 1

ND

1.0

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

RESULTS Q QNT. LIMIT UNITS
ND 1.0 MG/I PARAMETER
-----TRPH

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ESTIMATED VALUE D = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

RESULTS Q QNT. LIMIT UNITS PARAMETER ND TRPH 1.0 MG/L

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

TEST CODE :WPNPRG1

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17066 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW023

| PARAMETER                    | RESULTS | Q | QNT. LIMIT |
|------------------------------|---------|---|------------|
|                              |         | _ |            |
| Benzene                      | ND      |   | 10         |
| Toluene                      | ND      |   | 10         |
| Ethylbenzene                 | ND      |   | 10         |
| Total Xylenes                | ND      |   | 10         |
| 1,2 - Dichlorobenzene        | ND      |   | 10         |
| 1,3 - Dichlorobenzene        | ND      |   | 10         |
| 1,4 - Dichlorobenzene        | ND      |   | 10         |
| 1,1 - Dichloroethene         | ND      |   | 10         |
| Methylene Chloride           | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene | ND      |   | 10         |
| 1,1 - Dichloroethane         | ND      |   | 10         |
| 1,1,1 - Trichloroethane      | ND      |   | 10         |
| 1,2 - Dichloroethane         | ND      |   | 10         |
| Trichloroethene              | ND      |   | 10         |
| Tetrachloroethene            | ND      |   | 10         |
| Chlorobenzene                | ND      |   | 10         |

TEST CODE :WPNPRG1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PURGABLES- GC UNITS : UG/L
SAMPLE ID LAB : EE-91-17297 MATRIX: WATER MATRIX: WATER

SAMPLE ID CLIENT: PO3GWO24

| RESULTS | Q                                                     | QNT. LIMIT                                            |
|---------|-------------------------------------------------------|-------------------------------------------------------|
|         |                                                       |                                                       |
| 810     |                                                       | 200                                                   |
| ND      |                                                       | 200                                                   |
| ND      |                                                       | 200                                                   |
| 1500    |                                                       | 200                                                   |
| ND      |                                                       | 200                                                   |
|         | 810 ND ND 1500 ND | 810 ND ND 1500 ND |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :WPNPRG1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17298 MATRIX: WATER

SAMPLE ID CLIENT: PO3GWO25

| PARAMETER                             | RESULTS       | Q | QNT. LIMIT |
|---------------------------------------|---------------|---|------------|
| AND DESCRIPTION OF THE TAXABLE PARTY. |               | - |            |
| Benzene                               | ND            |   | 1000       |
| Toluene                               | 3 <b>9</b> 00 |   | 1000       |
| Ethylbenzene                          | ND            |   | 1000       |
| Total Xylenes                         | 2400          |   | 1000       |
| 1,2 - Dichlorobenzene                 | ND            |   | 1000       |
| 1,3 - Dichlorobenzene                 | ND            |   | 1000       |
| 1,4 - Dichlorobenzene                 | ND            |   | 1000       |
| 1,1 - Dichloroethene                  | ND            |   | 1000       |
| Methylene Chloride                    | ND            |   | 1000       |
| Trans - 1,2 - Dichloroethene          | ND            |   | 1000       |
| 1,1 - Dichloroethane                  | ND            |   | 1000       |
| 1,1,1 - Trichloroethane               | ND            |   | 1000       |
| 1,2 - Dichloroethane                  | ND            |   | 1000       |
| Trichloroethene                       | ND            |   | 1000       |
| Tetrachloroethene                     | ND            |   | 1000       |
| Chlorobenzene                         | ND            |   | 1000       |
|                                       |               |   |            |

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L
SAMPLE ID LAB : EE-91-16959 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW026

SAMPLE LOCATION :

| PARAMETER                         | RESULTS | Q | QNT. LIMIT |
|-----------------------------------|---------|---|------------|
| THE STR. 1111 AND AND AND THE TYP |         | - |            |
| Benzene                           | ND      |   | 50         |
| Toluene                           | ND      |   | 50         |
| Ethylbenzene                      | ND      |   | 50         |
| Total Xylenes                     | 220     |   | 50         |
| 1,2 - Dichlorobenzene             | ND      |   | 50         |
| 1,3 - Dichlorobenzene             | ND      |   | 50         |
| 1,4 - Dichlorobenzene             | ND      |   | 50         |
| 1,1 - Dichloroethene              | ND      |   | 50         |
| Methylene Chloride                | ND      |   | 50         |
| Trans - 1,2 - Dichloroethene      | ND      |   | 50         |
| 1,1 - Dichloroethane              | ND      |   | 50         |
| 1,1,1 - Trichloroethane           | ND      |   | 50         |
| 1,2 - Dichloroethane              | ND      |   | 50         |
| Trichloroethene                   | ND      |   | 50         |
| Tetrachloroethene                 | ND      |   | 50         |
| Chlorobenzene                     | ND      |   | 50         |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNPRG1

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-16960 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW027

SAMPLE LOCATION:

| PARAMETER                                    | RESULTS    | Q | QNT. LIMIT |
|----------------------------------------------|------------|---|------------|
| alle sprij sjele sjele alle den den den like |            | - |            |
| Benzene                                      | ND         |   | 500        |
| Toluene                                      | ND         |   | 500        |
| Ethylbenzene                                 | ND         |   | 500        |
| Total Xylenes                                | 1400       |   | 500        |
| 1,2 - Dichlorobenzene                        | ND         |   | 500        |
| 1,3 - Dichlorobenzene                        | <b>N</b> D |   | 500        |
| 1,4 - Dichlorobenzene                        | ND         |   | 500        |
| 1,1 - Dichloroethene                         | ND         |   | 500        |
| Methylene Chloride                           | ND         |   | 500        |
| Trans - 1,2 - Dichloroethene                 | ND         |   | 500        |
| 1,1 - Dichloroethane                         | ND         |   | 500        |
| 1,1,1 - Trichloroethane                      | ND         |   | 500        |
| 1,2 - Dichloroethane                         | ND         |   | 500        |
| Trichloroethene                              | ND         |   | 500        |
| Tetrachloroethene                            | ND         |   | 500        |
| Chlorobenzene                                | ND         |   | 500        |
|                                              |            |   |            |

\_\_\_\_\_\_ 

TEST CODE :WPNPRG1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-16961 MATRIX: WATER SAMPLE ID CLIENT: PO3-GW027-DUP.

SAMPLE LOCATION :

| PARAMETER                    | RESULTS | Q | QNT, LIMIT |
|------------------------------|---------|---|------------|
|                              |         |   |            |
| Benzene                      | ND      |   | 500        |
| Toluene                      | ND      |   | 500        |
| Ethylbenzene                 | ND      |   | 500        |
| Total Xylenes                | 1600    |   | 500        |
| 1,2 - Dichlorobenzene        | ND      |   | 500        |
| 1,3 - Dichlorobenzene        | ND      |   | 500        |
| 1,4 - Dichlorobenzene        | ND      |   | 500        |
| 1,1 - Dichloroethene         | ND      |   | 500        |
| Methylene Chloride           | ND      |   | 500        |
| Trans - 1,2 - Dichloroethene | ND      |   | 500        |
| 1,1 - Dichloroethane         | ND      |   | 500        |
| 1,1,1 - Trichloroethane      | ND      |   | 500        |
| 1,2 - Dichloroethane         | ND      |   | 500        |
| Trichloroethene              | ND      |   | 500        |
| Tetrachloroethene            | ND      |   | 500        |
| Chlorobenzene                | ND      |   | 500        |
|                              |         |   |            |

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-16962 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW028

SAMPLE LOCATION :

| PARAMETER                          | RESULTS | Q | QNT. LIMIT |
|------------------------------------|---------|---|------------|
| 4000 with 1000 mm reps was not the |         |   |            |
| Benzene                            | ND      |   | 10         |
| Toluene                            | ND .    |   | 10         |
| Ethylbenzene                       | ND      |   | 10         |
| Total Xylenes                      | ND      |   | 10         |
| 1,2 - Dichlorobenzene              | ND      |   | 10         |
| 1,3 - Dichlorobenzene              | ND      |   | 10         |
| 1,4 - Dichlorobenzene              | ND      |   | 10         |
| 1,1 - Dichloroethene               | ND      |   | 10         |
| Methylene Chloride                 | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene       | ND      |   | 10         |
| 1,1 - Dichloroethane               | ND      |   | 10         |
| 1,1,1 - Trichloroethane            | ND      |   | 10         |
| 1,2 - Dichloroethane               | ND      |   | 10         |
| Trichloroethene                    | ND      |   | 10         |
| Tetrachloroethene                  | ND      |   | 10         |
| Chlorobenzene                      | ND      |   | 10         |
|                                    |         |   |            |

TEST CODE :WPNPRG1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-16963 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW029

SAMPLE LOCATION :

| PARAMETER                    | RESULTS | Q | QNT. LIMIT |
|------------------------------|---------|---|------------|
|                              |         | - |            |
| Benzene                      | ND      |   | 200        |
| Toluene                      | ND      |   | 200        |
| Ethylbenzene                 | ND      |   | 200        |
| Total Xylenes                | 1200    |   | 200        |
| 1,2 - Dichlorobenzene        | ND      |   | 200        |
| 1,3 - Dichlorobenzene        | ND      |   | 200        |
| 1,4 - Dichlorobenzene        | ND      |   | 200        |
| 1,1 - Dichloroethene         | ИD      |   | 200        |
| Methylene Chloride           | ND      |   | 200        |
| Trans - 1,2 - Dichloroethene | ND      |   | 200        |
| 1,1 - Dichloroethane         | ND      |   | 200        |
| 1,1,1 - Trichloroethane      | ND      |   | 200        |
| 1,2 - Dichloroethane         | ND      |   | 200        |
| Trichloroethene              | ND      |   | 200        |
| Tetrachloroethene            | ND      |   | 200        |
| Chlorobenzene                | ND      |   | 200        |
|                              |         |   |            |

TEST CODE :WPNPRG1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17067 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW030

| PARAMETER                                     | RESULTS | Q | QNT. LIMIT |
|-----------------------------------------------|---------|---|------------|
| with sales alone trace made with sales trace. |         | _ |            |
| Benzene                                       | ND      |   | 10         |
| Toluene                                       | ND      |   | 10         |
| Ethylbenzene                                  | ND      |   | 10         |
| Total Xylenes                                 | ND      |   | 10         |
| 1,2 - Dichlorobenzene                         | ND      |   | 10         |
| 1,3 - Dichlorobenzene                         | ND      |   | 10         |
| 1,4 - Dichlorobenzene                         | ND      |   | 10         |
| 1,1 - Dichloroethene                          | ND      |   | 10         |
| Methylene Chloride                            | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene                  | ND      |   | 10         |
| 1,1 - Dichloroethane                          | ND      |   | 10         |
| 1,1,1 - Trichloroethane                       | ND      |   | 10         |
| 1,2 - Dichloroethane                          | ND      |   | 10         |
| Trichloroethene                               | ND      |   | 10         |
| Tetrachloroethene                             | ND      |   | 10         |
| Chlorobenzene                                 | ND      |   | 10         |
|                                               |         |   |            |

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE : WPNPRG1

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17301 MATRIX: WATER

SAMPLE ID CLIENT: PO3GWO31

| PARAMETER                                        | RESULTS | Q | QNT. LIMIT |
|--------------------------------------------------|---------|---|------------|
| total habo about come undi unite desse anne anne |         | - |            |
| Benzene                                          | ND      |   | 10         |
| Toluene                                          | ND      |   | 10         |
| Ethylbenzene                                     | ND      |   | 10         |
| Total Xylenes                                    | ND      |   | 10         |
| 1,2 - Dichlorobenzene                            | ND      |   | 10         |
| 1,3 - Dichlorobenzene                            | ND      |   | 10         |
| 1,4 - Dichlorobenzene                            | ND      |   | 10         |
| 1,1 - Dichloroethene                             | ND      |   | 10         |
| Methylene Chloride                               | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene                     | ND      |   | 10         |
| 1,1 - Dichloroethane                             | ND      |   | 10         |
| 1,1,1 - Trichloroethane                          | ND      |   | 10         |
| 1,2 - Dichloroethane                             | ND      |   | 10         |
| Trichloroethene                                  | ND      |   | 10         |
| Tetrachloroethene                                | ND      |   | 10         |
| Chlorobenzene                                    | ND      |   | 10         |

TEST CODE : WPNPRG1

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : EE-91-17300 MATRIX: WATER

SAMPLE ID CLIENT: PO3GWO32

| PARAMETER                                  | RESULTS | Q | QNT. LIMIT |
|--------------------------------------------|---------|---|------------|
| That with which william order order to the | ~       | _ |            |
| Benzene                                    | ND      |   | 10         |
| Toluene                                    | ND      |   | 10         |
| Ethylbenzene                               | ND      |   | 10         |
| Total Xylenes                              | ND      |   | 10         |
| 1,2 - Dichlorobenzene                      | ND      |   | 10         |
| 1,3 - Dichlorobenzene                      | ND      |   | 10         |
| 1,4 - Dichlorobenzene                      | ND      |   | 10         |
| 1,1 - Dichloroethene                       | ND      |   | 10         |
| Methylene Chloride                         | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene               | ND      |   | 10         |
| 1,1 - Dichloroethane                       | ND      |   | 10         |
| 1,1,1 - Trichloroethane                    | ND      |   | 10         |
| 1,2 - Dichloroethane                       | ND      |   | 10         |
| Trichloroethene                            | ND      |   | 10         |
| Tetrachloroethene                          | ND      |   | 10         |
| Chlorobenzene                              | ND      |   | 10         |

TEST CODE :WPNPRG1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PURGABLES- GC UNITS UNITS : UG/L SAMPLE ID LAB : EE-91-17299 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW033

| PARAMETER                    | RESULTS | Q | QNT. LIMIT |
|------------------------------|---------|---|------------|
| ****                         |         | - |            |
| Benzene                      | ND      |   | 10         |
| Toluene                      | ND      |   | 10         |
| Ethylbenzene                 | ND      |   | 10         |
| Total Xylenes                | ND      |   | 10         |
| 1,2 - Dichlorobenzene        | ND      |   | 10         |
| 1,3 - Dichlorobenzene        | ND      |   | 10         |
| 1,4 - Dichlorobenzene        | ND      |   | 10         |
| 1,1 - Dichloroethene         | ND      |   | 10         |
| Methylene Chloride           | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene | ND      |   | 10         |
| 1,1 - Dichloroethane         | ND      |   | 10         |
| 1,1,1 - Trichloroethane      | ND      |   | 10         |
| 1,2 - Dichloroethane         | ND      |   | 10         |
| Trichloroethene              | ND      |   | 10         |
| Tetrachloroethene            | ND      |   | 10         |
| Chlorobenzene                | ND      |   | 10         |
|                              |         |   |            |

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE : WPNPRG1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PURGABLES - GC UNITS : UG/L SAMPLE ID LAB : EE-91-16964 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW034

SAMPLE LOCATION:

| , | PARAMETER                    | RESULTS | Q | QNT. LIMIT |
|---|------------------------------|---------|---|------------|
|   |                              |         | _ |            |
|   | Benzene                      | ND      |   | 10         |
|   | Toluene                      | ND      |   | 10         |
|   | Ethylbenzene                 | ND      |   | 10         |
|   | Total Xylenes                | ND      |   | 10         |
|   | 1,2 - Dichlorobenzene        | ND      |   | 10         |
|   | 1,3 - Dichlorobenzene        | ND      |   | 10         |
|   | 1,4 - Dichlorobenzene        | ND      |   | . 10       |
|   | 1,1 - Dichloroethene         | ND      |   | 10         |
|   | Methylene Chloride           | ND      |   | 10         |
|   | Trans - 1,2 - Dichloroethene | ND      |   | 10         |
|   | 1,1 - Dichloroethane         | ND      |   | 10         |
|   | 1,1,1 - Trichloroethane      | ND      |   | 10         |
|   | 1,2 - Dichloroethane         | ND      |   | 10         |
|   | Trichloroethene              | ND      |   | 10         |
|   | Tetrachloroethene            | ND      |   | 10         |
|   | Chlorobenzene                | ND      |   | 10         |
|   |                              |         |   |            |

9101.792

### (ug/L)

| Lai                | E & E<br>poratory<br>p. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|--------------------|-----------------------------|-------------------|-----------------|----------------------|---------------------|
| Benzene            |                             | ND                | 20              | 20                   | 100                 |
| Toluene            |                             | ND                | 20              | 18                   | 90                  |
| Ethyl Benzene      | ND                          | 20                | 19              | 95                   |                     |
| 1,2-Dichlorobenze  | ND                          | 20                | 18              | 90                   |                     |
| 1,3-Dichlorobenze  | ND                          | 20                | 18              | 90                   |                     |
| 1,4-Dichlorobenze  | ene                         | ND                | 20              | 19                   | 95                  |
| 1,1-Dichloroether  | ne                          | ND                | 20              | 15                   | 75                  |
| Methylene Chloric  | le                          | ND                | 20              | 20                   | 100                 |
| Trans-1,2-Dichlor  | coethene                    | ND                | 20              | 18                   | 90                  |
| 1,1-Dichloroethar  | ne                          | ND                | 20              | 19                   | 95                  |
| 1,1,1-Trichloroet  | ND                          | 20                | 20              | 100                  |                     |
| 1,2-Dichloroethane |                             | ND                | 20              | 21                   | 105                 |
| Trichloroethene    |                             | ND                | 20              | 20                   | 100                 |
| Tetrachloroethene  | ND                          | 20                | 21              | 105                  |                     |

9101.792

|   | \     |  |
|---|-------|--|
| ( | ug/L) |  |

| Parameter     | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|---------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Benzene       |                                | ND                | 20              | 18                   | 90                  |
| Toluene       |                                | ND                | 20              | 19                   | 95                  |
| Ethyl Benzene | 2                              | ND                | 20              | 19                   | 95                  |
| 1,2-Dichlorol | benzene                        | ND                | 20              | 22                   | 110                 |
| 1,3-Dichloro  | penzene                        | ND                | 20              | 19                   | 95                  |
| 1,4-Dichlorol | oenzene                        | ND                | 20              | 20                   | 100                 |
| 1,1-Dichloroe | ethene                         | ND                | 20              | 31                   | 155                 |
| Methylene Chl | loride                         | ND                | 20              | 15                   | 75                  |
| Trans-1,2-Die | chloroethene                   | ND                | 20              | 15                   | 75                  |
| 1,1-Dichloroe | ethane                         | ND                | 20              | 20                   | 100                 |
| 1,1,1-Trichle | oroethane                      | ND                | 20              | 18                   | 90                  |
| 1,2-Dichloroe | ethane                         | ND                | 20              | 22                   | 110                 |
| Trichloroethe | ene                            | ND                | 20              | 21                   | 105                 |
| Tetrachloroe  | thene                          | ND                | 20              | 21                   | 105                 |

9101.807

| ( | u | g | / | L | ) |
|---|---|---|---|---|---|
|   |   |   |   |   |   |

| Parameter             | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|-----------------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Benzene               |                                | ND                | 20              | 19                   | 95                  |
| Toluene               |                                | ND                | 20              | 18                   | 90                  |
| Ethyl Benzene         | ND                             | 20                | 18              | 90                   |                     |
| 1,2-Dichlorob         | ND                             | 20                | 14              | 70                   |                     |
| 1,3-Dichlorob         | ND                             | 20                | 14              | 70                   |                     |
| 1,4-Dichlorob         | enzene                         | ND                | 20              | 15                   | 75                  |
| 1,1-Dichloroe         | thene                          | ND                | 20              | 22                   | 110                 |
| Methylene Chl         | oride                          | ND                | 20              | 17                   | 85                  |
| Trans-1,2-Dic         | hloroethene                    | ND                | 20              | 17                   | 85                  |
| 1,1-Dichloroethane    |                                | ND                | 20              | 14                   | 70                  |
| 1,1,1-Trichloroethane |                                | ND                | 20              | 19                   | 95                  |
| 1,2-Dichloroethane    |                                | ND                | 20              | 20                   | 100                 |
| Trichloroethene       |                                | ND                | 20              | 20                   | 100                 |
| Tetrachloroet         | hene                           | ND                | 20              | 20                   | 100                 |

9101.807

| • |   | _ /        | t | ` |
|---|---|------------|---|---|
| • | u | <b>X</b> / | ь | , |

| Parameter     | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|---------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Benzene       |                                | ND                | 20              | 18                   | 90                  |
| Toluene       |                                | ND                | 20              | 16                   | 80                  |
| Ethyl Benzene | <b>:</b>                       | ND                | 20              | 16                   | 80                  |
| 1,2-Dichlorob | enzene                         | ND                | 20              | 14                   | 70                  |
| 1,3-Dichlorob | enzene                         | ND                | 20              | 13                   | 65                  |
| 1,4-Dichlorob | enzene                         | ND                | 20              | 14                   | 70                  |
| 1,1-Dichloroe | thene                          | ND                | 20              | 18                   | 90                  |
| Methylene Chl | .oride                         | ND                | 20              | 21                   | 105                 |
| Trans-1,2-Dic | hloroethene                    | ND                | 20              | 21                   | 105                 |
| 1,1-Dichloroe |                                | ND                | 20              | 14                   | 70                  |
| 1,1,1-Trichle |                                | ND                | 20              | 18                   | 90                  |
| 1,2-Dichloroe |                                | ND                | 20              | 18                   | 90                  |
| Trichloroethe |                                | ND                | 20              | 18                   | 90                  |
| Tetrachloroet | hene                           | ND                | 20              | 18                   | 90                  |

# QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SURROGATE SPIKES

9101.792

| Compound           | E & E<br>Laboratory<br>No. 91- | Percent<br>Recovery |  |
|--------------------|--------------------------------|---------------------|--|
| Trifluorotoluene   | 16959                          | 77                  |  |
|                    | 16960                          | 83                  |  |
|                    | 16961                          | 75                  |  |
|                    | 16962                          | 75                  |  |
|                    | 16963                          | 71                  |  |
|                    | 16964                          | 71                  |  |
|                    | Method Blank #1                | 100                 |  |
|                    | Method Blank #2                | 74                  |  |
| 1,4-Dichlorobutane | 16959                          | 118                 |  |
|                    | 16960                          | 107                 |  |
|                    | 16961                          | 102                 |  |
|                    | 16962                          | 120                 |  |
|                    | 16963                          | 123                 |  |
|                    | 16964                          | 107                 |  |
|                    | Method Blank #1                | 100                 |  |
|                    | Method Blank #2                | 106                 |  |

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SURROGATE SPIKES

9101.807

| Compound           | E & E<br>Laboratory<br>No. 91- | Percent<br>Recovery |  |
|--------------------|--------------------------------|---------------------|--|
| Trifluorotoluene   | 17066<br>17067<br>Method Blank | 83<br>83<br>75      |  |
| 1,4-Dichlorobutane | 17066<br>17067<br>Method Blank | 119<br>115<br>106   |  |

# QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF SURROGATE SPIKES

9101.824

| Compound           | E & E<br>Laboratory<br>No. 91- | Percent<br>Recovery |  |
|--------------------|--------------------------------|---------------------|--|
| Trifluorotoluene   | 17297                          | 75                  |  |
|                    | 17298                          | 104                 |  |
|                    | 17299                          | 88                  |  |
|                    | 17300                          | 96                  |  |
|                    | 17301                          | 92                  |  |
|                    | Method Blank #1                | . 100               |  |
|                    | Method Blank #2                | 100                 |  |
| 1,4-Dichlorobutane | 17297                          | 116                 |  |
|                    | 17298                          | 92                  |  |
|                    | 17299                          | 102                 |  |
|                    | 17300                          | 106                 |  |
|                    | 17301                          | 101                 |  |
|                    | Method Blank #1                | . 100               |  |
|                    | Method Blank #2                | ! 100               |  |

TEST CODE : WPNPRG1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PURGABLES- GC UNITS : UG/L
SAMPLE ID LAB : METHOD BLANK 1 MATRIX: WATER

SAMPLE LOCATION :

| PARAMETER                           | RESULTS | Q | QNT. LIMIT |
|-------------------------------------|---------|---|------------|
| - One could read man only diffe why |         | _ |            |
| Benzene                             | ND      |   | 10         |
| Toluene                             | ND      |   | 10         |
| Ethylbenzene                        | ND      |   | 10         |
| Total Xylenes                       | ND      |   | 10         |
| 1,2 - Dichlorobenzene               | ND      |   | 10         |
| 1,3 - Dichlorobenzene               | ND      |   | 10         |
| 1,4 - Dichlorobenzene               | ND      |   | 10         |
| 1,1 - Dichloroethene                | ND      |   | 10         |
| Methylene Chloride                  | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene        | ND      |   | 10         |
| 1,1 - Dichloroethane                | ND      |   | 10         |
| 1,1,1 - Trichloroethane             | ND      |   | 10         |
| 1,2 - Dichloroethane                | ND      |   | 10         |
| Trichloroethene                     | ND      |   | 10         |
| Tetrachloroethene                   | ND      |   | 10         |
| Chlorobenzene                       | ND      |   | 10         |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : METHOD BLANK 2 MATRIX: WATER

SAMPLE LOCATION :

| PARAMETER                                                | RESULTS | Q | QNT. LIMIT |
|----------------------------------------------------------|---------|---|------------|
| ting syst made datas state state rates rates and william |         | - |            |
| Benzene                                                  | ND      |   | 10         |
| Toluene                                                  | ND      |   | 10         |
| Ethylbenzene                                             | ND      |   | 10         |
| Total Xylenes                                            | ND      |   | 10         |
| 1,2 - Dichlorobenzene                                    | ND      |   | 10         |
| 1,3 - Dichlorobenzene                                    | ND      |   | 10         |
| 1,4 - Dichlorobenzene                                    | ND      |   | 10         |
| 1,1 - Dichloroethene                                     | ND      |   | 10         |
| Methylene Chloride                                       | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene                             | ND      |   | <b>1</b> 0 |
| 1,1 - Dichloroethane                                     | ND      |   | 10         |
| 1,1,1 - Trichloroethane                                  | ND      |   | 10         |
| 1,2 - Dichloroethane                                     | ND      |   | 10         |
| Trichloroethene                                          | ND      |   | 10         |
| Tetrachloroethene                                        | ND      |   | 10         |
| Chlorobenzene                                            | ND      |   | 10         |
|                                                          |         |   |            |

TEST CODE :WPNPRG1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PURGABLES- GC UNITS : UG/L
SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

| PARAMETER                               | RESULTS | Q | QNT. LIMIT |
|-----------------------------------------|---------|---|------------|
| while these value was ready while these |         | - |            |
| Benzene                                 | ND      |   | 10         |
| Toluene                                 | ND      |   | 10         |
| Ethylbenzene                            | ND      |   | 10         |
| Total Xylenes                           | ND      |   | 10         |
| 1,2 - Dichlorobenzene                   | ND      |   | 10         |
| 1,3 - Dichlorobenzene                   | ND      |   | 10         |
| 1,4 - Dichlorobenzene                   | ND      |   | 10         |
| 1,1 - Dichloroethene                    | ND      |   | 10         |
| Methylene Chloride                      | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene            | ND      |   | 10         |
| 1,1 - Dichloroethane                    | ND      |   | 10         |
| 1,1,1 - Trichloroethane                 | ND      |   | 10         |
| 1,2 - Dichloroethane                    | ND      |   | 10         |
| Trichloroethene                         | ND      |   | 10         |
| Tetrachloroethene                       | ND      |   | 10         |
| Chlorobenzene                           | ND      |   | 10         |
|                                         |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :WPNPRG1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : METHOD BLANK #1 MATRIX: WATER

| PARAMETER                      | RESULTS | Q | QNT. LIMIT |
|--------------------------------|---------|---|------------|
| NA 100 400 400 400 400 400 400 |         |   |            |
| Benzene                        | ND      |   | 10         |
| Toluene                        | ND      |   | 10         |
| Ethylbenzene                   | ND      |   | 10         |
| Total Xylenes                  | ND      |   | 10         |
| 1,2 - Dichlorobenzene          | ND      |   | 10         |
| 1,3 - Dichlorobenzene          | ND      |   | 10         |
| 1,4 - Dichlorobenzene          | ND      |   | 10         |
| 1,1 - Dichloroethene           | ND      |   | 10         |
| Methylene Chloride             | ND      |   | 10         |
| Trans - 1,2 - Dichloroethene   | ND      |   | 10         |
| 1,1 - Dichloroethane           | ND      |   | 10         |
| 1,1,1 - Trichloroethane        | ND      |   | 10         |
| 1,2 - Dichloroethane           | ND      |   | 10         |
| Trichloroethene                | ND      |   | 10         |
| Tetrachloroethene              | ND      |   | 10         |
| Chlorobenzene                  | ND      |   | 10         |
|                                |         |   |            |

TEST CODE :WPNPRG1

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PURGABLES- GC UNITS : UG/L SAMPLE ID LAB : METHOD BLANK #2 MATRIX: WATER

| PARAMETER                    | RESULTS | Q | QNT. LI | MIT |
|------------------------------|---------|---|---------|-----|
| ****                         |         | - |         |     |
| Benzene                      | ND      |   | 10      |     |
| Toluene                      | ND      |   | 10      |     |
| Ethylbenzene                 | ND      |   | 10      |     |
| Total Xylenes                | ND      |   | 10      |     |
| 1,2 - Dichlorobenzene        | ND      |   | 10      |     |
| 1,3 - Dichlorobenzene        | ND      |   | 10      |     |
| 1,4 - Dichlorobenzene        | ND      |   | 10      |     |
| 1,1 - Dichloroethene         | ND      |   | 10      |     |
| Methylene Chloride           | ND      |   | 10      |     |
| Trans - 1,2 - Dichloroethene | ND      |   | 10      |     |
| 1,1 - Dichloroethane         | ND      |   | 10      |     |
| 1,1,1 - Trichloroethane      | ND      |   | 10      |     |
| 1,2 - Dichloroethane         | ND      |   | 10      |     |
| Trichloroethene              | ND      |   | 10      |     |
| Tetrachloroethene            | ND      |   | 10      |     |
| Chlorobenzene                | ND      |   | 10      |     |

TEST CODE :WPNPAH1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17066 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW023

PARAMETER RESULTS Q QNT. LIMIT ----\_\_\_\_\_

Total as Benzo-a-pyrene ND 100

TEST CODE :WPNPAH1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

IEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17297 MATRIX. UATED MATRIX: WATER

SAMPLE ID CLIENT: PO3GW024

PARAMETER RESULTS Q QNT. LIMIT Total as Benzo-a-pyrene 200 100

\_\_\_\_\_\_

TEST CODE : WPNPAH1 JOB NUMBER: 9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17298 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW025

PARAMETER RESULTS Q QNT. LIMIT ----------Total as Benzo-a-pyrene 120 100

QUALIFIERS: C = COMMENT

C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :WPNPAH1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

IESI NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-16959 MATRIX: WATER SAMPLE ID CLIENT: PO3-GW026

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT
-----Total as Benzo-a-pyrene PRESENT L 100 PARAMETER

TEST CODE : WPNPAH1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-16960 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW027

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT -----\_\_\_\_\_ Total as Benzo-a-pyrene ND 100

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

JOB NUMBER :9101.792 TEST CODE :WPNPAH1

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-16961 UNITS : UG/L MATRIX: WATER

SAMPLE ID CLIENT: PO3-GWO27-DUP.

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_

Total as Benzo-a-pyrene ND 100

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE :WPNPAH1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PAH - LC TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-16962 UNITS : UG/L MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW028

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT PARAMETER Total as Benzo-a-pyrene ND 100

JOB NUMBER :9101.792 TEST CODE :WPNPAH1

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB : EE-91-16963 SAMPLE ID CLIENTE BOO UNITS : UG/L MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW029

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT

Total as Benzo-a-pyrene ND 100

TEST CODE : WPNPAH1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17067 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GWO30

PARAMETER RESULTS Q QNT. LIMIT -----

Total as Benzo-a-pyrene ND 100

TEST CODE : WPNPAH1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17301 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW031

PARAMETER RESULTS Q QNT. LIMIT \_\_\_\_\_

Total as Benzo-a-pyrene ND

TEST CODE : WPNPAH1

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17300 MATRIX: WATER

SAMPLE ID CLIENT: PO3GWO32

PARAMETER RESULTS Q QNT. LIMIT

JOB NUMBER :9101.824

Total as Benzo-a-pyrene ND 100

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE : WPNPAH1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17299 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW033

PARAMETER RESULTS Q QNT. LIMIT
-----Total as Benzo-a-pyrene ND 100

\_\_\_\_\_\_

TEST CODE :WPNPAH1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PAH - LC UNITS UNITS : UG/L TEST NAME : PNC PAH - LC SAMPLE ID LAB : EE-91-16964 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW034

SAMPLE LOCATION :

RESULTS Q QNT. LIMIT PARAMETER 

Total as Benzo-a-pyrene ND 100

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ALSO PRESENT IN BLANK

### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9101.792

| (ug)       |                                |                   |                 |                      |                     |
|------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| Benzo(a)py | rene<br>Batch QC               | ND                | 50              | 41                   | 82                  |

### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9101.807

| (ug)        |                                |                   |                 |                      |                     |
|-------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter   | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| Benzo(a)py: | rene                           |                   |                 |                      |                     |
|             | 17067 MS                       | ND                | 50              | 30                   | 60                  |

## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9101.824

| (ug)       |                                |                   |                 |                      |                     |
|------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| Benzo(a)py | rene                           |                   |                 |                      |                     |
|            | 17301 MS                       | ND                | 50              | 37                   | 74                  |

TEST CODE : WPNPAH1

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PAH - LC

UNITS : UG/L

SAMPLE ID LAB : METHOD BLANK 598/169 MATRIX: WATER

SAMPLE LOCATION :

PARAMETER

RESULTS Q QNT. LIMIT

Total as Benzo-a-pyrene ND 100

TEST CODE : WPNPAH1

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PAH - LC UNITS : UG/L SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

PARAMETER

-----

RESULTS Q QNT. LIMIT 

Total as Benzo-a-pyrene

ND

100

TEST CODE :WPNPAH1

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PAH - LC UNITS

UNITS : UG/L

SAMPLE ID LAB : METHOD BLANK

MATRIX: WATER

PARAMETER

RESULTS Q QNT. LIMIT \_ \_\_\_\_\_

\_\_\_\_\_ Total as Benzo-a-pyrene

ND

100

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE :WPNPHL1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PHENOL - LC UNITS
SAMPLE ID LAB : EE-91-17066 MATRIX UNITS : UG/L MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW023

RESULTS Q QNT. LIMIT PARAMETER

ND 100 Total as Trichlorophenol ND

TEST CODE : WPNPHL1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17297 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW024

PARAMETER RESULTS Q QNT. LIMIT Total as Trichlorophenol 1400 100

TEST CODE : WPNPHL1

JOB NUMBER: 9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC

UNITS : UG/L

SAMPLE ID LAB : EE-91-17298

MATRIX: WATER

SAMPLE ID CLIENT: PO3GW025

PARAMETER

RESULTS Q QNT. LIMIT

Total as Trichlorophenol

3700

-----

100

TEST CODE : WPNPHL1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : EE-91-16959 MATRIX: WATER SAMPLE ID CLIENT: P03-GW026 MATRIX: WATER

SAMPLE LOCATION:

PARAMETER RESULTS Q QNT. LIMIT ND 100 \_\_\_\_\_

Total as Trichlorophenol ND 100

TEST CODE :WPNPHL1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : EE-91-16960 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW027

SAMPLE LOCATION:

PARAMETER RESULTS Q QNT. LIMIT

Total as Trichlorophenol 800 100

\_\_\_\_\_

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNPHL1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : EE-91-16961 MATRIX: WATER SAMPLE ID CLIENT: PO3-GW027-DUP.

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT
Total as Trichlorophenol 930 100

\_\_\_\_\_

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ALSO PRESENT IN BLANK

TEST CODE: WPNPHL1 JOB NUMBER: 9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PHENOL - LC UNITS : UG/L
SAMPLE ID LAB : EE-91-16962 MATRIX: WATER
SAMPLE ID CLIENT: PO3-GW028

SAMPLE LOCATION:

PARAMETER RESULTS Q QNT. LIMIT
Total as Trichlorophenol ND 100 PARAMETER

TEST CODE :WPNPHL1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : EE-91-16963 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW029

SAMPLE LOCATION :

PARAMETER RESULTS Q QNT. LIMIT Total as Trichlorophenol 200 100

TEST CODE :WPNPHL1

JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17067 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GWO30

RESULTS Q QNT. LIMIT PARAMETER ------

Total as Trichlorophenol ND 100

QUALIFIERS: C = COMMENT D = NOT DETECTED D = ESTIMATED VALUE D = ALSO PRESENT IN BLANK

TEST CODE :WPNPHL1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC SAMPLE ID LAB : EE-91-17301 UNITS : UG/L MATRIX: WATER

SAMPLE ID CLIENT: PO3GW031

RESULTS Q QNT. LIMIT PARAMETER ----

Total as Trichlorophenol ND 100

TEST CODE : WPNPHL1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : EE-91-17300 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW032

RESULTS Q QNT. LIMIT PARAMETER

Total as Trichlorophenol ND 100

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNPHL1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PHENOL - LC UNITS UNITS : UG/L SAMPLE ID LAB : EE-91-17299 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW033

RESULTS Q QNT. LIMIT PARAMETER

-----\_\_\_\_\_ Total as Trichlorophenol ND 100

TEST CODE :WPNPHL1

JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PHENOL - LC UNITS : UG/L
SAMPLE ID LAB : EE-91-16964 MATRIX: WATER

SAMPLE ID CLIENT: P03-GW034

SAMPLE LOCATION:

RESULTS Q QNT. LIMIT PARAMETER

Total as Trichlorophenol ND 100

#### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

| Λ | 4 | $\sim$ | 4 | $\sim$ | 72     |  |
|---|---|--------|---|--------|--------|--|
| " | 1 | u      | 1 | . 7    | ' I Z. |  |

| ( ug )      |                                |                   |                 |                      |                     |
|-------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter   | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| 2,4,6-Trick | hlorophenol                    |                   |                 |                      |                     |
|             | Blank                          | ND                | 100             | 62                   | 62                  |

#### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9101.807

| ( ug )     |                                |                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
|------------|--------------------------------|-------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Parameter  | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Percent<br>Recovery |
| 2,4,6-Tric | hlorophenol                    | -                 |                 | - 10 A - |                     |
|            | 17066 MS                       | ND                | 100             | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74                  |

### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9101.824

| ( ug )      |                                |                   |                 |                      |                     |
|-------------|--------------------------------|-------------------|-----------------|----------------------|---------------------|
| Parameter   | E & E<br>Laboratory<br>No. 91- | Original<br>Value | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
| 2,4,6-Tricl | nlorophenol                    |                   |                 |                      |                     |
|             | Blank Spike                    | ND                | 100             | 95                   | 95                  |

TEST CODE :WPNPHL1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC UNITS : UG/L

SAMPLE ID LAB : METHOD BLANK 600/96 MATRIX: WATER

SAMPLE LOCATION :

PARAMETER

RESULTS Q QNT. LIMIT

Total as Trichlorophenol ND 100

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNPHL1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PHENOL - LC UNITS : UG/L SAMPLE ID LAB : METHOD BLANK MATRIX: VATER

PARAMETER RESULTS Q QNT. LIMIT -----

Total as Trichlorophenol ND 100

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNPHL1 JOB NUMBER: 9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PHENOL - LC UNITS : UG/L
SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

RESULTS Q QNT. LIMIT PARAMETER 

Total as Trichlorophenol ND 100

\_\_\_\_\_\_

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNP&P1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17066 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW023

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | - |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ŃD      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |
|            |         |   |            |

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE: WPNP&P1 JOB NUMBER: 9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17297 MATRIX: WATER

SAMPLE ID CLIENT: PO3GWO24

| PARAMETER                                                      | RESULTS | Q | QNT. LIMIT |
|----------------------------------------------------------------|---------|---|------------|
| AND AND SOME SIZE SIZE AND |         |   |            |
| Heptachlor                                                     | ND      |   | 5.0        |
| Lindane                                                        | ND      |   | 5.0        |
| Aldrin                                                         | ND      |   | 5.0        |
| 4,4 - DDT                                                      | ND      |   | 5.0        |
| Dieldrin                                                       | ND      |   | 5.0        |
| Endrin                                                         | ND      |   | 5.0        |
| Chlordane                                                      | ND      |   | 5.0        |
| 4,4-DDE                                                        | ND      |   | 5.0        |
| Total PCBs                                                     | ND      |   | 10         |

TEST CODE :WPNP&P1

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17298 MATRIX: WATER

SAMPLE ID CLIENT: PO3GWO25

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         |   |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | <b>1</b> 0 |
|            |         |   |            |

TEST CODE :WPNP&P1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PEST./PCB UNITS UNITS : UG/L SAMPLE ID LAB : EE-91-16959 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW026

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |
|            |         |   |            |

JOB NUMBER: 9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-16960 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW027

SAMPLE LOCATION:

| PARAMETER  | RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q | QNT. LIMIT |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|
|            | source and all additional additio |   |            |
| Heptachlor | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 5.0        |
| Lindane    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 5.0        |
| Aldrin     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 5.0        |
| 4,4 - DDT  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 5.0        |
| Dieldrin   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 5.0        |
| Endrin     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 5.0        |
| Chlordane  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 5.0        |
| 4,4-DDE    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 5.0        |
| Total PCBs | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 10         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

TEST CODE :WPNP&P1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-16961 MATRIX: WATER SAMPLE ID CLIENT: PO3-GW027-DUP.

SAMPLE LOCATION :

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RESULTS | Q | QNT. LIMIT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|------------|
| abbit with state and allow their state of the state of th | ~~~~~   | _ |            |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND      |   | 5.0        |
| Lindane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND      |   | 5.0        |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND      |   | 5.0        |
| 4,4 - DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND      |   | 5.0        |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND      |   | 5.0        |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND      |   | 5.0        |
| Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND      |   | 5.0        |
| 4,4-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND      |   | 5.0        |
| Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND      |   | 10         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |   |            |

TEST CODE :WPNP&P1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-16962 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW028

SAMPLE LOCATION :

| PARAMETER                                  | RESULTS              | Q | QNT. LIMIT               |
|--------------------------------------------|----------------------|---|--------------------------|
|                                            |                      |   |                          |
| Heptachlor                                 | ND                   |   | 5.0                      |
| Lindane                                    | ND                   |   | 5.0                      |
| Aldrin                                     | ND                   |   | 5.0                      |
| 4,4 - DDT                                  | ND                   |   | 5.0                      |
| Dieldrin                                   | ND                   |   | 5.0                      |
| Endrin                                     | ND                   |   | 5.0                      |
| Chlordane                                  | ND                   |   | 5.0                      |
| 4,4-DDE                                    | ND                   |   | 5.0                      |
| Total PCBs                                 | ND                   |   | 10                       |
| Dieldrin<br>Endrin<br>Chlordane<br>4,4-DDE | ND<br>ND<br>ND<br>ND |   | 5.0<br>5.0<br>5.0<br>5.0 |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNP&P1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PEST./PCB UNITS UNITS : UG/L SAMPLE ID LAB : EE-91-16963 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW029

SAMPLE LOCATION :

| PARAMETER  | RESULTS                         | Q | QNT. LIMIT |
|------------|---------------------------------|---|------------|
|            | AND AND AND AND AND AND AND AND | - |            |
| Heptachlor | ND                              |   | 5.0        |
| Lindane    | ND                              |   | 5.0        |
| Aldrin     | ND                              |   | 5.0        |
| 4,4 - DDT  | ND                              |   | 5.0        |
| Dieldrin   | ND                              |   | 5.0        |
| Endrin     | ND                              |   | 5.0        |
| Chlordane  | ND                              |   | 5.0        |
| 4,4-DDE    | ND                              |   | 5.0        |
| Total PCBs | ND                              |   | 10         |

\_\_\_\_\_

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE : WPNP&P1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17067 MATRIX: WATER

SAMPLE ID CLIENT: PO3-GW030

| PARAMETER RESULTS Q QNT. LIM          |   |
|---------------------------------------|---|
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |   |
| Heptachlor ND 5.0                     | ) |
| Lindane ND 5.0                        | ) |
| Aldrin ND 5.0                         | ) |
| 4,4 - DDT ND 5.0                      | ) |
| Dieldrin ND 5.0                       | ) |
| Endrin ND 5.0                         | ) |
| Chlordane ND 5.0                      | ) |
| 4,4-DDE ND 5.0                        | ) |
| Total PCBs ND 10                      |   |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :WPNP&P1

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB SAMPLE ID LAB : EE-91-17301
SAMPLE ID CLIERTE DOGGET UNITS : UG/L MATRIX: WATER

SAMPLE ID CLIENT: PO3GW031

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            | -       | _ |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |

QUALIFIERS: C = COMMENT DETECTED DETEC

TEST CODE : WPNP&P1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17300 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW032

| PARAMETER                                                   | RESULTS | Q | QNT. LIMIT |
|-------------------------------------------------------------|---------|---|------------|
| ment verse dates could under dates space space space space. |         | _ |            |
| Heptachlor                                                  | ND      |   | 5.0        |
| Lindane                                                     | ND      |   | 5.0        |
| Aldrin                                                      | ND      |   | 5.0        |
| 4,4 - DDT                                                   | ND      |   | 5.0        |
| Dieldrin                                                    | ND      |   | 5.0        |
| Endrin                                                      | ND      |   | 5.0        |
| Chlordane                                                   | ND      |   | 5.0        |
| 4,4-DDE                                                     | ND      |   | 5.0        |
| Total PCBs                                                  | ND      |   | 10         |
|                                                             |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : WPNP&P1

JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-17299 MATRIX: WATER

SAMPLE ID CLIENT: PO3GW033

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         |   |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |
|            |         |   |            |

L = PRESENT BELOW STATED DETECTION LIMIT

\_\_\_\_\_\_

TEST CODE :WPNP&P1 JOB NUMBER :9101.792

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : EE-91-16964 MATRIX: WATER SAMPLE ID CLIENT: P03-GW034

SAMPLE LOCATION :

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |
|            |         |   |            |

QUALIFIERS: C = COMMENT DETECTED DETEC

# QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF WATER MATRIX SPIKE (Sample # BATCH QC)

9101.792

| Compound   | Original<br>Result | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|------------|--------------------|-----------------|----------------------|---------------------|
|            | (นุ                | g/L)            |                      |                     |
| Heptachlor | ND                 | 2.0             | 1.21                 | 60                  |
| Lindane    | ND                 | 2.0             | 2.02                 | 101                 |
| Aldrin     | ND                 | 2.0             | 1.22                 | 61                  |
| 4,4'-DDT   | ND                 | 5.0             | 2.47                 | 49                  |
| Dieldrin   | ND                 | 5.0             | 5.10                 | 102                 |
| Endrin     | ND                 | 5.0             | 4.97                 | 99                  |
| PCB-1254   | ND                 | 25.0            | 18.5                 | 74                  |

# QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF WATER MATRIX SPIKE (Sample # 10767)

9101.807

| Compound   | Original<br>Result | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|------------|--------------------|-----------------|----------------------|---------------------|
|            | (ug                | g/L)            |                      |                     |
| Heptachlor | ND                 | 2.0             | 2.15                 | 108                 |
| Lindane    | ND                 | 2.0             | 2.16                 | 108                 |
| Aldrin     | ND                 | 2.0             | 2.30                 | 115                 |
| 4,4'-DDT   | ND                 | 5.0             | 5.09                 | 102                 |
| Dieldrin   | ND                 | 5.0             | 5.78                 | 116                 |
| Endrin     | ND                 | 5.0             | 6.03                 | 121                 |
| PCB-1254   | ND                 | 25.0            | 24.2                 | 97                  |

### QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF WATER MATRIX SPIKE (Sample # 17301)

9101.824

| Compound   | Original<br>Result | Amount<br>Added | Amount<br>Determined | Percent<br>Recovery |
|------------|--------------------|-----------------|----------------------|---------------------|
|            | (ug                | ;/L)            |                      |                     |
| Heptachlor | ND                 | 2.0             | 1.83                 | 92                  |
| Lindane    | ND                 | 2.0             | 1.97                 | 98                  |
| Aldrin     | ND                 | 2.0             | 1.83                 | 92                  |
| 4,4'-DDT   | ND                 | 5.0             | 4.09                 | 82                  |
| Dieldrin   | ND                 | 5.0             | 5.32                 | 106                 |
| Endrin     | ND                 | 5.0             | 5.42                 | 108                 |
| PCB-1254   | ND                 | 25.0            | 24.85                | 99                  |

TEST CODE: WPNP&P1 JOB NUMBER: 9101.792

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : METHOD BLANK 598/170 MATRIX: WATER

SAMPLE LOCATION :

| DD D001111011 . |                                         |   |            |
|-----------------|-----------------------------------------|---|------------|
| PARAMETER       | RESULTS                                 | Q | QNT. LIMIT |
|                 | *************************************** | - |            |
| Heptachlor      | ND                                      |   | 5.0        |
| Lindane         | ND                                      |   | 5.0        |
| Aldrin          | ND                                      |   | 5.0        |
| 4,4 - DDT       | ND                                      |   | 5.0        |
| Dieldrin        | ND                                      |   | 5.0        |
| Endrin          | ND                                      |   | 5.0        |
| Chlordane       | ND                                      |   | 5.0        |
| 4,4-DDE         | ND                                      |   | 5.0        |
| Total PCBs      | ND                                      |   | 10         |
|                 |                                         |   |            |

L = PRESENT BELOW STATED DETECTION LIMIT

TEST CODE :WPNP&P1 JOB NUMBER :9101.807

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2
TEST NAME : PNC PEST./PCB UNITS : UG/L
SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

| PARAMETER                               | RESULTS | Q | QNT. LIMIT |
|-----------------------------------------|---------|---|------------|
| *************************************** |         | _ |            |
| Heptachlor                              | ND      |   | 5.0        |
| Lindane                                 | ND      |   | 5.0        |
| Aldrin                                  | ND      |   | 5.0        |
| 4,4 - DDT                               | ND      |   | 5.0        |
| Dieldrin                                | ND      |   | 5.0        |
| Endrin                                  | ND      |   | 5.0        |
| Chlordane                               | ND      |   | 5.0        |
| 4,4-DDE                                 | ND      |   | 5.0        |
| Total PCBs                              | ND      |   | 10         |
|                                         |         |   |            |

QUALIFIERS: C = COMMENT DETECTED DETEC

L = PRESENT BELOW STATED DETECTION LIMIT

TEST CODE : WPNP&P1 JOB NUMBER :9101.824

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

TEST NAME : PNC PEST./PCB UNITS : UG/L SAMPLE ID LAB : METHOD BLANK MATRIX: WATER

| PARAMETER  | RESULTS | Q | QNT. LIMIT |
|------------|---------|---|------------|
|            |         | _ |            |
| Heptachlor | ND      |   | 5.0        |
| Lindane    | ND      |   | 5.0        |
| Aldrin     | ND      |   | 5.0        |
| 4,4 - DDT  | ND      |   | 5.0        |
| Dieldrin   | ND      |   | 5.0        |
| Endrin     | ND      |   | 5.0        |
| Chlordane  | ND      |   | 5.0        |
| 4,4-DDE    | ND      |   | 5.0        |
| Total PCBs | ND      |   | 10         |
|            |         |   |            |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

### APPENDIX K

# EXISTING PERMANENT MONITORING WELL GROUNDWATER SAMPLING ANALYTICAL RESULTS

#### MEMORANDUM

TO:

John Barksdale

FROM:

Gary Hahn ( Hahn / TB

DATE:

June 12, 1991

SUBJECT:

NASP Well Resampling

REF:

9101.052

CC:

Lab File

Attached is the laboratory report of the analysis conducted on eight sample received at the Analytical Services Center on May 04, 1991. Analysis was performed according to the "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, Third Edition, U.S.EPA. USEPA Contract Laboratory Program, Statement of Work for Organic Analysis, 2/88 and Statement of Work for Inorganic Analysis, 7/88.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report, unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/bjh
enclosure

Based on the amount of mass spectral information available, the GC/MS computer is not always able to supply three matches for the unknown.

Sample WPB06 was analyzed for volatile organics at 15:07 on 05/13/91. This analysis was not completed within the 12 hour time clock which ended at 15:21.

Volatile surrogate recovery criterion was not met for WFB06. The sample also contained methylene chloride at a level which exceeded the instrument's calibrated range. It was reanalyzed at a greater dilution, two days after CLP hold time had expired. Surrogate recoveries in this reanalysis were acceptable. Results from both analyses are included.

% D criterion was not met for 1,2-dichloropropane in the calibration standard D2437 analyzed on O5/13/91. That compound was not detected in any of the associated samples. Therefore data quality has not been jeopardized.

Carbon disulfide was detected in several volatile samples. This is believed to be a laboratory artifact and not native to the samples. The samples in question were reanalyzed outside of CLP hold time with no carbon disulfide detected.

Semi-volatile surrogate recovery criterion was not met for the method blank SBLKW1. Since recoveries were acceptable for all associated samples, no reanalysis was performed.

The pesticide sample identified as MSB2 is the blank spike.

The EVALB pesticide standard analyzed at 17:23 on 05/22/91 contained carryover. The standard was immediately reanalyzed.

All iron values reported have been flagged "E" based on serial dilution results. A chemical/physical interferent is suspected.

Standard recovery criterion was not met for iron analyzed at 11:23 on 05/16/91 and for lead analyzed at 9:48 on 05/22/91. Since the lead standard was prior to MSA analysis, data quality is not affected.

A final standard and calibration blank were not analyzed during the 05/15/91 cyanide sequence. Initial standard and blank analyses were acceptable.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Gary Hahn

Manager - Analytical Services Center

Date (6/4/4/4)

Hary Hadi

GH/bjh

E & E JOB NUMBER: 9101.052

| CLIENT SAMPLE ID | LAB SAMPLE ID | ID USED IN REPORT |
|------------------|---------------|-------------------|
| P-03-W021        | 10143         | W021              |
| P-03-W023        | 10144         | W023              |
| P-03-W024        | 10145         | W024              |
| P-03-W025        | 10146         | W025              |
| P-03-W025D       | 10147         | W025D             |
| P-03-WFB06       | 10148         | WFB06             |
| P-03-WRB06       | 10149         | WRB06             |
| P-03-WPB06       | 10150         | WPB06             |
| P-03-WTB06       | 10151         | WTB06             |
| P-03-W021-DISS   | 10152         | W021 DISS         |
| P-03-W023-DISS   | 10153         | W023 DISS         |
| P-03-W024-DISS   | 10154         | W024 DISS         |
| P-03-W025-DISS   | 10155         | W025 DISS         |
| P-03-W025D-DISS  | 10156         | W025D DISS        |
| P-03-WFB06-DISS  | 10157         | WFB06 DISS        |
| P-03-WRB06-DISS  | 10158         | WRB06 DISS        |

ecology and environment, inc.
368 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14086, TEL. 718/884-8000 International Specialism in the Environment

ALL ANALYSES FOLLOW

CLP PROTOCOL

CHAIN-OF-CUSTODY RECORD

|                    | Signature    | Date/            | Time: (7 :00 8 | eceived By: (Signature)  F. E.  eceived By: (Signature) | Relinguished 8   | y: (Signature)   | Date/Time: | Received E      | By: (Signate | ure)     |                | Ship Vi   |      |         | سدا ﴿                |              |
|--------------------|--------------|------------------|----------------|---------------------------------------------------------|------------------|------------------|------------|-----------------|--------------|----------|----------------|-----------|------|---------|----------------------|--------------|
|                    |              |                  |                |                                                         |                  | ,                |            |                 |              |          |                | ļ         |      |         |                      |              |
| 34025D 13          |              | X                | •              |                                                         |                  |                  |            | 2               |              | _        |                |           |      | X       |                      |              |
| 34025 5/3          |              | X                | 1              |                                                         |                  |                  | 411 GM-55  |                 |              |          |                |           |      | X       |                      |              |
| 3423 5/3           |              | <del>\( \)</del> |                | <u> </u>                                                |                  |                  | TH CW-53   | 2               |              | _        | $\top$         | 1         |      | X       |                      |              |
| 34021 5/3          | 13:5         | 1                | 11             | М.                                                      |                  |                  | 10-M-51    | 2               | 1.1          | $\dashv$ |                | $\dagger$ |      | X       | ,                    |              |
| 3 WP 806 5/3       | 05:45        | 计                | 14             | • • • • • • • • • • • • • • • • • • • •                 |                  | Pour B           |            | 2               |              | _        | $\dashv$       | $\vdash$  |      | 义       |                      | , 1 = 3 4v 4 |
| 3 REOG 5/3         |              | 刘一               |                | <u> </u>                                                |                  | 4: ~>~ 4         |            | 2               | ++           |          | $\dashv$       | -         |      |         | **** HCI             | _            |
| 3WTB065/3          | 1            | X<br>X           | 11             | <u> </u>                                                |                  | TrieB            | 1 4        | 2               | - - -        | +        | $\dashv$       | $\vdash$  |      |         | xxx N~OH<br>xxx HNO3 |              |
| 341024 5/3         |              | <del>\</del>     |                | LEVELS                                                  |                  | SITE ) UE        |            | 1               | XXX          | KK       | XX             | 1         | 7    | X       | * H-504              | Berrani      |
| STATION DATE       | TIME div     |                  | <b>}</b>       | ED COMPOUNOS (Concentration                             |                  |                  | LOCATION   | CON-<br>TAINERS | ///          | 9291     | 74             |           | 4    | 7/      | <u> </u>             |              |
| STATION            | I I sa       | MPLE/            |                | SAMPLE INFORMATION                                      |                  |                  |            | NUMBER<br>OF    |              | ///      | X)             | 4.93      | 2) Y | Ζ3      | 7./                  |              |
| Not by             | 10.0         |                  | 000            | Ω·                                                      | Vic              | LEDALE<br>LEDALE | Jame 5     |                 |              | Luh      | X3             | 7,5       | ZÝ   | Y<br>0/ | J. J. GALARY         | s            |
| Samplers: (Signaty | (01) 1/2     | ACE<br>ACE       | MPLIA          | <u> </u>                                                | Field Team Lead  | KARALE           |            |                 |              | /        |                | /5/       | 73   | ¥4]     | [4]                  |              |
| Project No.:       | Project Name | NAS              |                |                                                         | Project Manager: | -30HN            |            |                 |              |          | $\overline{Z}$ | //.       | 40   | シノタ     | //s/.                | +7           |

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

<sup>&</sup>quot;See CONCENTRATION HANGE on back of form.

ecology and environment, inc.
388 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14086, TEL. 718/884 8080

ALL ANALYSES FOLLOW CLP PROTOCOL

|                             |                   |           |          |              |                    |                               |               | CHAI             | N-OF-CUSTO      | DDY RECORD   |                                 |       |         |           |        |              | ¥                   |              | X F/P*+*    | Page of   |
|-----------------------------|-------------------|-----------|----------|--------------|--------------------|-------------------------------|---------------|------------------|-----------------|--------------|---------------------------------|-------|---------|-----------|--------|--------------|---------------------|--------------|-------------|-----------|
| Project No.  UH & Samplers: | (Signatur         | Project ( | Name:    | NA<br>SA     |                    | IELL<br>ENG                   | Li na :       | Project Managers | ARKSDA          | $\mathbf{c}$ |                                 |       |         |           |        | 2/1          |                     |              |             |           |
| [NOMBER]                    | DATE              | TIME      | SAMI     | AIR BIA      | -                  | <u>ur</u>                     | FORMATION     | ian)*            | STATIO          | NLOCATION    | NUMBER<br>OF<br>CON-<br>TAINERS |       | 13/13   | Z/<br>}/y | 1      | Y.S.<br>Y.J. | 9/5<br>130          | 7/5/<br>1/9/ | A A REMAR   | K\$ .     |
| SWFBOLD                     | 5/3               |           | - X      |              | Low                | LÉV                           | ELS.          |                  | riald<br>Ringa- | Blank        | 9                               | X     | X       | ∠ ×       | Y<br>V | X            | Х                   | X            | * 4 2504 10 | eserction |
| 346800                      | 5/3               | ०१:ळ      | Y        |              | i,r                | ,,                            |               |                  | Present         | . Blank      |                                 | X     |         |           | X      | X            |                     |              | *** NoOH    | (resured: |
|                             |                   |           |          |              |                    |                               |               |                  |                 |              |                                 |       | -       |           | _      |              |                     |              |             |           |
|                             |                   |           |          | -            |                    |                               |               |                  |                 |              |                                 |       |         |           |        | -            |                     |              |             | ····      |
|                             |                   |           |          |              |                    |                               |               |                  |                 |              |                                 |       |         |           |        |              |                     |              |             |           |
|                             |                   |           |          |              |                    |                               |               |                  |                 |              |                                 |       |         | +         | _      |              |                     |              |             |           |
| Relinquishe                 | ed By: 19         | ino stuce |          | Date         | Time: 173 -        | Received By: (S               | Signature     | Relinquished B   | (Signature)     | Date/Time:   | Receiver                        |       | (Sign = |           | -      | <u> </u>     | Ship V              |              |             |           |
| Relinquishe                 | \ (               |           |          | Date/        | -/3/91             |                               | <u> </u>      | Relinquished By  |                 | Date/Time:   | Received                        |       |         |           |        | _            | ·                   | ح            | EDERAL      | GARESS    |
| Relinquish                  | ed By: (5<br>F, E | igneture  | )        | Date/<br>5/4 | Time: 1100<br>1/91 | Received For L<br>(Signature) | aboratory By: | Relinquished B   | y: (Signature)  | Date/Time:   | Received<br>(Signatu            | f For | Labora  | tory B    | iy:    |              | 8L/Air<br><b>96</b> | rbill Nu     | imber:      | 5-/3/9    |
|                             |                   |           | penies S |              |                    | ordinator Field Fil           |               |                  |                 |              |                                 |       |         |           |        |              |                     |              |             | 23400     |

<sup>\*</sup>See CONCENTRATION RANGE on back of form

|           | gy and environment, inc. NTVIEW DRIVE, LANCASTER, NEW YORK 14088, TEL. 718/884-1 |
|-----------|----------------------------------------------------------------------------------|
| D. Harris |                                                                                  |

ALL ANALYSES FOLLOW
CLP PROTOCOL

CHAIN-OF-CUSTODY RECORD Project Manager: JOHN REMARKS NUMBER SAMPLE IN ORMATION OF CON TAINERS STATION LOCATION EXPECTED COMPOUNDS (Concentration)\* PO3WOZS SITE 3 WELL GM-25 LEVELS 400 (16) Relinquished By: (Signature) Date/Time: Received By: (Signature) Ship Via: Exerase Relinquished By: (Signature) Received By: (Signature) Received For Laboratory By: (Signature) Relinquished By: (Signature) Received For Laboratory By: 965 9244825 Relinquished By: (Signature) Date/Time:

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

<sup>\*</sup>See CONCENTRATION RANGE on back of form.

| ecolog<br>300 PLEASANI<br>international Sp | y an                                             | Id ei                | NVİJ<br>ASTER, | Conment, ir<br>NEW YORK 14088, TEL. 7 | <b>1C.</b><br>16/ <del>884-8</del> 080     | ΑĽ                                | L A<br>CLP   | NALY SES<br>PROTOG                    | -0 L                            | -<br>OF            | ro  | , ~~     | <b>)</b>   |              |               |          |
|--------------------------------------------|--------------------------------------------------|----------------------|----------------|---------------------------------------|--------------------------------------------|-----------------------------------|--------------|---------------------------------------|---------------------------------|--------------------|-----|----------|------------|--------------|---------------|----------|
|                                            |                                                  |                      |                |                                       |                                            | СНА                               | IN-OF-CUS    | TODY RECORD                           |                                 |                    |     |          |            |              | *             |          |
| Project No.:                               | Project                                          | Name:                | 4 N<br>4 Z     | SP WEL<br>MPLIALS<br>COO              | L .                                        | Project Manager                   | JOH          | N                                     |                                 |                    |     |          | _          | 7            | //            | 7        |
| Samplers: (Signatu                         | IL D                                             | : - A                | کر             | 200-                                  |                                            | Project Manager  A Field Team Lea | · ><-        | 24.00                                 |                                 |                    |     | <u>_</u> | d          | 7/1)<br>2/1) | 7.37<br>19.00 |          |
| STATION DATE                               | TIME                                             | SAM<br>TY<br>OO<br>O |                | }                                     | MPLE INFORMATION  COMPOUNDS (Concentration | n)*                               | STAT         | TION LOCATION                         | NUMBER<br>OF<br>CON-<br>TAINERS |                    |     |          | 9.4<br>1.3 | [\frac{1}{2} | 79            | >)<br>/  |
|                                            | 13:10                                            |                      |                | (ow                                   | LEVELS                                     |                                   | 55-Te-3      | MEIT CW-SI                            | 9                               | V                  | Źſν | cly      | X          | ĺ            | 人             | X        |
|                                            | 13150                                            |                      | 4              | 11                                    |                                            |                                   | SITE-3       | well GM-2                             | 9                               | X                  | X   | XX       | ×          | X            | X             | X        |
|                                            | -                                                |                      |                |                                       |                                            |                                   | ļ            | ·                                     |                                 | Ш                  | -   |          | -          |              |               |          |
|                                            | <del> </del>                                     | $\vdash$             | +              |                                       |                                            |                                   |              |                                       | <del> </del>                    | $\left  - \right $ |     | -        | ╀          | -            |               | $\vdash$ |
|                                            | <del>                                     </del> |                      | +-             |                                       |                                            | <del></del>                       | <del> </del> | <del></del>                           |                                 | H                  | •   | +        | $\dagger$  |              |               | ┢        |
|                                            |                                                  |                      |                |                                       |                                            |                                   |              |                                       |                                 |                    |     |          |            |              |               |          |
|                                            | ļ                                                |                      | +              |                                       | <del>.</del>                               | <del></del>                       |              | · · · · · · · · · · · · · · · · · · · |                                 | $\sqcup$           | -   |          | -          |              |               | _        |
| ļ                                          | <del> </del>                                     | <b>├</b>             | 4.             |                                       | <del></del>                                | ·                                 | ļ            |                                       | ↓                               | $\perp$            |     |          | 4_         | L            |               | <b>!</b> |

Relinquished By: (Signature)

Relinquished By: (Signature)

Relinquished By: (Signature)

Date/Time:

Date/Time:

Date/Time:

Received By: (Signature)

Received By: (Signature)

Received For Laboratory By: (Signature)

Relinquished By: (Signature) Date/Time: 1/00 5/4/91 Received For Laboratory By: (Signature)

K. Marul FEID, EKP 5/4/91 (Signature No. 1)

Distribution: Original Accompanies Shipment: Copy to Coordinator Field Files

Relinquished By: (Signature)

Ship Vie: Tedual Express

REMARKS

9659244836

BL/Airbill Number:

234066

<sup>\*</sup>See CONCENTRATION RANGE on back of form.

| EPA | SAMPLE | NO |
|-----|--------|----|
|-----|--------|----|

|              |                         | INORGANIC A     | ANALYSES DATA S    | one. | C I    | . —         |            |
|--------------|-------------------------|-----------------|--------------------|------|--------|-------------|------------|
| b Name: ECOI | LOGY AND ENV            | IRONMENT        | Contract:          |      |        |             | W021       |
|              |                         |                 | <br>1.052 SAS No.: | :    |        | SDG         | No.: WFB06 |
| trix (soil/w | water): WATE            | R               |                    | La   | b Samp | le ID:      | 10143      |
| vel (low/med | l): LOW                 |                 |                    | Da   | te Rec | eived:      | 05/04/91   |
|              |                         | <del></del>     |                    |      |        |             |            |
| Solids:      | 0.                      | O               |                    |      |        |             |            |
| Co           | ncentration             | Units (ug,      | /L or mg/kg dry    | y w  | eight) | : UG/L      |            |
|              | 1                       | 1               | 1                  | I I  |        | 1 1         |            |
|              | CAS No.                 | Analyte         | Concentration      | c    | Q      | M           |            |
|              | 7420 00 5               | 1 2 1 1 2 2 2 2 | 206                |      |        | <u> </u>    |            |
|              | 7429-90-5<br> 7440-36-0 |                 | 306                |      |        | P_  <br>  P |            |
|              | 17440-38-0              |                 | 2.0                |      |        | F           |            |
|              | 17440-38-2              |                 | *                  |      |        |             |            |
|              |                         |                 | 20.7               |      |        | P_          |            |
|              | 7440-41-7               |                 |                    |      |        | P_  <br>  P |            |
|              | 7440-43-9               | *               | 3.0                |      |        | P_ <br> P   |            |
|              | 17440-70-2              | *               | 9.0                |      | *      |             |            |
|              | 17440-47-3              | · —             | •                  |      | ^_     | P_          |            |
|              | 17440-48-4              | 1               | 6.4                |      |        | P_          |            |
|              | 7440-50-8<br> 7439-89-6 |                 | 2.8<br> 897        |      | Ē      | P_  <br>  P |            |
|              | 17439-89-6              | •               | 2.3                |      |        | F           |            |
|              | 17439-95-4              |                 | ·                  |      |        | P           |            |
|              | 7439-96-5               |                 | *                  | ٠ .  | ****   | P           |            |
|              | 7439-90-5               |                 | 0.20               |      |        | CV          |            |
|              | 17440-02-0              |                 | 12.7               |      |        | P           |            |
|              | 7440-02-0               | ,               |                    |      |        | P           |            |
|              | 7782-49-2               | •               | 2.0                |      |        | F           |            |
|              | 7440-22-4               |                 | 3.0                |      |        | P           | <b>4</b> . |
|              | 7440-23-5               |                 | 5770               |      |        | P           | `          |
|              | 17440-28-0              |                 | 3.0                |      |        | F           |            |
|              | 7440-28-0               | •               | · ·                | ٠.,  |        | F_ <br>  P  |            |
|              | 17440-62-2              |                 | 17.2               |      |        | P           |            |
|              | 1/440-00-0              | Cyanide         | 10.0               |      |        | AS          |            |
|              |                         |                 |                    |      |        |             |            |
| lor Before:  | Υ                       | Clarit          | y Before: C        |      |        | Textu       | re:        |
| lor After:   | CL                      | Clarit          | y After: C         |      |        | Artif       | acts:      |
| mments:      |                         |                 |                    |      |        |             |            |

| ΕF | PΑ | SA | MP | LE | NO |  |
|----|----|----|----|----|----|--|
|----|----|----|----|----|----|--|

| ab Name: ECOL | ogy_and_env:                                                                                                    | IRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contract:                             |        |              |        | WO21<br>DISSOLVED |
|---------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|--------------|--------|-------------------|
| b Code: EAND  | E_ Cas                                                                                                          | se No.:910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L.052 SAS No.:                        |        |              | SDO    | G No.: WFB06      |
| trix (soil/w  | ater): WATE                                                                                                     | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Lab    | Samp         | le II  | D: 10152          |
| vel (low/med  | ): LOW_                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Dat    | e Rec        | eive   | d: 05/04/91       |
| Solids:       | 0.0                                                                                                             | ס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |        |              |        |                   |
| Co            | ncentration                                                                                                     | Units (ug,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L or mg/kg dry                        | y we   | eight)       | : UG,  | /L_               |
|               | CAS No.                                                                                                         | <br>  Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br> Concentration                    | <br> C | Q            | <br> M |                   |
|               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |              |        |                   |
|               | 7429-90-5                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103                                   |        |              | P_     |                   |
|               | 7440-36-0                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.6                                  |        |              | P_     |                   |
|               | 7440-38-2                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                   | ''-    |              | F_     |                   |
|               | 17440-39-3                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.2                                  |        |              | P_     |                   |
|               | 7440-41-7                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |              | P_     |                   |
|               | 7440-43-9                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                   |        |              | P_     |                   |
|               | 7440-70-2                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8510                                  |        |              | P_     |                   |
|               | 7440-47-3                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.3                                  |        | <del>*</del> | P_     |                   |
|               | 7440-48-4                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.5                                  |        |              | P_     |                   |
|               | 7440-50-8                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2                                  |        |              | P_     |                   |
|               | 7439-89-6                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 621                                   |        | E            | P_     |                   |
|               | 7439-92-1                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                   |        | W            | F_     |                   |
|               | 7439-95-4                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * -                                   |        |              | P_     |                   |
|               | 7439-96-5                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |              | P_     |                   |
|               | 7439-97-6                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20                                  |        |              | CV     |                   |
|               | 7440-02-0                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.0                                   |        |              | P_     |                   |
|               | 17440-09-7                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                     |        |              | P_     |                   |
|               | 7782-49-2                                                                                                       | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                   | ן טו_  |              | F_     | · <u>,</u>        |
|               | 7440-22-4                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0                                   |        |              | P_     | ``                |
|               | 7440-23-5                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6280                                  |        |              | P_     |                   |
|               | 7440-28-0                                                                                                       | Thallium_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0                                   | ען [   |              | F_     |                   |
|               | 7440-62-2                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |              | P_     |                   |
|               | 7440-66-6                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.4                                  | B _    |              | P_     |                   |
|               | 1                                                                                                               | Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | - -    |              | NR     | 12 lay 1 1.1      |
| lor Before:   | CL                                                                                                              | Clarit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cy Before: C                          | ' '    |              | Text   | ture:             |
| lor After:    | CL                                                                                                              | Clari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ty After: C                           | -      |              | Art    | ifacts:           |
| mments:       | alleman and a second | The second of th | · · · · · · · · · · · · · · · · · · · |        |              |        |                   |

| ab Name: ECOL | OGY AND ENV             | TRONMENT      | Contract:          |        |        |                 | W023         |
|---------------|-------------------------|---------------|--------------------|--------|--------|-----------------|--------------|
| ab Code: EAND |                         | -             | 1.052 SAS No.:     |        |        | - '<br>SD       | G No.: WFB06 |
|               |                         |               |                    |        |        |                 | _            |
| trix (soil/w  | ater): WATE             | K             |                    | Lа.    | n sami | ire r           | D: 10144     |
| evel (low/med | ): LOW_                 | -             |                    | Da     | te Red | ceive           | d: 05/04/91  |
| Solids:       | 0.                      | 0             |                    |        |        |                 |              |
| Co            | ncentration             | Units (ug/    | /L or mg/kg dry    | y w    | eight) | : UG            | /L_          |
|               | CAS No.                 | <br>  Analyte | <br> Concentration | <br> C | Q      | M               |              |
|               |                         |               |                    | i_i.   |        | _ii             |              |
|               | 7429-90-5               |               | 3820               |        |        | P               |              |
|               | 7440-36-0               |               | 33.0               | ٠.     |        | _  P_           |              |
|               | 7440-38-2               |               | 2.0                |        |        | F_              |              |
|               | 7440-39-3               |               | 9.6                |        |        | P_              |              |
|               | 7440-41-7               |               |                    |        |        | P_              |              |
|               | 17440-43-9              |               | 3.9                |        |        | P_              |              |
|               | 17440-70-2              | •             | 1060               | ٠,     |        | P_              |              |
|               | 17440-47-3              | •             | 9.0                |        | *      | _  P_           |              |
|               | 7440-48-4               |               | 8.1                | ٠.,    |        | _ P_            |              |
|               |                         | Copper        | 3.5                | • • •  |        | _ P_            |              |
|               | •                       | Iron          | 643                |        | E      | _ P_            |              |
|               | •                       | Lead          | 1.7                |        |        | F_              |              |
|               | •                       | Magnesium     |                    |        |        | P_              |              |
|               |                         | Manganese     |                    |        |        | P_              |              |
|               | 17439-97-6              |               | 0.20               |        |        | CV              |              |
|               | 7440-02-0               | *             | 8.0                |        |        | - P_            |              |
|               | 17440-09-7              | ,             | *                  | •      |        | _ P_ <br> F     |              |
|               | 7782-49-2<br> 7440-22-4 |               | 2.0                |        |        | -  F _  <br>  P | ***          |
|               | 7440-23-5               | 1             | 3.0                |        |        | -  F _  <br>  P | *            |
|               | 17440-23-3              |               | 3.0                |        |        | -  F  <br>  F   |              |
|               | 7440-28-0               | 7000          | 8.0                |        |        | - P             |              |
|               | 17440-62-2              | Zinc          | 17.6               |        |        | -   P           |              |
|               | 1                       | Cyanide       | 10.0               |        |        | AS              |              |
|               |                         |               |                    |        |        |                 |              |
| lor Before:   | BR                      | Clari         | ty Before: CL_     | -      |        | Tex             | ture:        |
| lor After:    | Υ                       | Clari         | ty After: C        |        |        | Art             | ifacts:      |
| mments:       |                         |               |                    |        |        |                 |              |

|                 |             | INORGANIC A | 1<br>Analyses data s | SHE | ET       | EI             | PA SAMPLE NO.                  |
|-----------------|-------------|-------------|----------------------|-----|----------|----------------|--------------------------------|
| .b Name: ECOL   | OGY AND ENV | IRONMENT    | Contract:            |     |          |                | WO23                           |
|                 |             |             |                      |     |          | -              |                                |
| Lab Code: EAND  | E_ Cas      | se No.:910  | 1.052 SAS No.:       | : _ | ·····    | SI             | OG No.: WFB06_                 |
| Matrix (soil/wa | ater): WATE | R           |                      | La  | b Sampl  | e I            | D: 10153                       |
| Level (low/med) | ): LOW_     | _           |                      | Da  | te Rece  | ive            | ed: 05/04/91                   |
| Solids:         | 0.0         | 0           |                      |     |          |                |                                |
| _               |             | •• •• •     | /# /1                |     |          |                | • / <del>*</del>               |
| Coi             | ncentration | Units (ug/  | L or mg/kg dry       | , w | eignt):  | UC             | i/ L_                          |
|                 | 1           | 1           |                      |     |          | — <sub>I</sub> |                                |
|                 | CAS No.     | Analyte     | Concentration        | ci  | Q        | M              |                                |
|                 |             | l           |                      | 1_1 | <u> </u> | I              |                                |
|                 | 7429-90-5   |             | 158                  |     |          | P_             |                                |
|                 | 7440-36-0   |             | 33.0                 |     |          | P_             |                                |
|                 | 7440-38-2   |             | 2.0                  |     |          | F_             |                                |
|                 | 7440-39-3   |             | 5.0                  |     |          | P_             |                                |
|                 | 7440-41-7   |             |                      |     |          | P_             |                                |
|                 | 7440-43-9   |             | 3.0                  |     |          | P_             |                                |
|                 | 7440-70-2   |             | 1060                 |     |          | P_             |                                |
|                 | 7440-47-3   |             | 35.9                 |     | *        | P_             |                                |
|                 | 7440-48-4   |             | 9.5                  |     |          | P_             |                                |
|                 | 7440-50-8   |             | 2.0                  |     |          | P_             |                                |
|                 | 7439-89-6   |             | 298                  |     | E        | P_             |                                |
|                 | 7439-92-1   |             | 2.1                  |     |          | F_             |                                |
| 4               | 7439-95-4   |             |                      |     |          | P_             |                                |
|                 | •           | Manganese   |                      |     |          | P              |                                |
|                 | 7439-97-6   |             | 0.20                 |     |          | CV             |                                |
| •               | 7440-02-0   |             | 14.5                 |     |          | P_             |                                |
|                 | 7440-09-7   | •           | *                    | •   |          | P_             |                                |
|                 | 7782-49-2   | *           | 2.0                  |     |          | F_             | `\.                            |
|                 | 7440-22-4   |             | 3.0                  |     |          | P_             | `                              |
|                 | 7440-23-5   |             | 3100                 |     |          | P_             |                                |
|                 | 7440-28-0   |             | 3.0                  |     |          | F_             |                                |
|                 | 17440-62-2  |             | 7.2                  |     |          | P_             | الماريا (۱۵۸                   |
|                 | 7440-66-6   | Zinc        | 11.3                 | В   |          | P_             | <i>ሂአ</i> ዮィ/ <sup>ነነ</sup> የነ |

Clarity Before: C\_\_\_\_\_ / Texture: CL\_\_\_\_ Color Before: Clarity After: C\_\_\_\_ Artifacts: \_\_\_\_ Color After: CL Comments:

|Cyanide\_\_|\_\_\_|

FORM I - IN

7/88

### U.S. EPA - CLP

|   | EPA | SAMPLE | NO. |
|---|-----|--------|-----|
| ı |     |        |     |
| i |     | W024   |     |

| omments:     |              |                                         |                 |         |         |            |                                       |
|--------------|--------------|-----------------------------------------|-----------------|---------|---------|------------|---------------------------------------|
| olor After:  | CL           | Clari                                   | ty After: C     |         |         | Artif      | facts:                                |
| olor Before: | CL           | Clarit                                  | cy Before: CL_  |         |         | Textu      | ıre:                                  |
|              |              |                                         |                 |         |         |            |                                       |
|              |              | Cyanide                                 | 10.0            |         |         | AS         |                                       |
|              | 7440-66-6    | •                                       | 13.8            | B       |         | - P        |                                       |
|              | •            | Vanadium                                |                 | : - : : |         | F  <br>  P |                                       |
|              | 7440-23-5    | Thallium                                | 3400            |         |         | P_         |                                       |
|              | 17440-22-4   | *************************************** | 3.0             |         |         | P_         |                                       |
|              | 7782-49-2    |                                         | 2.0             |         |         | F_         | •                                     |
|              | •            | Potassium                               |                 |         |         | P_         |                                       |
|              | 7440-02-0    |                                         | 8.0             |         |         | -   P_     |                                       |
|              | 7439-97-6    |                                         | 0.20            |         |         | _ CV       |                                       |
|              | •            | Manganese                               |                 |         |         | P          |                                       |
|              |              | Magnesium                               |                 |         |         | P          |                                       |
|              | 7439-92-1    |                                         | 8.7             | ·       |         | _  F_      |                                       |
|              | 7439-89-6    |                                         | 1420            |         | E       | _  P_      |                                       |
|              |              | Copper                                  | 3.0             | • • •   |         | P_         |                                       |
|              | 7440-48-4    | *                                       | 7.6             |         |         | P_         |                                       |
|              | 7440-47-3    |                                         | 9.0             |         | <u></u> | P_         |                                       |
|              | 7440-70-2    |                                         | 753             | •       |         | P_         |                                       |
|              | 7440-43-9    | Cadmium                                 | 3.0             | • • •   |         | P_         |                                       |
|              | 7440-41-7    | Beryllium                               | 1.0             | ן ט ן   |         | P_         |                                       |
|              | 7440-39-3    | Barium                                  | 5.7             | B       |         | P_         |                                       |
|              | 7440-38-2    | Arsenic                                 | 2.0             | ן טן    |         | F_         |                                       |
|              | 7440-36-0    | Antimony_                               | 33.0            | ן טו    |         | P_         |                                       |
|              | 7429-90-5    | Aluminum                                | 2470            |         |         | P_         |                                       |
|              | CAS NO.      | Allaryce                                |                 | i_i.    |         | _          |                                       |
|              | CAS No.      | Analyte                                 | Concentration   |         | Q       | <br> M     |                                       |
| C            | oncentration | Units (ug,                              | /L or mg/kg dry | y w     | eight)  | : UG/I     |                                       |
| Solids:      | 0.           | 0                                       |                 |         |         |            |                                       |
| evel (low/me | d): LOW_     |                                         |                 | Dа      | te Rec  | eived:     | 05/04/91                              |
| atrix (soil/ | water): WATE | R                                       |                 | La      | b Samp  | ole ID:    | 10145                                 |
| ab Code: EAN | DE_ Ca       | se No.:910                              | 1.052 SAS No.:  | : _     |         | SDG        | No.: WFB0                             |
|              | LOGY_AND_ENV | ···                                     |                 |         |         | _          | · · · · · · · · · · · · · · · · · · · |
|              |              |                                         |                 |         |         | İ          | W024                                  |
|              |              |                                         |                 |         |         |            |                                       |
|              |              |                                         |                 |         |         |            |                                       |

| EPA | SAMPLE | NO  |
|-----|--------|-----|
|     |        | 110 |

| b Name: ECOL   | OGY_AND_ENV             | IRONMENT            | Contract: _    |             |        |            | WO24<br>Dissolved |
|----------------|-------------------------|---------------------|----------------|-------------|--------|------------|-------------------|
| Lab Code: EAND | E_ Ca                   | se No.:910          | 052 SAS No.:   | :           |        | SD         | G No.: WFB06      |
| Matrix (soil/w | ater): WATE             | R                   |                | Lab         | Samp   | le I       | D: 10154          |
| Level (low/med | ): LOW_                 | _                   |                | Dat         | e Rec  | eive       | d: 05/04/91       |
| % Solids:      | 0.                      | 0                   |                |             |        |            |                   |
| Co             | ncentration             | Units (ug/          | L or mg/kg dry | y we        | eight) | : UG       | /L_               |
|                | CAS No.                 | <br>  Analyte       | Concentration  | c           | Q      | M          |                   |
|                | 7429-90-5               | Aluminum            | 91.3           | _ -<br> B - |        | P          |                   |
|                | 7440-36-0               | Antimony            | 33.0           |             |        | P          |                   |
|                | 7440-38-2               | Arsenic             | 2.0            |             |        | F          |                   |
|                | 7440-39-3               | Barium              | 5.0            | ַן טו       |        | P          |                   |
|                | 7440-41-7               | Beryllium           | 1.0            | ן טן_       |        | P_         |                   |
|                | 7440-43-9               | Cadmium             | 3.0            | ן טו_       |        | P_         |                   |
|                | 7440-70-2               | Calcium_            | 762            | B   _       |        | P_         |                   |
|                | 7440-47-3               | Chromium_           | 63.9           |             | *      | P_         |                   |
|                | 7440-48-4               | Cobalt              | 12.4           |             |        | P_         |                   |
|                | 7440-50-8               | Copper              | 2.0            |             |        | P_         |                   |
|                | 7439-89 <b>-</b> 6      | Iron                | 283            |             | E      | P_         |                   |
|                | 7439-92-1               | Lead                | 2.7            |             |        | F_         | 4                 |
|                | 7439-95-4               | Magnesium           | 914            |             |        | P_         |                   |
|                | 7439-96-5               | Manganese           |                |             |        | P_         |                   |
|                | 7439-97-6               | Mercury             | 0.20           |             |        | CV         |                   |
|                | 17440-02-0              | Nickel              | 16.0           |             |        | P_         |                   |
|                | 7440-09-7               | Potassium           | 1140           |             |        | P_         |                   |
|                | 7782-49-2               | Selenium_           | 2.0            |             |        | F_         |                   |
|                | 7440-22-4               | Silver              | 3.0            |             |        | P_ <br>  P | `                 |
|                | 7440-23-5<br> 7440-28-0 | Sodium<br> Thallium | 3290           |             |        | F          |                   |
|                | •                       | Vanadium            | 6.8            |             |        | - ' '      | olu 11.           |
|                | 7440-66-6               | • _                 | 4.3            | ` ` —       |        | P_         | BYK IIII/91       |
|                | 1                       | Cyanide             |                | -   -       |        | NR         | to the aluen      |
|                |                         | 1                   |                |             |        |            | 1                 |
| Color Before:  | CL                      | Clari               | cy Before: C   |             |        | Tex        | ture:             |
| Color After:   | CL                      | Clari               | y After: C     |             |        | Art        | ifacts:           |
| Comments:      |                         |                     |                |             |        |            |                   |

### U.S. EPA - CLP

# 1 INORGANIC ANALYSES DATA SHEET

| EPA | SAMPLE | МО |
|-----|--------|----|
|-----|--------|----|

| ab Name: ECOI | OGY AND ENV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IRONMENT    | Contract:                             |                 |                                         | W025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|-----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ab Code: EAND |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <br>052 SAS No.:                      | •               |                                         | SDG No.: WFB06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ib code. Emil | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | be notified |                                       |                 |                                         | DDG MOTE MIDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| trix (soil/w  | vater): WATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R           |                                       | Lab             | Samp                                    | le ID: 10146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| evel (low/med | l): LOW_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                       | Dat             | e Rec                                   | eived: 05/04/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Solids:       | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0           |                                       |                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DOTIGE.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                       |                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Co            | ncentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units (ug,  | /L or mg/kg dry                       | y we            | eight)                                  | : UG/L_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           | 1                                     | <del></del>     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | CAS No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyte     | <br> Concentration                    | C               | Q                                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7429-90-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aluminum    | 228                                   | ¦-¦-            | Y                                       | \ <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antimony    | 33.0                                  |                 |                                         | -   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic     | 2.0                                   |                 |                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Barium      | 6.9                                   |                 |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Beryllium   | *                                     |                 |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7440-43-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 3.4                                   |                 |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7440-70-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 2940                                  |                 |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7440-47-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 9.0                                   |                 | *                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7440-48-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1           | 7.9                                   |                 |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7440-50-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •           | 2.0                                   |                 |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7439-89-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 619                                   |                 | E                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7439-92-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •           | 2.3                                   |                 |                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7439-95-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·           | · · · · · · · · · · · · · · · · · · · |                 |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7439-96-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -           |                                       | , ,             |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7439-97-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · -         | 0.20                                  |                 |                                         | CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 7440-02-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -           | 8.0                                   |                 | <del></del>                             | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7440-09-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                       |                 |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7782-49-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •           | 2.0                                   | –               |                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7440-22-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 3.0                                   | ` '             |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7440-23-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 4120                                  | , , <del></del> |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thallium    | 3.0                                   |                 | ·····                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vanadium    | 7.0                                   |                 | *************************************** | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 7440-66-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zinc        | 10.2                                  |                 |                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cyanide     | 10.0                                  | ַ יֿ <u>י</u>   |                                         | AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                       | i_i_            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| olor Before:  | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clari       | ty Before: C                          |                 |                                         | Texture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| olor After:   | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clarit      | ty After: C                           |                 |                                         | Artifacts:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mments:       | - the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |             |                                       |                 |                                         | THE RESIDENCE OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF |
| ALLENGAL GOO  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                       |                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                       |                 | -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

EPA SAMPLE NO.

| b Name: ECO  | LOGY_AND_ENV | IRONMENT      | Contract: _        |        |        |           | W025<br>DI <b>SSOWED</b> |
|--------------|--------------|---------------|--------------------|--------|--------|-----------|--------------------------|
| b Code: EANI | DE_ Ca       | se No.:910    | 1.052 SAS No.:     | : _    |        | SD        | G No.: WFB0              |
| crix (soil/v | water): WATE | R             |                    | La     | b Samp | le I      | D: 10155                 |
| rel (low/med | d): LOW_     |               |                    | Da     | te Rec | eive      | d: 05/04/91              |
| Solids:      | 0.           | 0             |                    |        |        |           |                          |
| Co           | oncentration | Units (ug/    | L or mg/kg dry     | y w    | eight) | : UG,     | /L_                      |
|              | CAS No.      | <br>  Analyte | <br> Concentration | <br> C | Q      | <br> M    |                          |
|              | 7429-90-5    | Aluminum      | 142                | 금      |        | P         |                          |
|              | 7440-36-0    |               | 33.0               |        |        | P         |                          |
|              | 7440-38-2    |               | 2.0                |        |        | F         |                          |
|              | 7440-39-3    | · ·           | 5.0                |        |        | P         |                          |
|              | •            | Beryllium     |                    |        |        | P         |                          |
|              | 7440-43-9    |               | 4.2                |        |        | P         |                          |
|              | 7440-70-2    |               | 3020               |        |        | P_        |                          |
|              | 7440-47-3    | Chromium      | 81.6               | İİ     | *      | P         |                          |
|              | 7440-48-4    | Cobalt        | 11.0               | B      |        | P         |                          |
|              | 7440-50-8    | Copper        | 2.0                | ן ט    |        | P         |                          |
|              | 7439-89-6    |               | 758                |        | E      | P         |                          |
|              | 7439-92-1    | Lead          | 1.0                |        |        | F         |                          |
|              | 7439-95-4    |               |                    |        |        | P         |                          |
|              | 7439-96-5    |               |                    | В      |        | P         |                          |
|              | 7439-97-6    |               | 0.20               |        |        | CV        |                          |
|              | 7440-02-0    | -             | 17.7               |        |        | P         |                          |
|              | 7440-09-7    | • •••••       |                    |        |        | P         |                          |
|              | 7782-49-2    | · ·           | 2.0                |        | ~      | F         | •.                       |
|              | 7440-22-4    |               | 3.0                |        |        | P         | ,                        |
|              | 7440-23-5    |               | 4230               |        |        | P         |                          |
|              | 7440-28-0    |               | 3.0                |        | ·····  | F         |                          |
|              | 7440-62-2    |               | 7.7                |        |        | P         | ALL L                    |
|              | 7440-66-6    | ·             | 4.2                |        |        | P         | AM Whilai                |
|              |              | Cyanide       |                    | -      |        | NR        | Bylolulai                |
| or Before:   | CL           | Clarit        | y Before: C        |        |        | ''<br>Tex | ture:                    |
| or After:    | CL           | Clarit        | y After: C         |        |        | Art       | ifacts:                  |
| ments:       |              |               |                    |        |        |           |                          |

EPA SAMPLE NO.

| b Name: ECOI | OGY AND ENV | IRONMENT                                | Contract:      |              |                                        |                  | W025D         |
|--------------|-------------|-----------------------------------------|----------------|--------------|----------------------------------------|------------------|---------------|
| b Code: EAND |             | <del></del>                             |                | •            |                                        | - '<br>ST        | OG No.: WFB06 |
| b code. EANL | ,L_         | se 40710.                               | 1.032 BAB NO.  | -            |                                        | יוכ              | og No WI boo  |
| trix (soil/w | ater): WATE | R                                       |                | La           | b Samp                                 | ple I            | D: 10147      |
| vel (low/med | l): LOW_    |                                         |                | Da           | te Red                                 | ceive            | ed: 05/04/91  |
| Solids:      | 0.          | 0                                       |                |              |                                        |                  |               |
| Co           | ncentration | Units (ug,                              | L or mg/kg dry | y w          | eight)                                 | : UG             | 5/L_          |
|              | 1           |                                         | _              |              |                                        | <u> </u>         |               |
|              | CAS No.     | Analyte                                 | Concentration  | C            | Q                                      | M                |               |
|              | 7429-90-5   | Aluminum                                | 224            | <b> -</b>  - |                                        | -                |               |
| •            |             | Antimony                                | 33.0           |              |                                        | -  P-            |               |
|              | 7440-38-2   |                                         | 2.0            |              |                                        | F                |               |
|              | 7440-39-3   | •                                       | 5.6            |              |                                        | P                |               |
|              | 7440-41-7   |                                         | ·              | · · -        | · · · · · · · · · · · · · · · · · · ·  | P                |               |
|              | 7440-43-9   |                                         | 4.0            |              |                                        | -   -  <br>-   P |               |
|              | 7440-70-2   | *************************************** | 2790           |              |                                        | P                |               |
|              | 7440-47-3   | •                                       | 9.0            |              | *                                      | P                |               |
|              | 7440-48-4   | ·                                       | 8.5            |              |                                        | P                |               |
|              | 7440-50-8   | *************************************** | 2.0            |              | ······································ | P P              |               |
|              | 7439-89-6   |                                         | 618            |              | E                                      | P                |               |
|              | 7439-92-1   |                                         | 5.0            | · — · -      |                                        | F                |               |
|              | 7439-95-4   | ,                                       |                |              |                                        | P                |               |
|              | 7439-96-5   |                                         |                |              |                                        | P                |               |
|              | 7439-97-6   | •                                       | 0.20           | , ,          |                                        | CV               |               |
|              | 7440-02-0   |                                         | 8.0            |              |                                        | P                |               |
|              | •           | Potassium                               |                |              | ·                                      | -   P            |               |
|              | 7782-49-2   | •                                       | 2.0            |              |                                        | -  F             | ,             |
|              | 17440-22-4  |                                         | 3.0            | ٠            |                                        | -   F -          | <b>N</b>      |
|              | 7440-22-4   |                                         | 3920           |              |                                        | -  F _  <br>  P  |               |
|              | 7440-23-3   |                                         | 3.0            |              |                                        | -   F -          |               |
|              | •           | Vanadium                                | 5.3            |              |                                        | -  P -           |               |
|              | 17440-66-6  | ' <del></del>                           | 19.5           |              |                                        | _ ' '            |               |
|              |             | Cyanide_                                | 10.0           |              |                                        | P_ <br> C_       |               |
| lor Before:  | CL          | Clarit                                  | y Before: C    | _ .          |                                        | Tex              | ture:         |
| lor After:   | CL          |                                         | y After: C     |              |                                        |                  | ifacts:       |
| nments:      |             |                                         |                |              |                                        |                  |               |

| EPA SAMPLE | E NO |
|------------|------|
|------------|------|

| ab Name: ECOL | OGY_AND_ENV | IRONMENT                                | Contract:       |      | M       |         | WO25D<br>Dissouved |
|---------------|-------------|-----------------------------------------|-----------------|------|---------|---------|--------------------|
| ab Code: EAND | E_ Cas      | se No.:9103                             | L.052 SAS No.:  | :    |         | SD      | G No.: WFB06       |
| atrix (soil/w | ater): WATE | R                                       | •               | Lal  | b Sampi | le I    | D: 10156           |
| evel (low/med | ): LOW_     | _                                       |                 | Da   | te Rec  | eive    | d: 05/04/91        |
| Solids:       | 0.0         | 0                                       |                 |      |         |         |                    |
| Co            | ncentration | Units (ug/                              | L or mg/kg dry  | 7 W  | eight)  | : UG    | -/L_               |
|               | CAS No.     | Analyte                                 | Concentration   | C    | Q       | M       |                    |
|               | 7429-90-5   | Aluminum                                | 166             | F.   |         | P       |                    |
|               | 7440-36-0   |                                         | 33.0            |      |         | P       |                    |
|               | 7440-38-2   |                                         | 2.0             |      |         | F       |                    |
|               | 7440-39-3   |                                         | 5.0             | ٠,   |         | P       |                    |
|               | 7440-41-7   |                                         |                 |      |         | P       |                    |
|               | 7440-43-9   |                                         | 3.0             | ٠.   |         | P       |                    |
|               | 7440-70-2   | •                                       | 2830            |      |         | P       |                    |
|               | 7440-47-3   | *************************************** | 9.0             |      | *       | P       |                    |
|               | 7440-48-4   | •                                       | 5.0             |      |         | P       |                    |
|               | 7440-50-8   | Copper                                  | 2.0             | U    |         | P       |                    |
|               | 7439-89-6   | Iron                                    | 480             | ĺ    | E       | P       |                    |
|               | 7439-92-1   | Lead                                    | 1.0             | ן ט  |         | F       |                    |
|               | 7439-95-4   |                                         |                 | BI   |         | P_      |                    |
|               |             | Manganese                               | 4.5             | B    |         | P_      |                    |
|               | 7439-97-6   |                                         | 0.20            | וטן  |         | CV      |                    |
|               | 7440-02-0   | Nickel                                  | 8.0             | ן שן |         | P_      |                    |
|               | 7440-09-7   | •                                       | 263             | וטן  |         | P_      |                    |
|               | 7782-49-2   | • —                                     | 2.0             |      |         | F_      | · .                |
|               | 7440-22-4   | • ———                                   | 3.0             |      |         | P_      | N.                 |
|               | 7440-23-5   |                                         | 4020            |      |         | P_      |                    |
|               | 7440-28-0   | ·                                       | 3.0             |      |         | F_      | M                  |
|               | 7440-62-2   |                                         | 4.0             |      |         | P_      | Bluchala           |
|               | 7440-66-6   | Zinc                                    | 8.2             | BI.  |         | P_      | Duclus             |
|               |             | Cyanide                                 |                 |      |         | NR <br> | `                  |
| lor Before:   | CL          | Clarit                                  | ry Before: C    |      |         | Tex     | ture:              |
|               |             |                                         | <br>cy After: C |      |         |         | ifacts:            |
| mments:       |             |                                         | <u> </u>        |      |         |         |                    |
| mments:       |             |                                         |                 |      |         |         |                    |
|               |             |                                         |                 |      |         |         |                    |
|               |             |                                         |                 |      |         |         |                    |

### U.S. EPA - CLP

### 1 INORGANIC ANALYSES DATA SHEET

| EPA | SAMPLE | NO |
|-----|--------|----|
|-----|--------|----|

| Lab Name: ECC                        | DLOGY AND ENV           | IRONMENT   | Contract:      |       |        | WFB06           |
|--------------------------------------|-------------------------|------------|----------------|-------|--------|-----------------|
|                                      |                         |            | L.052 SAS No.  | :     |        | SDG No.: WFB06  |
| Matrix (soil                         | water): WATE            | R          |                | Lab   | Samp   | le ID: 10148    |
| Level (low/me                        | ed): LOW_               | _          |                | Dat   | e Rec  | eived: 05/04/91 |
| Solids:                              | 0.                      | 0          |                |       |        |                 |
| C                                    | Concentration           | Units (ug/ | L or mg/kg dry | y we  | eight) | : UG/L_         |
|                                      | 1                       | }          |                | 1 1   |        | 1 1             |
|                                      | CAS No.                 | Analyte    | Concentration  | C     | Q      |                 |
|                                      | 7429-90-5               | Aluminum   | 14.0           | ַ ט   |        | P               |
|                                      | 7440-36-0               | Antimony   | 33.0           |       |        | P               |
|                                      | 7440-38-2               | Arsenic    | 2.0            | ַן טו |        | F_              |
|                                      | 7440-39-3               |            | 5.0            | · · · |        | P_              |
|                                      | 7440-41-7               |            |                |       |        | P_              |
|                                      | 7440-43-9               |            | 3.0            |       |        | P_              |
|                                      | 7440-70-2               | ,          | 95.0           |       |        | P_              |
|                                      | 7440-47-3               | •          | 10.5           |       |        | P_              |
|                                      | ,                       | Cobalt     | 11.1           |       |        | P_              |
|                                      | 7440-50-8               |            | 2.0            |       |        | P_              |
|                                      | 7439-89-6               |            | 265            |       | E      | P_              |
|                                      | •                       | Lead_      | 1.0            |       |        | F_  <br>  P     |
|                                      | 7439-95-4               |            |                |       |        | · ·             |
|                                      | 7439-96-5               | · -        |                |       |        | P               |
|                                      | 7439-97-6               |            | 0.20           |       | ······ | CV              |
|                                      | 7440-02-0<br> 7440-09-7 |            | 13.1<br>263    |       |        | P_              |
|                                      | 17782-49-2              | •          | 2.0            |       |        | P_              |
|                                      | 7440-22-4               |            | 3.0            | · · — |        | F_  <br>  P     |
|                                      | 17440-23-5              |            | 264            |       |        | F_  <br>  P     |
|                                      | 7440-28-0               |            | 3.0            |       |        | F               |
|                                      | 7440-62-2               |            | 5.1            |       | -M     | P_              |
|                                      | 7440-66-6               | ·          | 17.4           |       | ~~~    | p               |
|                                      |                         | Cyanide    | 10.0           |       |        | P               |
|                                      |                         |            | <u> </u>       |       |        |                 |
| olor Before:                         | CL                      | Clarit     | y Before: C    |       |        | Texture:        |
| olor After:                          | CL                      | Clarit     | y After: C     |       |        | Artifacts:      |
| omments:                             |                         |            |                |       |        |                 |
| Color Before: Color After: Comments: |                         |            | -              |       |        |                 |

| א כו יד | SAMPLE | MO  |
|---------|--------|-----|
| LPA     | DAMPLE | NU. |

| b Name: ECOI | .ogy_and_env            | IRONMENT      | Contract:                             |                  |             | 7           | WFB06<br>I <b>SSOLVED</b> |
|--------------|-------------------------|---------------|---------------------------------------|------------------|-------------|-------------|---------------------------|
| b Code: EANI | E_ Ca                   | se No.:910    | 1.052 SAS No.:                        |                  |             | SDG         | No.: WFB06                |
| trix (soil/w | water): WATE            | R             |                                       | Lab              | Samp        | le ID:      | : 10157                   |
| vel (low/med | l): LOW_                | _             |                                       | Dat              | e Rec       | eived       | : 05/04/91                |
| olids:       | 0.                      | 0             |                                       |                  |             |             |                           |
| Co           | ncentration             | Units (ug     | /L or mg/kg dry                       | y we             | ight)       | : UG/1      | Ľ_                        |
|              | CAS No.                 | <br>  Analyte | <br> Concentration                    | C                | Q           | <br>  M     |                           |
|              | 7429-90-5               | Aluminum      | 20.1                                  | _ -              |             | P           |                           |
|              | 7440-36-0               |               | 33.0                                  |                  |             | P           |                           |
|              | 7440-38-2               | Arsenic       | 2.0                                   |                  |             | F           |                           |
|              | 7440-39-3               |               | 5.0                                   |                  |             | P           |                           |
|              | 7440-41-7               |               | •                                     |                  |             | P           |                           |
|              | 7440-43-9               | Cadmium       | 3.0                                   | ַן טן            |             | P_          |                           |
|              | 7440-70-2               | Calcium_      | 114                                   | B   _            |             | P_          |                           |
|              | 7440-47-3               | Chromium_     | 9.0                                   | ַ   ט            | *           | P_          |                           |
|              | 7440-48-4               | Cobalt        | 5.0                                   |                  |             | P_          |                           |
|              | 7440-50-8               | Copper        | 2.7                                   |                  |             | P_          |                           |
|              | 7439-89-6               | Iron          | 20.8                                  | B _              | E           | P_          |                           |
|              | •                       | •             | 1.0                                   |                  | W           | F_          |                           |
|              | •                       | •             |                                       |                  |             | P_          |                           |
|              | ,                       |               |                                       |                  |             | P_          |                           |
|              | 7439-97-6               | Mercury       | 0.20                                  | -                |             | CV          |                           |
|              | 7440-02-0               | Nickel        | 8.0                                   |                  |             | P_          |                           |
|              | 7440-09-7               | Potassium     | · · · · · · · · · · · · · · · · · · · |                  |             | P_          |                           |
|              |                         |               | 2.0                                   |                  |             | F_          | •                         |
|              | 7440-22-4               |               | 3.0                                   |                  |             | P_          |                           |
|              | 7440-23-5               |               | 403                                   |                  |             | P_  <br>  F |                           |
|              | 7440-28-0               |               | 3.0                                   |                  |             |             |                           |
|              | 7440-62-2<br> 7440-66-6 |               | 4.0                                   |                  | <del></del> | P_          | 04. 1.61                  |
|              |                         | Cyanide       | 4.7                                   | _   _<br>  _   _ |             | P <br> NR   | All ululal                |
| lor Before:  | CL                      | Clari         | ty Before: C                          | · ·              |             | Text        | ure:                      |
| lor After:   | CL                      | Clari         | ty After: C                           |                  |             | Arti        | facts:                    |
|              |                         |               |                                       |                  |             |             |                           |

| ab Name: ECOI | OGY AND ENV  | IRONMENT                                | Contract:               |              |             | WRB06           |
|---------------|--------------|-----------------------------------------|-------------------------|--------------|-------------|-----------------|
| ab Code: EANI |              |                                         | 1.052 SAS No.:          | •            | <del></del> | SDG No.: WFB0   |
| ab Code: EANL | L_ Ca        | se No. 1910.                            | 1.032 SAS NO.           |              | <u> </u>    | SDG NO WEDO     |
| atrix (soil/w | vater): WATE | R                                       |                         | Lab          | Samp        | le ID: 10149    |
| evel (low/med | l): LOW_     | _                                       |                         | Dat          | e Rec       | eived: 05/04/91 |
| Solids:       | 0.           | 0                                       |                         |              |             |                 |
| Cc            | ncentration  | Units (ug.                              | /L or mg/kg dry         | , we         | ight)       | : UG/L          |
|               |              | , , , , , , , , , , , , , , , , , , , , |                         |              |             | <del></del> ,   |
|               | CAS No.      | <br>  Analyte<br>                       | <br> Concentration <br> | C            | Q           |                 |
|               | 7429-90-5    | Aluminum                                | 14.0                    | ַ װַ װַ װַ   |             | P               |
|               | 7440-36-0    | ·                                       | 33.0                    |              |             | P               |
|               | 7440-38-2    |                                         | 2.0                     |              | M           | F               |
|               | 7440-39-3    |                                         | 5.0                     |              |             | P               |
|               | 7440-41-7    |                                         |                         | —            |             | P               |
|               | 7440-43-9    |                                         | 3.0                     |              |             | P               |
|               | 7440-70-2    |                                         | 95.0                    |              |             | P               |
|               | 7440-47-3    | ·                                       | 9.0                     |              | *           | i P i           |
|               | 7440-48-4    | •                                       | 9.7                     |              |             | P               |
|               | •            | Copper                                  | 2.0                     |              |             | i P             |
|               |              | Iron                                    | 68.9                    |              | E           | P               |
|               | •            | Lead                                    | 1.0                     |              | _w          | F               |
|               | 7439-95-4    |                                         | 108                     | . ,          |             | P               |
|               | •            | Manganese                               | 1.8                     | · · · —      |             | P               |
|               | 7439-97-6    |                                         | 0.20                    |              |             | CV              |
|               |              | Nickel                                  | 8.0                     |              |             | P_              |
|               | 7440-09-7    |                                         |                         |              |             | P               |
|               | 7782-49-2    | •                                       | 2.0                     | _            |             | F               |
|               | 7440-22-4    |                                         | 3.0                     |              |             | i P i           |
|               |              | Sodium                                  | 182                     |              | <del></del> | i P i           |
|               | 7440-28-0    | ·                                       | 3.0                     |              | <del></del> | F               |
|               | 7440-62-2    |                                         |                         |              |             | F               |
|               | 7440-66-6    |                                         | 9.7                     |              |             | P               |
|               |              | Cyanide_                                | 10.0                    |              |             | [C_]            |
|               |              |                                         |                         | <b> _ </b> _ |             | 11              |
| olor Before:  | CL           | Clarit                                  | cy Before: C            |              |             | Texture:        |
| olor After:   | CL           | Clarit                                  | ty After: C             |              |             | Artifacts:      |
|               |              |                                         |                         |              |             |                 |

EPA SAMPLE NO.

| b Name: ECO  | LOGY_AND_ENV                | IRONMENT      | Contract:       |               |          | WRB06<br>DISSOLVED |
|--------------|-----------------------------|---------------|-----------------|---------------|----------|--------------------|
| b Code: EANI | DE_ Ca                      | se No.:910    | 1.052 SAS No.   | : _           |          | SDG No.: WFB06     |
| trix (soil/v | water): WATE                | R             |                 | La            | b Samp   | le ID: 10158       |
| vel (low/med | d): LOW_                    | <del></del>   |                 | Da            | te Rec   | eived: 05/04/91    |
| Solids:      | 0.                          | 0             |                 |               |          |                    |
| C            | oncentration                | Units (ug     | /L or mg/kg dry | v w           | eight)   | : UG/L             |
| 3.           |                             |               |                 |               |          |                    |
|              | CAS No.                     | <br>  Analyte | Concentration   | <br> C        | Q        |                    |
|              | 7429-90-5                   | Aluminum      | 14.0            | រៃចា          | Harrison | P                  |
|              | 7440-36-0                   |               | 33.0            |               |          | P                  |
|              | 7440-38-2                   |               | 2.0             | ٠.,           |          | F                  |
|              | 7440-39-3                   | ·             | 5.0             |               |          | P                  |
|              | 7440-41-7                   |               |                 | ٠.,           |          | j P i              |
|              | 7440 <b>-</b> 43 <b>-</b> 9 | •             | 3.0             |               |          | P                  |
|              | 7440-70-2                   |               | 95.0            | ָן <b>ט</b> ו |          | P                  |
|              | 7440-47-3                   | Chromium      | 9.0             | U             | *        | P                  |
|              | 7440-48-4                   | Cobalt        | 5.0             | U             |          | P                  |
|              | 7440-50-8                   | Copper        | 2.0             | U             |          | P                  |
|              | 7439-89-6                   | Iron          | 39.7            | B             | E        | P                  |
|              | 7439-92-1                   | Lead          | 1.0             | ן שן          |          | F                  |
|              | 7439-95-4                   | Magnesium     | 108             | ן שן          |          | P_                 |
|              | 7439-96-5                   | Manganese     | 1.3             | B             |          | P_                 |
|              | 7439-97-6                   | Mercury       | 0.20            | U             |          | CV                 |
|              | 7440-02-0                   | Nickel        | 8.0             | ן טן          |          | P_                 |
|              | 7440-09-7                   | Potassium     | 263             | U             |          | P                  |
|              | 7782-49-2                   | Selenium_     | 2.0             | ן שן          |          | F_                 |
|              | 7440-22-4                   |               | 3.0             | ן טן          |          | P                  |
|              | 7440-23-5                   |               | 213             |               |          | P_                 |
|              | 17440-28-0                  |               | 3.0             |               |          | F_I                |
|              | 7440-62-2                   |               | 4.0             |               |          | P- Malna           |
|              | 7440-66-6                   |               | 10.3            | B.            |          | NE PACITY          |
|              |                             | Cyanide       |                 | - -<br> -     |          | NR   <br>          |
| or Before:   | CL                          | Clarit        | y Before: C     |               |          | Texture:           |
| or After:    | CL                          | Clari         | y After: C      |               |          | Artifacts:         |
| ments:       |                             |               |                 |               |          |                    |

EPA SAMPLE NO.

|                 | •               | INORGANIC A                           | MADIDED DAIR : | - 4111111                             |                 |
|-----------------|-----------------|---------------------------------------|----------------|---------------------------------------|-----------------|
| Lab Name: ECOL  | OCY AND ENTY    | TDONMENT                              | Contract       |                                       | <br>  WPB06     |
| Lab Name: ECOL  | OGI_AND_ENV     | TRONNENT                              | Concrace       |                                       |                 |
| Lab Code: EAND  | E Ca:           | se No.:9101                           | 1.052 SAS No.: | ***********************               | SDG No.: WFB06_ |
| Matrix (soil/wa | ater): WATE     | R                                     |                | Lab Sampl                             | le ID: 10150    |
| Level (low/med  | ): LOW_         | _                                     |                | Date Rece                             | eived: 05/04/91 |
| ß Solids:       | 0.              | 0                                     |                |                                       |                 |
| Con             | ncentration     | Units (ug/                            | L or mg/kg dry | y weight):                            | : UG/L_         |
|                 |                 |                                       |                |                                       |                 |
|                 | CAS No.         | Analyte                               | Concentration  | C Q                                   | M               |
|                 | <br>  7429-90-5 | <br>  Aluminum                        | 34.1           | _ <br> B                              | P               |
|                 | 7440-36-0       |                                       | · <del></del>  | · · · · · · · · · · · · · · · · · · · | P               |
|                 | 7440-38-2       |                                       |                | ט                                     | F               |
|                 | 7440-39-3       |                                       |                | В                                     | P               |
|                 | 7440-41-7       |                                       |                |                                       | P               |
|                 | 7440-43-9       |                                       | 3.0            |                                       | P               |
|                 | 7440-70-2       |                                       | 263            |                                       | P               |
|                 | 7440-47-3       |                                       | 9.0            |                                       | P               |
|                 | 7440-48-4       | ·                                     | 12.1           | · ,, ,                                | P               |
|                 | 7440-50-8       |                                       | 2.1            |                                       | P               |
|                 | 7439-89-6       |                                       | 90.2           |                                       | P               |
|                 | 7439-92-1       | · · · · · · · · · · · · · · · · · · · |                | B W                                   | F               |
|                 | 7439-95-4       |                                       | ·              | ·                                     | P               |
|                 | 7439-96-5       |                                       | ·              | -                                     | P               |
|                 | 7439-97-6       |                                       | 0.20           |                                       | CV              |
|                 | 7440-02-0       | ·                                     | 8.0            |                                       | D               |
|                 | 7440-09-7       |                                       |                | В                                     | P               |
|                 | 7782-49-2       | •                                     | 2.0            |                                       | -  <br>  F      |
|                 | 7440-22-4       |                                       | 3.0            |                                       | P               |
|                 | 7440-23-5       |                                       | 630            |                                       | P_              |
|                 | 17440-28-0      |                                       | 2 0            | 771                                   | F               |
|                 | 7440-62-2       | •                                     |                | BI                                    | P_              |
|                 | 7440-66-6       |                                       | 3 0            | TT                                    | P_              |
|                 |                 | Cyanide                               | 10.0           | TT .                                  | c_              |
|                 |                 | - Cyanitae                            |                |                                       |                 |
| olor Before:    | CL              | Clarit                                | ty Before: C   |                                       | Texture:        |
| olor After:     | CL              | Clarit                                | ty After: C    | #- <del></del>                        | Artifacts:      |
| Comments:       |                 |                                       |                |                                       |                 |
| Comments:       |                 |                                       |                |                                       |                 |

### U.S. EPA - CLP

### ICP INTERFERENCE CHECK SAMPLE

| Lab | Name:   | ECOLOGY_AND_E | ENVIRONMENT       | Cont | ract: _ |        | <del></del> |        |
|-----|---------|---------------|-------------------|------|---------|--------|-------------|--------|
| Lab | Code:   | EANDE_        | Case No.:9101.052 | SAS  | No:     |        | SDG No.:    | WFB06_ |
| ICP | ID Numb | oer: JY       |                   | ICS  | Source: | PERKIN | 1-ELMER     | •      |

### Concentration Units: ug/L

|           | Tr     | ue       | Ini     | tial Found | 3        | I               | Final Found | 1           |
|-----------|--------|----------|---------|------------|----------|-----------------|-------------|-------------|
| 1         | Sol.   | Sol.     | Sol.    | Sol.       |          | Sol.            | Sol.        |             |
| Analyte   | A      | AB       | A       | AB         | %R       | A               | AB          | %R i        |
|           |        |          |         |            |          |                 | -           |             |
| Aluminum  | 499810 |          |         | 470690.0   | 96.5     | 454600          | 455620.0    | 93.4        |
| Antimony  | 0      | 0        | -196    | 205.0      |          | -244            | -170.0      | <del></del> |
| Arsenic   |        |          |         |            |          |                 |             |             |
| Barium    | 0      | 471      | 7       | 440.8      | 93.6     | 7               | 435.8       | 92.5        |
| Beryllium | 0      | 438      | 1       |            | 103.9    | 1               | 448.5       | 102.4       |
| Cadmium   | 0      | 888      | 43      |            | 103.5    | 42              | 899.4       | 101.3       |
| Calcium   | 499280 | 455779   | 477590  | _480360.0  | 105.4    | <u> 4717</u> 70 | 471240.0    | 103.4       |
| Chromium_ | 0      | 429      | 19      | 444.3      | 103.6    | 19              | 448.0       | 104.4       |
| Cobalt    | 0      | 427      | 70      | 485.1      | 113.6    | 66              | 485.6       | 113.7       |
| Copper    | 0      | 458      |         | 416.4      | _90.9    | -29             | 409.9       | 89.5        |
| Iron      | 199980 | 179441   | _171380 | 172160.0   | _95.9    | 168750          | 168780.0    | 94.1        |
| Lead      |        |          | 1       |            | !!       |                 |             | _           |
| Magnesium | 500130 | 493483   | 481380  | 484940.0   | 98.3     | 478660          | 480220.0    | 97.3        |
| Manganese | 0      | 466      | 35      | 462.5      | 99.2     | 34              | 457.4       | 98.2        |
| Mercury   |        |          |         |            |          |                 |             |             |
| Nickel    | 0      | 827      | 30      | 839.8      | 101.5    | 38              | 844.7       | 102.1       |
| Potassium | 0      |          | 48      |            |          | -192            |             |             |
| Selenium_ |        |          |         |            |          |                 |             |             |
| Silver    | 0      | 935      |         | 889.9      | 95.2     | -8              | 873.0       | 93.4        |
| Sodium    | 0      | <u> </u> | 391     |            | <u> </u> | 96              |             |             |
| Thallium_ |        |          |         |            |          |                 |             |             |
| Vanadium_ | 0      | 466      | -30     |            | 92.4     | -30             | 420.4       | 90.2        |
| Zinc      | 0      | 915      | 40      | 940.7      | 102.8    | 35              | 919.3       | 100.5       |
|           |        |          |         |            |          |                 |             |             |

#### U.S. EPA - CLP

DUPLICATES

EPA SAMPLE NO.

| W024 | D |
|------|---|
|------|---|

Lab Name: ECOLOGY AND ENVIRONMENT Contract: \_\_\_\_\_

Lab Code: EANDE Case No.:9101.052 SAS No.: \_\_\_\_ SDG No.: WFB06

Matrix (soil/water): WATER

Level (low/med): \_LOW\_\_

% Solids for Sample: \_\_0.0

% Solids for Duplicate: \_\_\_0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L\_

| <br> <br> Analyte | Control  <br>Limit | <br>  Sample (S) C    | ! !<br>! !<br>! ! ! | Duplicate (D) | c   | <br>  | Q     | <br>   <br>  M |
|-------------------|--------------------|-----------------------|---------------------|---------------|-----|-------|-------|----------------|
| Aluminum          |                    | 2470.2000             | Ιİ                  | 2242.5000     | Τi  | 9.7   | i -   | P              |
| Antimony          |                    | 33.0000  <del>U</del> | 11                  | 33.0000       | ן ט |       | -     | P              |
| Arsenic           |                    | 2.0000 U              | 1                   | 2.0000        | U   |       | 1_1   | F_             |
| Barium            |                    | [5.6750 B             | 1                   | 7.1830        | B   | 23.5  |       | P_             |
| Beryllium         |                    | 1.0000 U              | 1                   | 1.0000        | U   | l l   |       | P              |
| Cadmium_          |                    | 3.0000 U              |                     |               |     | 200.0 | 1_1   | P_             |
| Calcium_          |                    | 752.7700 B            | 11                  | 754.0800      | B   | 0.2   |       | P_             |
| Chromium_         | 10.0               | 9.0000 U              | 11                  | 19.5210       |     | 200.0 | *     | P_             |
| Cobalt            |                    | 7.5620 B              | 11                  | 7.2570        | В   | 4.1   |       | P              |
| Copper            |                    | 2.9950 B              | 11                  | 2.0000        |     |       | 1_1   | P_             |
| Iron              |                    | 1424.1000 _           | 11                  | 1337.4000     | _1  | 6.3   | I = I | P              |
| Lead              | 3.0                | 8.6500                |                     | 7.1100        |     | 19.5_ | 1_1   | F              |
| Magnesium         |                    | 932.6600 B            | 1                   | 934.9400      | B   | 0.2   | 1_1   | P_             |
| Manganese         |                    | 13.2680 B             | 1                   | 14.3110       | B   | 7.6   | 1_1   | P_             |
| Mercury_          |                    | l l                   | 11                  |               | _1  |       | 1_1   | NR             |
| Nickel            |                    | 8.0000 U              |                     | 12.9450       |     | 200.0 | 1_1   | P_             |
| Potassium         |                    | 263.0000 U            | 11                  | 263.0000      | U   | 1     | I = I | P              |
| Selenium_         |                    | 2.0000 U              |                     | 2.0000        | UΙ  |       | 1_1   | F_             |
| Silver            |                    | 3.0000 U              |                     | 3.0000        |     |       | I = I | P              |
| Sodium            |                    | 3399.2000 B           |                     | 3179.9000     | B   | 6.7   | 1-1   | P              |
| Thallium_         |                    | ]3.0000 U             |                     | 3.0000        | U   |       | 1_1   | F_             |
| Vanadium_         |                    | 6.2480 B              |                     | 9.2590        |     |       | 1_1   | P_             |
| Zinc              |                    | 13.8170 B             |                     | 16.6230       | B   | 18.4  | 1_1   | P_             |
| Cyanide           |                    | 10.0000 U             |                     | 10.0000       | U   |       | 1_1   | AS             |
|                   |                    |                       | 11                  |               | _   |       |       |                |

DUPLICATES

EPA SAMPLE NO.

|     |       |         |       |             |           | WPB06 | D |
|-----|-------|---------|-------|-------------|-----------|-------|---|
| Lab | Name: | ECOLOGY | _AND_ | ENVIRONMENT | Contract: | l     |   |

Lab Code: EANDE Case No.:9101.052 SAS No.: \_\_\_\_ SDG No.: WFB06

Matrix (soil/water): WATER

Level (low/med): LOW\_

% Solids for Sample: 0.0

% Solids for Duplicate: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L\_

|           | Control |            |                  |   |               |                 |          |                                            |    |
|-----------|---------|------------|------------------|---|---------------|-----------------|----------|--------------------------------------------|----|
| Analyte   | Limit   | Sample (S) | C                |   | Duplicate (D) | C               | RPD      | Q                                          | M  |
| Aluminum_ |         |            | Τi               |   |               | T_i             |          | <u>                                   </u> | NR |
| Antimony_ |         |            | 1_1              | Ш |               | 1_1             |          | _                                          | NR |
| Arsenic   |         |            | 1_1              |   |               | 1_1             |          | $\prod_{i=1}^{n}$                          | NR |
| Barium    | 1       |            | 1_1              |   |               | $I \subseteq I$ |          | $\prod_{i=1}^{n}$                          | NR |
| Beryllium |         |            | $1 \boxed{1}$    |   |               | $I^{-}I$        |          |                                            | NR |
| Cadmium   |         |            | $1 \overline{1}$ |   |               | 1-1             |          | i i Ti                                     | NR |
| Calcium   |         |            | $1 \overline{}$  |   |               | 1 - 1           |          | ì i – i                                    | NR |
| Chromium  |         |            | 1 1              |   |               | $i^{-}i$        |          | i i <sup>—</sup> i                         | NR |
| Cobalt -  |         |            | iΞi              |   |               | $i^{-}i$        |          | i i <sup>—</sup> i                         | NR |
| Copper    |         |            | $i^{-1}$         |   |               | i Ti            |          | i i Ti                                     | NR |
| Iron      |         |            | 1                |   |               | İ               |          | i i Ti                                     | NR |
| Lead      |         |            | 1                |   |               | $i^{-}i$        |          | i i - i                                    | NR |
| Magnesium |         |            | 1 1              |   |               | $i^-i$          |          | i i Ti                                     | NR |
| Manganese |         |            | 1-1              | 1 |               | $i^{-}i$        |          | i i Ti                                     | NR |
| Mercury   |         | 0.2000     | ו 😈              | - | 0.2000        | Ū               |          | i i Ti                                     | CV |
| Nickel    |         |            | 1.1              | 1 |               | 1               |          | i                                          | NR |
| Potassium |         |            | I I              |   |               | ίĪ              |          | i i – i                                    | NR |
| Selenium  |         |            | $I^{-1}$         |   |               | i i             |          | i i <sup>—</sup> i                         | NR |
| Silver    |         |            | $i^{-}i$         |   |               | i – i           |          | i i Ti                                     | NR |
| Sodium    |         |            | i – i            | i |               | i Ti            |          | i i – i                                    | NR |
| Thallium  |         |            | $i^{-}i$         | Ì |               | i-i             | <u> </u> | ii-i                                       | NR |
| Vanadium  | ,       |            | $i^{-}i$         | İ |               | i – i           |          | i i – i                                    | NR |
| Zinc      | ,       |            | j - i            | Ì |               | i – i           |          | i i – i                                    | NR |
| Cyanide   |         |            | i-i              | Ì |               | i-i             |          | i i – i                                    | NR |
|           | i       |            | i_i              | İ |               | i_i             |          | i i _ i                                    |    |

### 5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

| ab Code: E        | EANDE_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Case No.:9101.0                 | 52 SAS No.:                   | <del>-</del>                                 | SDG No.               | : WFBO      | 6_             |              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|----------------------------------------------|-----------------------|-------------|----------------|--------------|
| atrix:W           | NATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                               | Lev                                          | rel (low/med)         | : _LOW_     |                |              |
| C-1:4- 6-         | w Cample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 0.0                           |                               |                                              |                       |             |                |              |
| Solids fo         | or sampre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                               |                                              |                       | `           |                |              |
|                   | Concentr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ation Units (ug/L               | or mg/kg dry                  | wei                                          | .ght): UG/L_          |             |                |              |
| Analyte           | Control <br>Limit  <br>%R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spiked Sample<br>Result (SSR) C | <br>  Sample<br>  Result (SR) |                                              | Spike  <br>Added (SA) | %R          | Q              | <br> <br>  M |
| Aluminum          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |                                              |                       |             | 1-             | NR           |
| Antimony          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | i-i                                          |                       |             | 1-             | NR           |
| Arsenic           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | i-i                                          |                       | <del></del> | i-             | NR           |
| Barium            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | i-i                                          |                       |             | i <sup>-</sup> | NR           |
| Beryllium         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | i i                                          |                       |             |                | NR           |
| Cadmium           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | iΤi                                          |                       |             | i -            | NR           |
| Calcium           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | $i^{-}i$                                     |                       |             | i-             | NR           |
| Chromium          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |                                              |                       |             | 1              | NR           |
| Cobalt            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | <b>1</b>                      | $I \subseteq I$                              |                       |             | 1_             | NR           |
| Copper            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | 1_1                                          |                       |             |                | NR           |
| Iron              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | 1_1                                          |                       |             |                | NR           |
| Lead              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | 1_1                                          |                       |             | 1_             | NF           |
| Magnesium         | - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indiana - Indi |                                 |                               | _                                            |                       | 3           | 1_             | NF           |
| Manganese         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |                                              |                       |             |                | NF           |
| Mercury           | 75-125_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0600                          | 0.2000                        | וטו                                          | 1.00                  | 106.0       | !_             | CV           |
| Nickel            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | <u>                                     </u> |                       |             | _              | NF           |
| Potassium         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | !-!                                          |                       | -           | !_             | NR           |
| Selenium_         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | !-!                                          |                       |             | !-             | NF           |
| Silver <br>Sodium |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | .                             | !!                                           |                       |             |                | NR           |
| Thallium_         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | -                                            |                       |             |                | NR           |
| Vanadium          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               | _                                            |                       |             | -              | NR<br>NR     |
| Zinc Zinc         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                               | !-:                                          | <u> </u>              |             | <u> </u>       | NR           |
| Cyanide           | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.6000                         | 10.0000                       | <del>     </del>                             | 91.80                 | 108.5       | <u> </u> -     | C            |
| cyaniue           | ,5 125_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 1                             | , O ,                                        |                       | 108.5       | !-             | _            |
|                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l                               | . 1                           | · '                                          | į                     |             | '              |              |
| omments:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |                                              |                       |             |                |              |

FORM V (Part 1) - IN

7/88

### U.S. EPA - CLP

### 5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

|                        |                          |                    |                |    | 1            |         |            | _  |
|------------------------|--------------------------|--------------------|----------------|----|--------------|---------|------------|----|
| ab Code: H             | EANDE_                   | Case No.:9101.05   | SAS No.: _     |    | SDG No.      | : WFB0  | 6          |    |
| atrix:V                | VATER                    |                    | L              | ev | el (low/med) | : _LOW_ |            |    |
| g - 1 d a - 6 e        | Cl-                      |                    |                |    |              |         |            |    |
| Solids fo              | or Sampie                | ::U.U              |                |    |              |         |            |    |
|                        | Concentr                 | ration Units (ug/L | or mg/kg dry w | ei | ght): UG/L_  |         |            |    |
|                        | <br> Control             |                    |                | I  | -            |         |            |    |
|                        | Limit                    | Spiked Sample      | Sample         | i  | Spike        |         | i          | İ  |
| Analyte                | *R                       | Result (SSR) C     | Result (SR)    | cį | Added (SA)   | %R      | įQ         | M  |
| Aluminum               | <br> 75-125              | 4445.6000          | 2470.2000      | _  | 2000.00      | 98.8    | ļ_         | P  |
| Aruminum_:<br>Antimony | 75-125_ <br>  75-125     | 461.1200           | 33.0000        |    | 500.00       | 92.2    | <u> </u>   | P  |
| Arsenic                | 75   125  <br>  75   125 | 30.8500            | 2.0000         | •  | 40.00        | 77.1    | -          | F  |
| Barium                 | 75-125                   | 2066.1000          | 5.6750         |    | 2000.00      | 103.0   | -          | P  |
| Beryllium              | '                        | 53.4240            | 1.0000         | •  | 50.00        | 106.8   | ¦-         | P  |
| Cadmium                | 75-125                   | 54.6530            | 3.0000         |    | 50.00        | 109.3   | ¦-         | P  |
| Calcium                | 1 73 123_                |                    |                | i  |              |         | <u> </u> - | NĒ |
| Chromium               | 75-125                   | 220.2300           | 9.0000         | បា | 200.00       | 110.1   | 1-         | P  |
| Cobalt                 | 75-125                   | 507.1400           | 7.5620         |    | 500.00       | 99.9    | i-         | P  |
| Copper                 | 75-125                   | 246.0600           | 2.9950         | ,  | 250.00       | 97.2    |            | P  |
| Iron                   | 75-125                   | 2655.4000          | 1424.1000      |    | 1000.00      | 123.1   | i-         | P  |
| Lead                   | 75-125                   |                    | 8.6500         |    | 20.00        | 94.2    | i-         | F  |
| Magnesium              |                          |                    |                | -i |              | ·       | i -        | NĒ |
| Manganese              |                          | 519.8000           | 13.2680        | Βİ | 500.00       | 101.3   | i-         | P  |
| Mercury                |                          |                    |                | i  |              |         | i –        | NĒ |
| Nickel                 | 75-125                   | 510.7800           | 8.0000         | ŪΪ | 500.00       | 102.2   | i          | P  |
| Potassium              |                          |                    |                | i  |              |         |            | NF |
| Selenium               | 75-125                   | 7.6300             | 2.0000         | ΰį | 10.00        | 76.3    |            | F  |
| Silver -               | 75-125                   | 46.8930            | 3.0000         | υį | 50.00        | 93.8    | i –        | P  |
| Sodium                 | į                        |                    |                | j  |              |         | i –        | NF |
| mh = 11 i              | 75-125                   | 45.3400            | 3.0000         | ŪΪ | 50.00        | 90.7    | i –        | F  |
| Thailium               | 75-125                   | 511.2200           | 6.2480         |    | 500.00       | 101.0   | i –        | P  |
| Thallium_<br>Vanadium  | 75-125                   | 510.9600           | 13.8170        | В  | 500.00       | 99.4    | i –        | P  |
|                        | 10 120                   |                    |                | i  |              |         | ,          | NR |
| Vanadium_              | /3 123_                  |                    |                | 1  |              |         |            | 1  |

FORM V (Part 1) - IN

### 5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

| ab Code: l           | EANDE_       | Case No.:9101.0               | )52 SAS No.:   |                                              | SDG No.             | : WFBC  | )6_   | 1             |
|----------------------|--------------|-------------------------------|----------------|----------------------------------------------|---------------------|---------|-------|---------------|
| atrix:               | WATER        |                               |                | Level                                        | (low/med)           | : _LOW_ |       | _             |
| Solids fo            | ar Camala    | 0.0                           |                |                                              |                     |         |       |               |
| SOLIGS I             | or sambre    | 20.0                          |                |                                              |                     |         |       |               |
|                      | Concentr     | ration Units (ug/I            | or mg/kg dry v | weight                                       | ): UG/L_            |         |       |               |
|                      | <br> Control |                               |                |                                              |                     |         | -     | l             |
| Analyte              |              | Spiked Sample<br>Result (SSR) |                |                                              | Spike  <br>ded (SA) | %R      | Q     | l<br> <br>  M |
| Aluminum             |              |                               |                | <u> </u>                                     |                     |         | -   - | NR            |
| Antimony_            |              |                               |                |                                              |                     |         |       | NR            |
| Arsenic              |              |                               |                | _                                            |                     |         | -     | NR            |
| Barium               |              |                               |                | _                                            |                     |         | -     | NR            |
| Beryllium<br>Cadmium |              |                               |                | _                                            |                     |         |       | NR<br>NR      |
| Calcium              |              |                               |                | -                                            |                     |         | - -   | NP            |
| Chromium_            | !!           |                               |                | ¦                                            |                     |         | - ¦ — | N.            |
| Cobalt               |              |                               |                | ¦                                            |                     |         | -     | NR            |
| Copper               | '            |                               |                | i -                                          |                     |         | -     | NR            |
| Iron                 |              |                               |                |                                              |                     |         | -     | NR            |
| Lead                 |              |                               |                |                                              |                     |         |       | NR            |
| Magnesium            |              |                               |                | _                                            |                     |         |       | NR            |
| Manganese            |              |                               |                |                                              | 1                   |         | _     | NR            |
| Mercury              |              |                               |                | _                                            | ļ                   |         | _     | NR            |
| Nickel               |              |                               |                | <u>                                     </u> |                     |         | -   - | NR            |
| Potassium            | !            |                               |                | _                                            |                     |         | -     | NR            |
| Selenium_<br>Silver  |              |                               |                | _                                            | .                   |         | -     | NR<br>NR      |
| Sodium               | ·            |                               |                |                                              |                     |         | - '   | NR            |
| Thallium             | !            |                               |                |                                              | -                   |         | -     | NR            |
| Vanadium             |              |                               |                | -                                            |                     |         | -     | NR            |
| Zinc                 | i            |                               |                | '                                            |                     |         | ·     | NR            |
| Cyanide_             | 75-125_      | 105.0000                      | 10.0000        | U 106.7                                      | 91.80               | 114.4   |       | AS            |
|                      | ]            |                               |                | _                                            |                     | 98.4    | .  !  |               |
| omments:             |              |                               |                |                                              |                     | 11/     |       |               |
|                      |              |                               |                |                                              |                     | DYKL    | 24/6  | 7/            |

FORM V (Part 1) - IN

7/81

#### 3 BLANKS

| Lab | Name: | ECOLOGY_ | AND_ | ENVIRONMENT | Contract: | <br>• |
|-----|-------|----------|------|-------------|-----------|-------|
|     |       |          |      |             |           |       |

Lab Code: EANDE Case No.:9101.052 SAS No.: \_\_\_\_ SDG No.: WFB06\_

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L\_

| 1         |         | i    |        |     |            |       |        | <del></del> -                                |            |    |
|-----------|---------|------|--------|-----|------------|-------|--------|----------------------------------------------|------------|----|
| 1         | Initial | i    |        |     |            |       |        | i                                            |            |    |
| ĺ         | Calib.  | ĺ    | Cont   | inι | ing Calib  | rat   | ion    | į                                            | Prepa-     |    |
| i         | Blank   | į    |        |     | .ank (ug/L |       |        | i                                            | ration     |    |
| Analyte   | (ug/L)  | C    | 1      | С   | 2          | C     | 3      | C                                            | Blank C  M | 1  |
| i i       |         | 1    |        |     |            |       |        | ĺ                                            |            |    |
| Aluminum_ | 14.0    | U    | 14.0   | U   | 14.0_      | וטו   | 14.0   | U                                            | 14.0 U  P  |    |
| Antimony_ | 33.0    | וטו  | 33.0   | U   | 33.0       | U     | 33.0_  | U                                            | 33.0 U  P  |    |
| Arsenic   | 2.0     | וטו  | 2.0_   | U   | 2.0_       | ושו   | 2.0    | U                                            | 2.0 U  F   |    |
| Barium    | 5.0     | ושו  | 5.0_   | U   | 5.0_       | ן ש ן | 5.0_   | U                                            | 5.0 U  P   |    |
| Beryllium | 1.0     | U    | 1.0_   | U   | 1.0_       | U     | 1.0_   | U                                            | 1.0 U  P   |    |
| Cadmium_  | 3.1     | B    | 4.6_   | В   | 3.0_       | U     | 3.0    | U                                            | 3.0 U  P   |    |
| Calcium   | 95.0    | U    | 95.0_  | U   | 95.0       | U     | 95.0   | U                                            | 95.0 U  P  |    |
| Chromium_ | 9.0     | ושן  | 9.0    | U   | 9.0_       | U     | 9.0    | U                                            | 9.0 U  P   |    |
| Cobalt    | 5.0     | ט    | 5.0    | U   | 6.2        | B     | 7.8_   | B                                            | 6.3 B P    |    |
| Copper    | 2.0_    | ן שן | 2.0    | U   |            | U     | 2.0_   | U                                            | 2.0 U  P   |    |
| Iron      | 13.6    | B    | 17.4_  | B   | 5.0_       | U     | 5.0_   | U                                            | 23.2 B  P  |    |
| Lead      | 1.2     | B    | 1.0_   | В   | 1.0_       | U     | -1.3_  | B                                            | 1.0 U  F   |    |
| Magnesium | 108.0   | U    | 108.0_ | U   | 108.0_     | ן ט ן | 108.0_ | U                                            | 108.0 U  P |    |
| Manganese | 1.0     | U    | 1.0_   | U   | 1.6        | B     | 1.0_   | ן ט ן                                        | 1.0 U  P   | _  |
| Mercury   | 0.2     | וטו  | 0.2_   | U   | 0.2_       | ושן   | 0.2_   | U                                            | _  CV      | 7_ |
| Nickel    | -10.2   | B    | 8.0_   | U   | 8.0_       | U     | 8.0    | U                                            | 8.0 U  P   | _  |
| Potassium | 263.0   | וטו  | 263.0_ | ן ט | 263.0      | ן שן  | 263.0_ | U                                            | 263.0 U  P | _  |
| Selenium_ | 2.0     | U    | 2.0_   | U   | 2 _ 0      | ן ט ן | 2.0    | U                                            | 2.0 U  F   |    |
| Silver    | 3.0     | U    | 3.0_   | U   | 3.0_       | U     | 3.0    | U                                            | 3.0 U  P   |    |
| Sodium    | 74.0    | U    | 220.8  | В   | 74.0       | וטן   | 74.0   | ושן                                          | 74.0 U  P  |    |
| Thallium_ | 3.0     | U    | 3.0    | U   | 3.0        | וטן   | 3.0    | U                                            | 3.0 U  F   | _  |
| Vanadium_ | 4.0     | וטו  | 4.0_   | U   |            | U     | 6.9    | B                                            | 4.0 U P    | _  |
| Zinc      | 3.0     | וטו  | 3.0    | U   | 3.0        | U     | 3.0    | U                                            | 3.0 U P    |    |
| Cyanide   | 10.0    | וטן  | 10.0   | וטן | 10.0       | U     |        | _                                            | 10.0 U  AS | 5  |
|           |         | 1_1  |        | _   |            | 1_1   |        | <u>                                     </u> |            |    |

### 3 BLANKS

| Lab  | Name:   | ECOTOGA- | _AND_ENVIRONMENT         | contract:  |         |      |        |
|------|---------|----------|--------------------------|------------|---------|------|--------|
| Lab  | Code:   | EANDE_   | Case No.:9101.052        | SAS No.:   | SDG     | No.: | WFB06_ |
| Prep | paratio | n Blank  | Matrix (soil/water): WAT | ER         |         |      |        |
| Drat | naratio | n Blank  | Concentration Units (ug/ | L or ma/ka | ): UG/L |      |        |

|           | Initial<br>Calib. | 1                 | Cont   | inı | ing Calib  | rat | ion |               |                 |    |
|-----------|-------------------|-------------------|--------|-----|------------|-----|-----|---------------|-----------------|----|
| ,         | Blank             | i                 |        |     | .ank (ug/L |     |     | i             | ration          |    |
| Analyte   | (ug/L)            | c                 | 1      | С   | 2          | Ć   | 3   | c             | Blank C  N      | 4  |
| Aluminum  |                   | <u>_</u>          | 14.0_  | U   | 14.0_      | U   |     | Ti            | I I P           |    |
| Antimony  |                   | 1_1               | 33.0   | U   | 33.0       | U   |     | 1_1           | P               |    |
| Arsenic   |                   | 1_1               | 2.0    | U   | 2.0_       | U   |     | 1_1           | F               |    |
| Barium    |                   | $\lfloor \rfloor$ | 5.0    | U   | 5.0_       | U   |     | 1_1           | _ P             |    |
| Beryllium |                   | 1_1               | 1.0_   | U   | 1.0        | U   |     | 1_1           | P               |    |
| Cadmium   |                   | _                 | 3.0    | U   | 3.0_       | U   |     | 1_1           | P               |    |
| Calcium   |                   | -                 | 95.0   | U   | 95.0_      | U   |     | 1_1           | P               |    |
| Chromium  |                   | 1_1               | 9.0    | U   |            | U   |     | 1_1           | P               |    |
| Cobalt    |                   | 1_1               | 5.0    | U   |            | U   |     | $1 \boxed{1}$ | P               |    |
| Copper    |                   | 1_1               |        | U   |            | U   |     | 1_1           | P               |    |
| Iron      |                   | 1_1               | 5.0_   | U   | 11.5_      | B   |     | 1_1           | _ P_            |    |
| Lead      |                   | 1_1               | 1.0_   | U   | 1.0_       |     | 1.0 | U             | _ F_            |    |
| Magnesium |                   | 1_1               | 108.0_ | U   | 108.0_     | U   |     | 1_1           | _ P             |    |
| Manganese |                   | 1_1               | 1.0_   | U   | 1.0_       | U   |     | 1_1           | _ P_            |    |
| Mercury   |                   | 1_1               |        | _   |            | 1_1 |     | 1_1           | _ NE            | ₹_ |
| Nickel    |                   | 1_1               | 8.0_   | U   |            | U   |     | 1_1           | P               |    |
| Potassium |                   | 1_1               | 263.0  | U   | 263.0_     | U   |     | 1_1           | P               |    |
| Selenium_ |                   | 1_1               | 2.0_   | U   | 2.0_       | U   |     | 1_1           | _ F             |    |
| Silver    |                   | 1_1               | 3.0_   | U   | 3.0_       | U   |     | 1 - 1         | _ P             |    |
| Sodium    |                   | 1_1               | 74.0   | U   | 74.0       | U   |     | 1_1           | P               |    |
| Thallium_ |                   | 1_1               | 3.0_   | U   | 3.0_       | U   |     | 1_1           | _ _ F_          |    |
| Vanadium_ |                   | 1_1               | 4.0_   | U   |            | U   |     | . _           | P               |    |
| Zinc      |                   | 1_1               | 3.0_   | U   | 3.0_       | U   |     | .1_1          | _ P_            |    |
| Cyanide   | 10.0_             | ן ט ן             |        | _   |            | _   |     | 1_1           | 10.0 U  C       |    |
|           |                   | 1_1               |        | _   |            | 1_1 |     | 1_1           | l <u></u> l_  l |    |

### 3 BLANKS

| Lab  | Name:   | ECOLOGY_ | _AND_ENVIRONMENT         | Contract:   |     |      |        |
|------|---------|----------|--------------------------|-------------|-----|------|--------|
| Lab  | Code:   | EANDE_   | Case No.:9101.052        | SAS No.: _  | SDG | No.: | WFB06_ |
| Pre  | paratio | n Blank  | Matrix (soil/water):     |             |     |      |        |
| Prep | paratio | n Blank  | Concentration Units (ug/ | L or mg/kg) | •   |      |        |

| Analyte   | Initial<br>Calib.<br>Blank<br>(ug/L) | CI        | Cont |        | ing Calib<br>ank (ug/L<br>2 |                 | ion<br>3 | <br>     <br> | Prepa-<br>ration<br>Blank              | CI       | <br> <br>  M |
|-----------|--------------------------------------|-----------|------|--------|-----------------------------|-----------------|----------|---------------|----------------------------------------|----------|--------------|
|           | (-3) -/                              | i         |      |        |                             |                 |          | ii            |                                        |          |              |
| Aluminum  |                                      | T-i-      |      |        |                             | TI              |          | Tii           |                                        | Τi       | NR           |
| Antimony_ |                                      | -i-i-     |      | -i-i   |                             |                 |          | iTii          |                                        | i-i      | NR           |
| Arsenic   |                                      | -i-i-     |      | -i-i   |                             |                 |          | i-ii          |                                        | i i      | NR NR        |
| Barium    |                                      | -i-i-     |      | -i-i   |                             | 1               |          | -i-ii         |                                        | i-i      | NR           |
| Beryllium |                                      | -i-i-     |      | -i-i   |                             | $i^{-}i^{-}$    |          | i i           |                                        | i        | NR           |
| Cadmium   |                                      | -i-i-     |      | -i-i   |                             |                 |          | i-ii          |                                        | `i       | NR           |
| Calcium   |                                      | -i - i -  |      | -i-i   |                             |                 | -        | i             |                                        | · i – i  | NR           |
| Chromium  |                                      | -i-i-     |      | -i-i   |                             | $i^{-}i$        |          | i-i i         | ************************************** | i i      | NR           |
| Cobalt -  |                                      | -i-i-     |      | -i-i   |                             | i               |          | i i i         |                                        | i-i      | NR           |
| Copper    |                                      | -i-i-     |      | -i - i |                             | i               |          | i ii          |                                        | 1        | NR           |
| Iron      |                                      | -i-i-     |      | -i-i   |                             |                 |          | 1-11          |                                        | 1        | NR           |
| Lead      |                                      | -i-i-     | 1.0  | וֹטוֹ  | 1.0                         | Ū               | 1.0      | UI            |                                        | i i      | F            |
| Magnesium |                                      | -i-i-     |      | -i i   |                             |                 |          | iii           |                                        | 17       | NR           |
| Manganese |                                      |           |      |        |                             |                 |          | i             |                                        |          | NR           |
| Mercury   |                                      | _ _       |      | [[]    |                             | 1_1             |          | 1 11          |                                        | 1-1      | NR           |
| Nickel    |                                      | _ _       |      |        |                             |                 |          | 1 11          |                                        | 1 - 1    | NR           |
| Potassium |                                      | _1_1_     |      | 1_1    |                             | $I \subseteq I$ |          | 1 11          |                                        |          | NR           |
| Selenium_ |                                      |           |      |        |                             |                 |          | 1 11          |                                        | 1        | NR           |
| Silver!   |                                      | _ _       |      | [[]    |                             | 1_1             |          | 1 1           |                                        | 1        | NR           |
| Sodium    |                                      | _         |      | 1_1    |                             |                 |          | 1-11          |                                        |          | NR           |
| Thallium  |                                      | _1_1      |      | 1_1    |                             | 1_1             |          | 1 1           |                                        |          | NR           |
| Vanadium_ |                                      | _ _ _     |      | _ _    |                             | 1_1             |          | 1_11          |                                        | 1 - 1    | NR           |
| Zinc      |                                      | _1_1      |      |        |                             |                 |          | 1-11          |                                        | 1-1      | NR           |
| Cyanide   |                                      | _   _   _ |      | 1 1    |                             |                 |          | $1^{-1}$      |                                        | $i^{-1}$ | NR           |

JOB NUMBER :9101.052

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-10143 MATRIX: WATER

SAMPLE ID CLIENT: PO3-WO21

| PARAMETER                               | RESULTS | Q | QNT. LIMIT | UNITS      |
|-----------------------------------------|---------|---|------------|------------|
| *************************************** |         | - |            |            |
| Total Alkalinity                        | 25      |   | 1.0        | MG/L CACO3 |
| Total Hardness                          | 47      |   | 1.0        | MG/L CACO3 |
| Petroleum Hydrocarbons                  | ND      |   | 1.0        | MG/L       |
| TOC                                     | 32      |   | 1.0        | MG/L .     |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

NA = NOT APPLICABLE

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-10144

MATRIX: WATER

SAMPLE ID CLIENT: PO3-WO23

| PARAMETER                                     | RESULTS | Q | QNT. LIMIT | UNITS      |
|-----------------------------------------------|---------|---|------------|------------|
| with many regal attack dama regal when states |         | - |            |            |
| Total Alkalinity                              | 1.0     |   | 1.0        | MG/L CACO3 |
| Total Hardness                                | 20      |   | 1.0        | MG/L CACO3 |
| Petroleum Hydrocarbons                        | ND      |   | 1.0        | MG/L       |
| TOC                                           | 6.7     |   | 1.0        | MG/L       |

QUALIFIERS: C = COMMENT

C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-10145 MATRIX: WATER

SAMPLE ID CLIENT: PO3-WO24

| PARAMETER                                              | RESULTS | Q | QNT. LIMIT | UNITS      |
|--------------------------------------------------------|---------|---|------------|------------|
| made within safes where these many season wash militis |         | - |            |            |
| Total Alkalinity                                       | ND      |   | 1.0        | MG/L CACO3 |
| Total Hardness                                         | 6.0     |   | 1.0        | MG/L CACO3 |
| Petroleum Hydrocarbons                                 | ND      |   | 1.0        | MG/L       |
| TOC                                                    | 1.1     |   | 1.0        | MG/L       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-10146 MATRIX: WATER

SAMPLE ID CLIENT: PO3-WO25

| PARAMETER                                   | RESULTS | Q | QNT. LIMIT | UNITS      |
|---------------------------------------------|---------|---|------------|------------|
| with while their term differ team and team. |         | - |            |            |
| Total Alkalinity                            | 4.5     |   | 1.0        | MG/L CACO3 |
| Total Hardness                              | 2.0     |   | 1.0        | MG/L CACO3 |
| Petroleum Hydrocarbons                      | ND      |   | 1.0        | MG/L       |
| TOC                                         | 3.6     |   | 1.0        | MG/L       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-10147 MATRIX: WATER

SAMPLE ID CLIENT: PO3-WO25D

| PARAMETER              | RESULTS | Q | QNT. LIMIT | UNITS      |
|------------------------|---------|---|------------|------------|
|                        |         |   |            |            |
| Total Alkalinity       | 4.5     |   | 1.0        | MG/L CACO3 |
| Total Hardness         | 8.0     |   | 1.0        | MG/L CACO3 |
| Petroleum Hydrocarbons | ND      |   | 1.0        | MG/L       |
| TOC .                  | 3.3     |   | 1.0        | MG/L       |

NO NOT DETERMINE

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-10148 MATRIX: WATER

SAMPLE ID CLIENT: PO3-WFB06

| PARAMETER              | RESULTS | Q | QNT. LIMIT | UNITS      |
|------------------------|---------|---|------------|------------|
|                        |         | - |            |            |
| Total Alkalinity       | 1.5     |   | 1.0        | MG/L CACO3 |
| Total Hardness         | 2.0     |   | 1.0        | MG/L CACO3 |
| Petroleum Hydrocarbons | ND      |   | 1.0        | MG/L       |
| TOC                    | ND      |   | 1.0        | MG/L       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

: UH-8000 NASP - PHASE I BATCH 2 CLIENT

SAMPLE ID LAB :EE-91-10149 MATRIX: WATER SAMPLE ID CLIENT: PO3-WRB06

| PARAMETER              | RESULTS | Q | QNT. LIMIT | UNITS      |
|------------------------|---------|---|------------|------------|
|                        |         | - |            |            |
| Total Hardness         | 3.0     |   | 1.0        | MG/L CACO3 |
| Petroleum Hydrocarbons | ND      |   | 1.0        | MG/L       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : UH-8000 NASP - PHASE I BATCH 2

SAMPLE ID LAB :EE-91-10150 MATRIX: WATER

SAMPLE ID CLIENT: PO3-WPB06

| PARAMETER              | RESULTS | Q | QNT. LIMIT | UNITS      |
|------------------------|---------|---|------------|------------|
|                        |         | - |            |            |
| Total Hardness         | ND      |   | 1.0        | MG/L CACO3 |
| Petroleum Hydrocarbons | ND      |   | 1.0        | MG/L       |

QUALIFIERS: C = COMMENT ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

EPA SAMPLE NO.

W021

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10143

Sample wt/vol:

5.0 (g/mL) ML

COMPOUND

Lab File ID: F9946

Level:

(low/med) LOW

CAP

Date Received: 05/04/91

% Moisture: not dec.

CAS NO.

Date Analyzed: 05/14/91

Column: (pack/cap)

Dilution Factor: 10

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

74-87-3-----Chloromethane 100 IU 74-83-9-----Bromomethane 100 ľŪ 75-01-4-----Vinyl Chloride 100 ΙŪ 75-00-3-----Chloroethane 100 l U 75-09-2----Methylene Chloride 43 IJ 67-64-1-----Acetone 100 U 75-15-0-----Carbon Disulfide 74 75-35-4----1,1-Dichloroethene 50 ΙU 75-34-3----1,1-Dichloroethane 50 I U 540-59-0----1,2-Dichloroethene (total) 50 ΙU 67-66-3-----Chloroform 50 ΙU 107-06-2----1, 2-Dichloroethane . 50 ΙU 78-93-3----2-Butanone 100 U 71-55-6----1,1,1-Trichloroethane 50 U 56-23-5-----Carbon Tetrachloride 50 U 108-05-4-----Vinyl Acetate 100 U 75-27-4-----Bromodichloromethane 50 ΙU 78-87-5----1,2-Dichloropropane 50 IU 10061-01-5----cis-1,3-Dichloropropene 50 ΙU 79-01-6-----Trichloroethene 50 ΙU 124-48-1-----Dibromochloromethane 50 U 79-00-5----1,1,2-Trichloroethane 50 ΙŪ 71-43-2----Benzene 200 10061-02-6----trans-1,3-Dichloropropene 50 " ΙU 75-25-2-----Bromoform 50 l U 108-10-1----4-Methyl-2-Pentanone 100 I U 591-78-6----2-Hexanone 100 U 127-18-4----Tetrachloroethene 50 IU 79-34-5----1,1,2,2-Tetrachloroethane 50 ΙU 108-88-3-----Toluene 50 ΙU 108-90-7-----Chlorobenzene 50 ΙU 100-41-4-----Ethylbenzene 83 100-42-5-----Styrene 50 IU 1330-20-7-----Xylene (total) 790

#### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

| W021 |  |
|------|--|
|------|--|

ab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10143

Sample wt/vol:

5.0 (g/mL) ML

Lab File ID:

F9946

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Date Analyzed: 05/14/91

Column (pack/cap) CAP

Dilution Factor: 10

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 4

| CAS NUMBER | COMPOUND NAME            | RT    | EST. CONC. | Q  <br> ===== |  |
|------------|--------------------------|-------|------------|---------------|--|
| 1.         | UNKNOWN                  | 16.05 | 60         | J             |  |
| 2.         | Alkylated Benzene Isomer | 22.23 | 200        | J             |  |
| 3.         | Alkylated Benzene Isomer | 23.28 | 210        | J             |  |
| 4.         | Alkylated Benzene Isomer | 24.24 | 92         | J             |  |
|            |                          |       | *          |               |  |

EPA SAMPLE NO.

W023

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101 052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10144

Sample wt/vol:

5.0 (g/mL) ML

Lab File ID: D2447

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Date Analyzed: 05/13/91

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q ΙŪ 74-87-3-----Chloromethane 10 1 74-83-9-----Bromomethane 10 ΙÜ | 75-01-4-----Vinyl Chloride 10 ΙŪ 10 U 75-00-3-----Chloroethane 75-09-2----Methylene Chloride 5 67-64-1------Acetone 12 75-15-0-----Carbon Disulfide 9 75-35-4----1,1-Dichloroethene U 75-34-3----1,1-Dichloroethane 5 U 540-59-0----1,2-Dichloroethene (total) 5 U 5 67-66-3-----Chloroform ľŪ 107-06-2----1, 2-Dichloroethane 5 U 78-93-3----2-Butanone 10 ! U 71-55-6-----1,1,1-Trichlorgethane U 5 56-23-5-----Carbon Tetrachloride\_ 5 U 108-05-4-----Vinyl Acetate 10 U 75-27-4-----Bromodichloromethane 5 IU 78-87-5-----1,2-Dichloropropane 5 U 10061-01-5----cis-1,3-Dichloropropene 5 U 79-01-6-----Trichloroethene 5 IU 124-48-1-----Dibromochloromethane 5 ΙÜ 79-00-5----1,1,2-Trichloroethane 5 IU 5 71-43-2-----Benzene U 10061-02-6----trans-1,3-Dichloropropene 5 ΙŪ | 75-25-2----Bromoform 5 U 108-10-1----4-Methyl-2-Pentanone 10 U 591-78-6----2-Hexanone 10 U 127-18-4-----Tetrachloroethene 5 U 5 79-34-5----1,1,2,2-Tetrachloroethane U | 108-88-3-----Toluene 5 108-90-7-----Chlorobenzene 5 I U 100-41-4-----Ethylbenzene 2 IJ 100-42-5-----Styrene 5 ! U J 1330-20-7-----Xylene (total) 2

#### 1E

#### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

| W023 |  |
|------|--|
|      |  |

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101 052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10144

Lab File ID: D2447 Sample wt/vol: 5.0 (g/mL) ML

Date Received: 05/04/91 Level: (low/med) LOW

% Moisture: not dec. Date Analyzed: 05/13/91

Dilution Factor: 1.0 Column (pack/cap) CAP

CONCENTRATION UNITS:

Number TICs found: (ug/L or ug/Kg) UG/L

| CAS NUMBER | COMPOUND NAME | RT    | EST. CONC. Q |
|------------|---------------|-------|--------------|
| 1.         | UNKNOWN       | 24.36 |              |
| 3.         | UNKNOWN       | 28.39 | 8.0 J        |

EPA SAMPLE NO.

Lab Name: E & E INC.

Contract:

Matrix: (soil/water) WATER Lab Sample ID: 10145

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2448

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. Date Analyzed: 05/13/91

Column: (pack/cap) CAP Dilution Factor: 1.0

|   | CAS NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONCENTRATIO                 |  |                                        | Q  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|----------------------------------------|----|--|
|   | 74-87-3         75-01-4         75-09-2         75-15-0         75-34-3         75-34-3         75-36-3         75-34-3         75-34-3         75-34-3         75-34-3         70-66-3         78-33-3         71-55-6         75-27-4         78-87-5         78-87-5         79-01-6         79-01-6         79-01-6         79-01-6         79-1-43-2         108-10-1         79-1-43-2         108-10-1         79-25-2         108-10-1         79-34-5         108-88-3         108-88-3         108-90-7         100-42-5 | -Chloromethane -Bromomethane -Vinyl Chloride -Chloroethane -Methylene Chloride -Acetone -Carbon Disulfide -1,1-Dichloroethane -1,1-Dichloroethane -1,2-Dichloroethane -1,2-Dichloroethane -2-Butanone -1,1,1-Trichloroethane -2-Butanone -1,1,1-Trichloroethane -1,2-Dichloropropar -Vinyl Acetate -Bromodichlorometha -1,2-Dichloropropar -Cis-1,3-Dichloropr -Trichloroethene -Dibromochlorometha -1,1,2-Trichloroeth -Benzene -trans-1,3-Dichloro -Bromoform -4-Methyl-2-Pentano -2-Hexanone -Tetrachloroethene -Tetrachloroethene -Toluene -Chlorobenzene -Ethylbenzene -Styrene -Xylene (total) | ane ropene roethane roethane |  | 35555555555555555555555555555555555555 |    |  |
| i | 1555 25 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | '<br>[                       |  | ,                                      | ii |  |

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| 1 |      | I |
|---|------|---|
| ١ | W024 | 1 |

EPA SAMPLE NO.

b Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10145

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2448

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. Date Analyzed: 05/13/91

Column (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

Number TICs found: 1 (ug/L or ug/Kg) UG/L

EPA SAMPLE NO.

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10146

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2449

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. Date Analyzed: 05/13/91

Column: (pack/cap) CAP Dilution Factor: 1.8

|   |            |                                          | CONCENTR | ATION U  | NITS: |    |       |
|---|------------|------------------------------------------|----------|----------|-------|----|-------|
|   | CAS NO.    | COMPOUND                                 | (ug/L or |          |       | ÷  | Q     |
|   |            |                                          | _        |          |       |    |       |
| ı |            |                                          |          | l        |       |    | 1     |
| 1 | 74-87-3    | Chloromethane                            |          |          |       | 10 | 10 1  |
| l | 74-83-9    | Bromomethane                             |          | 1        |       | 10 | 10 1  |
| 1 | 75-01-4    | Vinyl Chloride                           |          | 1        |       | 10 | 10 1  |
| 1 | 75-00-3    | Chloroethane                             |          |          |       | 10 | IU I  |
| ł | 75-09-2    | Methylene Chloride                       |          | 1        |       | 4  | IBJ I |
| 1 | 67-64-1    | Acatone<br>Carbon Disulfide              |          | i        |       | 17 | 18 (  |
| 1 | 75-15-0    | Carbon Disulfide_                        |          | <u> </u> |       | 17 | 4 1   |
| ţ | 75-35-4    | 1,1-Dichloroethene                       |          | 1        |       | 5  | IU 1  |
| l | 75-34-3    | 1,1-Dichloroethane<br>1,2-Dichloroethene |          | [        |       | 5  | iu i  |
| 1 | 540-59-0   | 1,2-Dichloroethene                       | (total)  |          |       | 5  | IU I  |
| ı | 67-66-3    | Chloroform_<br>1,2-Dichloroethane        |          | I        |       | 5  | 10 1  |
| 1 | 107-06-2   | 1,2-Dichloroethane                       |          | 1        |       | 5  | 10 1  |
| 1 | 78-93-3    | 2-Butanone                               |          | 1        |       | 10 | 10 1  |
| l | 71-55-6    | 1 , $1$ , $1-Trichloraett$               | ane      | 1        |       | 5  | IU I  |
| 1 | 56-23-5    | Carbon Tetrachlori                       | .de      | 1        |       | 5  | 10 1  |
| 1 | 108-05-4   | Vinyl Acetate                            |          | 1        |       | 10 | 10 1  |
| ١ | 75-27-4    | Bromodichlorometha                       | ne       | 1        |       | 5  | 10 1  |
| 1 | 78-87-5    | 1,2-Dichloropropar                       | ıe       | {        |       | 5  | 10 1  |
| 1 | 10061-01-5 | cis-1,3-Dichloropr                       | opene    | 1        |       | 5  | 10 1  |
| 1 | 79-01-6    | Trichloroethene                          |          | 1        |       | 5  | 10 1  |
| 1 | 124-48-1   | Dibromochlorometha                       | ne       | 1        |       | 5  | 10 1  |
|   |            | 1,1,2-Trichloroeth                       |          |          |       | 5  | 10 1  |
| 1 | 71-43-2    | Benzene                                  |          | 1        |       | 5  | tu i  |
| 1 | 10061-02-6 | trans-1,3-Dichlord                       | propene_ | 1        |       | 5  | IU i  |
| 1 | 75-25-2    | Bromoform                                |          |          |       | 5  | 10 1  |
| 1 | 108-10-1   | 4-Methyl-2-Pentanc                       | ne       | 1        |       | 10 | 10 1  |
| 1 | 591-78-6   | 2-Hexanone                               |          | I        |       | 10 | 10 1  |
| 1 | 127-18-4   | Tetrachloroethene_                       |          |          |       | 5  | 1U 1  |
| i | 79-34-5    | 1,1,2,2-Tetrachlor                       | oethane_ | <u> </u> |       | 5  | 10 1  |
| 1 | 108-88-3   | Toluene                                  |          | 1        |       | 5  | IU i  |
| 1 | 108-90-7   | Chlorobenzene                            |          | I        |       | 5  | IU I  |
| ı | 100-41-4   | Ethylbenzene                             |          |          |       | 2  | 1J 1  |
| İ | 100-42-5   | Styrene                                  |          | 1        |       | 5  | IU I  |
| 1 | 1330-20-7  | Styrene<br>Xylene (total)                |          | 1        |       | 10 | 1     |
| 1 |            |                                          |          | 1        |       |    | 11    |

#### 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

W025

'ab Name: E & E INC.

Contract:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10146

Sample wt/vol: 5.0 (g/mL) ML

Lab File ID: D2449

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Date Analyzed: 05/13/91

Column (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 5

| <br>  CAS NUMBER | COMPOUND NAME             |         | CONC.   Q |
|------------------|---------------------------|---------|-----------|
| 1 1.             | IAlkylated Benzene Isomer | 1 21.69 | 10  J     |
| 1 2.             | IAlkylated Benzene Isomer | 1 23.56 | 8.0 J     |
| 1 3.             | IUNKNOWN                  | 1 24.34 | 14  J     |
| 1 4.             | IUNKNOWN                  | 1 25.43 | 6.0 J     |
| 1 5.             | IUNKNOWN                  | 1 28.42 | 8.0 J     |

| 25D |     |
|-----|-----|
|     | 25D |

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10147

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: F9945

Lavel: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. Date Analyzed: 05/14/91

Column: (pack/cap) CAP Dilution Factor: 1.0

|     |          | CONCENIA | HILUN UNITS: |
|-----|----------|----------|--------------|
| 40. | COMPOUND | (ug/L or | ug/Kg) UG/L  |

|   | CAS NO.    | COMPOUND                                      | (ñã< <u>F</u>                           | or                                      | ug/Kg) | UG/L |      | ū    |     |
|---|------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------|--------|------|------|------|-----|
| ı |            |                                               |                                         |                                         | ı      |      |      | 1    | 1   |
| 1 | 74-87-3    | -Chloromethane                                |                                         |                                         | 1      |      | 10   | Ш    | 1   |
| ! | 74-83-9    | -3romomethane                                 |                                         | *************************************** | 1      |      | 1.0  | ١Ü   | 1   |
| ì | 75-01-4    | -Vinyl Chloride                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                         |        |      | 10   | 114  | į   |
| • | 75-00-3    | -Chloroethane                                 |                                         |                                         |        |      | 10   | IU   | ;   |
| 1 | 75-89-2    | -Methylene Chloride                           | !                                       |                                         |        |      | 2    | ١J   | 1   |
| 1 | 67-64-1    | -Acetone                                      |                                         |                                         | i      |      | 13   | i 8  | 1   |
| 1 | 75-15-0    | -Acetone<br>-Carbon Disulfide                 |                                         |                                         | 1      |      | 19   | 1    | 1   |
| ļ | 75-35-4    | -1,1-Dichlaraethene                           | !                                       |                                         | !      |      | 5    | ΙU   | 1   |
|   |            | -1,1-Dichlordethane                           |                                         |                                         |        |      | 5    | i U  | l l |
| 1 | 540-59-0   | -1,2-Dichlaraethene                           | (tota                                   | 1)                                      |        |      | 5    | ΙÚ   | 1   |
| 1 | 67-66-3    | -Chlaraform                                   |                                         | _                                       |        |      | 5    |      | i   |
| ļ | 107-06-2   | -Chlaraform <u>-</u><br>-1,2-Dichloroethane   |                                         |                                         | 1      |      | 5    | Į U  | i   |
| ł | 78-93-3    | -2-Butanone                                   |                                         |                                         | 1      |      | 10   | IU   | 1   |
| ; | 71-55-6    | -2-Butanone <u></u>                           | ane                                     |                                         | i      |      | 5    | 111  | i   |
| 1 | 56-23-5    | -Carbon Tetrachlori                           | de                                      |                                         | į      |      | ē    | 111  | 1   |
| 1 | 108-05-4   | -Vinul Acetate                                |                                         |                                         | 1      |      | 10   | 1U   | ı   |
| l | 75-27-4    | -Vinyl Acetate <u></u><br>-Bromodichlorometha | ne                                      |                                         | I      |      | 5    | lu - | 1   |
| 1 | 78-87-5    | -1,2-Dichloropropan                           | e                                       |                                         | 1      |      | 5    | 14   | 1   |
| ١ | 10061-01-5 | -cis-1,3-Dichloropr                           | opene_                                  |                                         | · I    |      | 5    | IU   | i   |
| 1 | 79-01-6    | -TrichÍoroethene                              |                                         |                                         | I      |      | 5    | IU   | 1   |
| 1 | 124-48-1   | -Dibromochlorometha                           | ne                                      |                                         |        |      | 5    | نا۱  | i   |
| 1 | 79-00-5    | -1,1,2-Trichloroeth                           | ane                                     |                                         |        |      | 5    | IU   | 1   |
| 1 | 71-43-2    | -Bénzene                                      |                                         |                                         |        |      | 5    | l U  | 1   |
| ı | 10061-02-6 | -trans-1 <mark>,3-Dichlor</mark> o            | propen                                  | e                                       | 1      |      | 5    | ıu   | 1   |
| 1 |            | -Bramofoŕm                                    |                                         |                                         |        |      | 5    | ΙU   | l   |
| 1 | 108-10-1   | -4-Methyl-2-Pentano                           | ne                                      |                                         | I      |      | 10   | l U  | 1   |
| ١ |            | -2-Hexanone                                   |                                         |                                         |        |      | 10   | IU   | 1   |
| 1 | 127-18-4   | -Tetrachloroethene_                           |                                         |                                         | I      |      | 5    | ΙU   | 1   |
| ١ | 79-34-5    | -1,1,2,2-Tetrachlor                           | oethan                                  | e                                       | 1      |      | 5    | IU.  | 1   |
| 1 | 108-88-3   | -Toluene                                      |                                         |                                         |        |      | 5    | ΙU   | 1   |
| 1 | 108-90-7   | -Chlorobenzene                                |                                         |                                         | 1      |      | 5    | ١Ų   | 1   |
| ١ | 100-41-4   | -Ethylbenzene                                 |                                         |                                         | 1      |      | 2    | IJ   | 1   |
| 1 | 100-42-5   | -Styrene                                      |                                         |                                         |        |      | 5    | IU   | ı   |
| 1 | 1330-20-7  | -Xylene (total)                               |                                         |                                         | 1      |      | مجلا | 1    | ł   |
| 1 |            | •                                             |                                         |                                         | I      |      | 11   | .    |     |
| _ |            |                                               |                                         |                                         |        |      | . 1  |      |     |

HJ 6/14/91

#### 1Ε VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

W025D

'ab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10147

Sample wt/vol:

5.8 (g/mL) ML

Lab File ID:

F9945

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Date Analyzed: 05/14/91

Column (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found:

| 1 | 21.2                                   | COMPOUND NAME                                                                      |                                                              | EST. CONC.   Q                                                         |
|---|----------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|
| ! | 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7. | Alkylated Benzene Isomer<br>(Alkylated Benzene Isomer<br>(Alkylated Benzene Isomer | 23.25<br>1 24.78<br>1 25.44<br>1 25.62<br>1 26.25<br>1 26.37 | 40 13 1<br>1 13 13 1<br>1 9.013 1<br>1 8.013 1<br>1 5.013 1<br>1 6.013 |
| ! | 8.                                     | TUNKNOWN PAH                                                                       | 1 27.63<br>L                                                 |                                                                        |

EPA SAMPLE NO.

WTB06

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10151

Sample wt/vol: 5.0 (g/mL) ML

Lab File ID: F9948

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Date Analyzed: 05/14/91

Column: (pack/cap) CAP

CAS NO. COMPOUND

Dilution Factor: 1.0

| CONCE | NTRA | NOITE | U١ | IITS: |
|-------|------|-------|----|-------|
| (ug/L | or   | ug/Kg | )  | UG/L  |

|          |                                     | -        |     | ,   |    |
|----------|-------------------------------------|----------|-----|-----|----|
| ł        |                                     | 1        |     | i   | ı  |
| ŧ        | 74-87-3Chloromethane                | l        | 10  | ĪŪ  | ĺ  |
| 1        | 74-83-9Bromomethane                 | ı        | 10  | ١U  | 1  |
| 1        | 75-01-4                             | ļ        | 10  | ĪŪ  | 1  |
| -        | 75-00-3Chloroethane                 | 1        | 10  | ιu  | 1  |
| 1        | 75-09-2Methylene Chloride           | I        | 28  | 1   | 1  |
| 1        | 67-64-1Acetone                      | 1        | 21  | lΒ  | 1  |
| 1        | 75-15-0Carbon Disulfide             | 1        | 23  | 1   | 1  |
| 1        | 75-35-41,1-Dichloroethene           | 1        | 5   | iU  | ١  |
| ١        | 75-34-31,1-Dichloroethane           | ı        | 5   | IU  | 1  |
| 1        | 540-59-01,2-Dichloroethene (total)  | 1        | 5   | lU  | 1  |
| 1        | 67-66-3Chloroform                   | 1        | 5   | IU  | 1  |
| 1        | 107-06-21,2-Dichloroethane          | 1        | 5   | ΙU  | 1  |
| 1        | 78-93-32-Butanone                   | 1        | 10  | IU  |    |
| 1        | 71-55-61,1,1-Trichloroethane        | l        | 5   | IU  | i  |
| 1        | 56-23-5Carbon Tetrachloride         | 1        | 5   | łU  | ı  |
| ŧ        | 108-05-4                            | l        | 10  | IU  | i  |
| -        | 75-27-4Bromodichloromethane         | I        | - 5 | ŀU  | 1  |
| I        | 78-87-51,2-Dichloropropane          | 1        | 5   | IU. | 1  |
| 1        | 10061-01-5cis-1,3-Dichloropropene   | 1        | 5   | IU  | ı  |
| .1       | 79-01-6Trichloroethene              | 1        | 5   | IU  | 1  |
| 1        | 124-48-1Dibromochloromethane        | I        | 5   | IU  | 1  |
| 1        | 79-00-51,1,2-Trichloroethane        | 1        | 5   | IU  | 1  |
| <b>!</b> | 71-43-2Benzene                      | !        | 5   | IU  | 1  |
| ļ        | 10061-02-6trans-1,3-Dichloropropene | <b>1</b> | 5   | IU  | ł  |
| ì        | 75-25-2Bromoform                    | l        | 5   | IU  | 1  |
| 1        | 108-10-14-Methyl-2-Pentanone        | l        | 10  | IU  | ı  |
| t        | 591-73-62-Hexanone                  | l        | 10  | ΙU  | 1  |
| 1        | 127-18-4Tetrachloroethene           | l        | 5   | IU  | 1  |
| ł        | 79-34-51,1,2,2-Tetrachloroethane    | l        | , 5 | IU  | 1  |
| ŧ        | 188-88-3Toluene                     | 1        | 5   | IU  | i  |
| 1        | 108-40-7Chlorobenzene               | Ì        | 5   | IU  | i  |
| 1        | 100-41-4Ethylbenzene                |          | ,5  | IU  | l  |
| 1        | 100-42-5Styrene                     |          | 5   | ١U  | 1  |
| 1        | 1330-20-7Xylene (total)             |          | - 5 | IU  | T  |
| ١        |                                     |          |     |     | _1 |

TENTATIVELY IDENTIFIED COMPOUNDS

WTB06

EPA SAMPLE NO.

b Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10151

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: F9948

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. Date Analyzed: 05/14/91

Column (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS: Number TICs found: 2 (ug/L or ug/Kg) UG/L

CAS NUMBER COMPOUND NAME RT I EST. CONC. I Q TUNKNOWN 21.20 I 16 IJ 25.16 | 13 2. TUNKNOWN IJ

EPA SAMPLE NO.

WFB06

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10148

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: F9947

Level: (low/med) LDW Date Received: 05/04/91

% Moisture: not dec. Date Analyzed: 05/14/91

Column: (pack/cap) CAP Dilution Factor: 10

|   |            |                               | CONCENTRATIO                          | :etimu mű   |       |         |
|---|------------|-------------------------------|---------------------------------------|-------------|-------|---------|
|   | CAS NO.    | COMPOUND                      | (ug/L or ug/                          | ′Kg) UG/L   |       | Q.      |
|   |            |                               |                                       |             |       |         |
| į |            |                               | i                                     |             | 1     | 1       |
| İ | 74-87-3    | -Chloromethane                | !                                     | 100         | IJ    | i       |
| ! | 74-83-9    | -Bromomethane                 |                                       | 100         | IU    | 1       |
| ţ | <u> </u>   | -Vinyl Chloride               | l                                     | 100         | نا ا  | 1       |
| ; | 75-00-3    | -Chloroethane                 | · · · · · · · · · · · · · · · · · · · | 100         | ٦, ١  | i       |
| 1 | 75-09-2    | -Methylene Chloride           | ·                                     | 21000       | ıΞ    | ţ       |
| 1 | 57-64-1    | -Acetone<br>-Carbon Disulfide | i                                     | 130         | 13    | į       |
| 1 | 75-15-0    | -Carbon Disulfide_            | <u> </u>                              | 50          |       | 1       |
| İ | 75-35-4    | -1,1-Dichloraethene           | t i                                   | 50          | iυ    | !       |
|   | 75-34-3    | -1,1-Dichloroethane           |                                       | 50          | H     | 1       |
| 1 |            | -1,2-Dichloroethene           |                                       |             | IJ    | l       |
| 1 | 67-66-3    | -Chloroform                   | <u> </u>                              | 50          |       | į       |
|   | 107-06-2   | -1,2-Dichlorpethane           | ·i                                    | 5 O         |       | ţ       |
| 1 | 78-93-3    | -2-8utanone                   |                                       | 100         | 1 🖰   | 1       |
|   |            | -1,1,1-Trichloroeth           |                                       |             | : ::  | ;       |
| 1 | 56-23-5    | -Carbon Tetrachlor:           | .de!                                  | 50          | : [_] | ;       |
| İ | 108-05-4   | -Vinyl Acetate                | 1                                     | 100         | iU    | 1       |
| 1 | 75-27-4    | -Bromodichlorometha           | nel                                   | 50          | IJ    |         |
| 1 | 78-87-5    | -1,2-Dichloropropar           | rel                                   | 50          | IU    | I       |
|   |            | -cis-1,3-Dichloropr           |                                       |             | Ш     | 1       |
| 1 | 79-01-6    | -Trichloroethene              | _ · ·                                 | 50          | ΙÜ    | 1       |
| 1 | 124-48-1   | -Dibromochlorometha           | ine I                                 | 50          | ΙU    | 1       |
|   |            | -1,1,2-Trichloroeth           |                                       | 50          | ΙU    | 1       |
| i | 71-43-2    | -Bénzene                      | 1                                     | รา          | لاا   | 1       |
| 1 | 10061-02-6 | -Bénžene <u></u>              | propene i                             | 50          | ΙU    | 1       |
| ı | 75-25-2    | -Bromofoŕm                    | 1                                     | 50          | IJ    | 4 - 4 - |
| Ì | 108-10-1   | -Bromoform <u> </u>           | ne i                                  | 100         | ΙU    | 1.      |
| i | 591-78-6   | -2-Hexanone                   |                                       | 100         | ١U    | 1       |
| i | 127-18-4   | -Tetrachloroethene_           | 1                                     | 50          | ПU    | 1       |
| i | 79-34-5    | -1,1,2,2-Tetrachlor           | oethane                               | 50          | IJ    | 1       |
| i | 108-88-3   | -Toluene                      | 1                                     | <b>5</b> 0  | ΙŪ    | 1       |
| İ | 108-90-7   | -Chlorobenzene                |                                       | 50          | iШ    | ì       |
| i |            | -Ethylbenzene                 |                                       |             | IU    | i       |
| • | 100-42-5   | -Styrene                      | · · · · · · · · · · · · · · · · · · · | 50<br>50    | 111   | i       |
| i | 1330-20-7  | -Xylene (total)               | <u> </u>                              | 50<br>50    | ΙÜ    | 1       |
| í |            |                               |                                       | , ,         | 1     | i       |
| • |            | <del></del>                   | <del></del> ·                         | <del></del> |       | ·       |

#### 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

WFB06

Rab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10148

Sample wt/vol: 5.0 (g/mL) ML

Lab File ID: F9947

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Date Analyzed: 05/14/91

Column (pack/cap) CAP

Dilution Factor: 10

CONCENTRATION UNITS:

Number TICs found: 0

(ug/L or ug/Kg) UG/L

I COMPOUND NAME ! RT CAS NUMBER I EST. CONC. I Q I

Lab Name: E & E INC. Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10148DL

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2534

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec.
Date Analyzed: 05/16/91

Column: (pack/cap) CAP Dilution Factor: 100

|         |          | CONCENTRATION UNITS | <b>5</b> : |
|---------|----------|---------------------|------------|
| CAS NO. | COMPOUND | (ug/L or ug/Kg) UG/ | /L Q       |

|           | (-5/ = -1                    | ,,      |                  |
|-----------|------------------------------|---------|------------------|
| = = = = = | Oh lawawathawa               | 1 2000  | 1                |
|           | Chloromethane                | 1000    | ַט               |
|           | Bromomethane                 | 1000    | וַּט             |
| 75-01-4   | Vinyl Chloride               | 1000    | U                |
| 75-00-3   | Chloroethane                 | 1000    | U                |
| 75-09-2   | Methylene Chloride           | 19000   | BD               |
| 6/-64-1   | Acetone<br>Carbon Disulfide  | 440     | BDJ              |
|           |                              | .  500  | U                |
| /5-35-4   | 1,1-Dichloroethene           | 500     | U                |
| 75-34-3   | 1,1-Dichloroethane           | .  500  | U                |
| 540-59-   | 01,2-Dichloroethene (total)  | 500     | שו               |
|           | Chloroform                   | 500     | ĺΩ               |
| 107-06-   | 21,2-Dichloroethane          | .  500  | וַט              |
|           | 2-Butanone                   | .  1000 | ַ                |
| 71-55-6   | 1,1,1-Trichloroethane        | 500     | ן ט              |
| 56-23-5   | Carbon Tetrachloride         | 500     | שׁ               |
|           | 4Vinyl Acetate               | 1000    | ן ט              |
| 75-27-4   | Bromodichloromethane         | 500     | U                |
| 78-87-5   | 1,2-Dichloropropane          | 500     | U                |
| 10061-0   | 1-5cis-1,3-Dichloropropene   | 500     | U                |
| 79-01-6   | Trichloroethene              | 500     | ַט               |
|           | lDibromochloromethane        | 500     | ַ ט              |
| 79-00-5   | 1,1,2-Trichloroethane        | 500     | <b>ט</b>         |
|           | Benzene                      | 500     | U                |
| 10061-0   | 2-6trans-1,3-Dichloropropene | j 500   | U                |
|           | Bromoform                    | Í 500   | įυ               |
| 108-10-   | l4-Methyl-2-Pentanone        | 1000    | ָוֹ <del>ד</del> |
|           | 62-Hexanone                  | i 1000  | U                |
| i 127-18- | 4Tetrachloroethene           | i 500   | U                |
| 79-34-5   | 1,1,2,2-Tetrachloroethane    | 500     | Ū                |
|           | 3Toluene                     | 500     | וֹט וֹ           |
|           | 7Chlorobenzene               | 500     | Ü                |
| 100-41-   | 4Ethylbenzene                | 500     | ָּט <sup>ּ</sup> |
|           | 5Styrene                     | 500     | Ü                |
|           | -7Xylene (total)             | 500     | ָ<br>עו          |
|           |                              |         | ,                |
|           |                              | I       | 1                |

WFB06DL

#### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

ab Name: E & E INC.

Contract:

WFB06DL

Lab Code: EANDE Case No.: 9101 052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10148DL

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2534

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Date Analyzed: 05/16/91

Column (pack/cap) CAP

Dilution Factor: 100

CONCENTRATION UNITS:

Number TICs found:

(ug/L or ug/Kg) UG/L

| CAS NUMBER | COMPOUND NAME | RT      | EST. CONC. | Q     | l |
|------------|---------------|---------|------------|-------|---|
|            |               | ======= |            | ===== | ı |
|            |               |         |            |       | ĺ |

EPA SAMPLE NO.

WRB06

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10149

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2453

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. Date Analyzed: 05/13/91

Column: (pack/cap) CAP Dilution Factor: 1.0

|              | CAS NO.                                                                                                                                                                                                                                                                                                                                                                       | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | ATION UNITS:<br>ug/Kg) UG/L |                                         | Q               |        |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|-----------------------------------------|-----------------|--------|
|              | 74-87-3         74-83-9         75-01-4         75-09-2         67-64-1         75-35-4         75-34-3         67-66-3         76-23-5         76-23-5         76-23-5         76-23-5         108-05-4         75-27-4         79-01-6         79-01-6         79-05         10061-02-6         75-25-2         108-10-1         791-78-6         108-10-1         108-10-1 | COMPOUND  Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane 1,2-Dichloroethane Chloroform 1,2-Dichloroethane Chloroform 1,2-Dichloroethane Chloroform 1,2-Dichloroethane Chloroform 1,2-Dichloroethane Chloroform 1,2-Dichloroethane Chloroform 1,2-Dichloroethane Carbon Tetrachlori Vinyl Acetate Bromodichlorometha 1,2-Dichloropropan Cis-1,3-Dichloropr Trichloroethene Dibromochlorometha 1,1,2-Trichloroethene Trans-1,3-Dichloro Benzene Trans-1,3-Dichloro Bromoform 4-Methyl-2-Pentano 2-Hexanone Tetrachloroethene Tetrachloroethene | (total)_ ane opene propene | ug/Kg) UG/L                 | 100005255555555555555555555555555555555 |                 |        |
| 1 1          | 108-90-7                                                                                                                                                                                                                                                                                                                                                                      | -Toluene<br>-Chlorobenzene<br>-Ethylbenzene<br>-Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                             | 5<br>5<br>5                             | U<br>  U<br>  U |        |
| ;<br> <br> - | 1330-20-7                                                                                                                                                                                                                                                                                                                                                                     | -Xylene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | i                           | 5                                       | iu<br>!         | 1<br>1 |

#### 1E

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| 1 |       |  |
|---|-------|--|
| ı | WR806 |  |
| ŧ |       |  |

EPA SAMPLE NO.

b Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10149

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2453

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. Date Analyzed: 05/13/91

Column (pack/cap) CAP Dilution Factor: 1.8

CONCENTRATION UNITS:

Number TICs found: 3 (ug/L or ug/Kg) UG/L

| į   |             | 1        |          |      | ł   |       | 1  |      |       | l     |          | ĺ |
|-----|-------------|----------|----------|------|-----|-------|----|------|-------|-------|----------|---|
| ł   | CAS NUMBER  | 1        | COMPOUND | NAME | i   | RT    | 1  | EST. | CBNC. | ì     | Q        | 1 |
| 1 = |             |          |          |      | = = |       | == |      |       | =   = |          | ţ |
| 1   | 1.          | LUNKNOWN |          |      | İ   | 24.35 | l  |      | 16    | }     | 1        | 1 |
| ļ   | 2.          | TUNKNOWN |          |      | 1   | 25.43 | í  |      | 7.    | 013   | ]        | ì |
| ŧ   | <b>3.</b> • | LUNKNOWN |          |      | 1   | 28.40 | 1  |      | 7.    | 0/3   | <b>[</b> | ŧ |
| 1_  |             | 1        |          |      | 1   |       | 1  |      |       | _   _ |          | í |

EPA SAMPLE NO.

WPB06

Lab Name: E & E INC. Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10150

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2454

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. Date Analyzed: 05/13/91

Column: (pack/cap) CAP Dilution Factor: 1.0

| CAS NO.                                                                                                                                       | COMPOUND                                                                                                                                                                                                                                                                                           | CONCENTRI<br>(ug/L or       | _      |                                             | ū |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|---------------------------------------------|---|--|
| 74-87-3 74-83-9 75-01-4 75-09-2 67-64-1 75-15-0 75-35-4 75-34-3 540-59-0 67-66-3 107-06-2 78-93-3 71-55-6 56-23-5 108-05-4                    | -Chloromethane -Bromomethane -Vinyl Chloride -Chloroethane -Methylene Chloride -Acetone -Carbon Disulfide -1,1-Dichloroethane -1,2-Dichloroethane -Chloroform -1,2-Dichloroethane -2-Butanone -1,1,1-Trichloroeth -Carbon Tetrachlor                                                               | (ug/L or                    | ug/Kg) | UG/L 10 10 10 10 10 5 5 5 5 5 5 5 10 5 5 10 |   |  |
| 78-87-5 10061-01-5 79-01-6 124-48-1 79-00-5 71-43-2 10061-02-6 75-25-2 108-10-1 591-78-6 127-18-4 79-34-5 108-88-3 108-90-7 100-41-4 100-42-5 | -Bromodichlorometha -1,2-Dichloropropar -cis-1,3-Dichloropr -Trichloroethene -Dibromochlorometha -1,1,2-Trichloroeth -Benzene -trans-1,3-Dichloro -Bromoform -4-Methyl-2-Pentano -2-Hexanone -Tetrachloroethene -1,1,2,2-Tetrachlor -Toluene -Chlorobenzene -Ethylbenzene -Styrene -Xylene (total) | ne nopene nane opropene one |        | 5555555550055555555                         |   |  |

### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

WPB06

Lab Name: E & E INC.

Contract:

Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10150

Sample wt/vol:

Lab Code: EANDE

5.0 (g/mL) ML

Lab File ID: D2454

Level: (low/med) LOW

Date Received: 05/04/91

% Maisture: not dec.

Date Analyzed: 05/13/91

Column (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

Number TICs found:

(ug/L or ug/Kg) UG/L

|                                         | 1 1              |
|-----------------------------------------|------------------|
| I CAS NUMBER ! COMPOUND NAME ! I RT   I | EST. CONC. 1 Q 1 |
|                                         |                  |
| 1 1. TUNKNOWN 1 24.34 I                 | 12 (3 )          |
| 1 2. IUNKNOWN 1 25.44 i                 | 7.01J t          |
| 1 3. TUNKNOWN 1 28.40 I                 | 7.01J l          |
|                                         |                  |

### VOLATILE METHOD BLANK SUMMARY

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Lab File ID: D2439

Lab Sample ID: VBLKW1

Date Analyzed: 05/13/91

Time Analyzed: 0536

Matrix: (soil/water) WATER

Level:(low/med) LOW

Instrument ID: 7001D

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| I EPA<br>I SAMPLE NO.                      | I LAB<br>I SAMPLE ID                   | I LAB<br>I FILE ID | TIME  <br>  ANALYZED         |
|--------------------------------------------|----------------------------------------|--------------------|------------------------------|
| 011W024<br>021W025<br>031WPB06<br>041WRB06 | 10145<br>  10146<br>  10150<br>  10149 |                    | 1125  <br>  1202  <br>  1507 |
| 1                                          | l                                      | l                  |                              |

### VOLATILE METHOD BLANK SUMMARY

Lab Name: E & E INC.

Contract:

\_\_b Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Lab File ID: D2439

Lab Sample ID: VBLKW1

Date Analyzed: 05/13/91

Time Analyzed: 0536

Matrix: (soil/water) WATER

Level: (low/med) LOW

Instrument ID:

7001D

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| EPA        | LAB       | LAB     | TIME     |
|------------|-----------|---------|----------|
| SAMPLE NO. | SAMPLE ID | FILE ID | ANALYZED |
|            |           |         | ======== |
| 01   W023  | 10144     | D2447   | 1048     |
| 02 W024    | 10145     | D2448   | 1125     |
| 03 W025    | 10146     | D2449   | 1202     |
| 04 WPB06   | 10150     | D2454   | 1507     |
| 05 WRB06   | 10149     | D2453   | 1430     |
| İ          | İ         | İ       | 1        |

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Matrix Spike - EPA Sample No.: WTB06

| I<br>I COMPOUND    | l (ug/L) | I SAMPLE<br>ICONCENTRATION<br>I (ug/L) | l (ug/L)                                | REC #  REC.    |
|--------------------|----------|----------------------------------------|-----------------------------------------|----------------|
|                    | =======  |                                        | _====================================== | ======         |
| 1,1-Dichloroethene | 50.0     | 1 0                                    | 47.8                                    | 1 96 161-1451  |
| Trichloroethene    | 50.0     | 1 0                                    | 52.1                                    | 104   71-120   |
| Benzene            | 50.0     | 1 0                                    | 53.9                                    | 108     76-127 |
| Toluene            | 50.0     | ı Ü                                    | 52.2                                    | 104   176-125  |
| Chlorobenzene      | 50.U     | 1 0                                    | 53.0                                    | 106   175-130  |
| 1                  |          |                                        |                                         | 11             |

| I COMPOUND I                                                                 | (ug/L)                       | MSD  <br> CONCENTRATION <br>  (ug/L) | REC                            |               |                          |        | QC LIMITS<br>RPD   REC.                                                      |
|------------------------------------------------------------------------------|------------------------------|--------------------------------------|--------------------------------|---------------|--------------------------|--------|------------------------------------------------------------------------------|
| 1,1-Dichloroethene    Trichloroethene    Benzene    Toluene    Chlorobenzene | 50.0<br>50.0<br>50.0<br>50.0 | 1 48.5 1                             | 97<br>105<br>104<br>102<br>105 | ; .<br>1<br>1 | -1<br>-1<br>-4<br>2<br>1 | !<br>! | 14   161-149<br>14   171-120<br>11   176-125<br>13   176-129<br>13   175-130 |

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk

0 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

<sup>\*</sup> Values outside of QC limits

EPA SAMPLE NO.

VBLKW1

o Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: UBLKW1

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2439

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 05/13/91

Column: (pack/cap) CAP Dilution Factor: 1.8

|    |                  |                     | CONCENT | TRA | TION UNITS: |    |     |   |
|----|------------------|---------------------|---------|-----|-------------|----|-----|---|
|    | CAS NO.          | СОМРОИНО            | (ug/L i | or  | ug/Kg) UG/L |    | ū   |   |
|    |                  |                     |         |     |             |    |     |   |
| 1  |                  |                     | •       |     | 1           |    | 1   | 1 |
| ١  | 74-87-3          | -Chloromethane      |         |     |             | 10 | ناا | 1 |
| 1  | 74-83-9          | -8romomethane       |         |     | 1           | 10 | IU  | i |
| ļ  | 75-01-4          | -Vinyl Chloride     |         |     | 1           | 10 | IU  | ļ |
| ì  | 75-00-3          | -Chloroethane       |         |     |             | 10 | נוו | į |
| 1  | 75-09-2          | -Methylene Chloride |         |     |             | 8  | 1   | 1 |
| į  | 67-64-1          | -Acetone            |         |     | <u> </u>    | 5  | IJ  | í |
| Ì  | - フラー15ー0ーーーーーー· | -Carbon Disulfide   |         |     | 1           | 5  | i U | 1 |
| İ  | 75-35-4          | -1,1-Dichlorsethene |         |     |             | 5  | ΙU  | 1 |
| 1  | 75-34-3          | -1,1-Dichloroethans |         |     |             | 5  | IU  | ١ |
| 1  | 540-59-0         | -1,2-Dichloroethene | : (tota | 10_ | 1           | 5  | 1 🖯 | i |
| 1  | 67-66-3          | -Chloroform         |         |     | 1           | 5  |     | 1 |
| 1  | 107-06-2         | -1,2-Dichloroethane |         |     | 1           | 5  | IU  | 1 |
| l  | 78-93-3          | -2-Butanone         |         |     | 1           | 10 | 1 📙 | 1 |
| 1  | 71-55-6          | -1,1,1-Trichloroeth | ane     |     | 1           | 5  | ΙU  | i |
| 1  | 56-23-5          | -Carbon Tetrachlori | de      |     | 1           | 5  | Ш   | 1 |
| 1  | 108-05-4         | -Vinyl Acetate      |         |     | i           | 10 | ΙU  | 1 |
| ŀ  | 75-27-4          | -Bromodichlorometha | ne      |     |             | 5  | ΙÜ  | i |
| l  | 78-87-5          | -1,2-Dichloropropar | ie      |     |             | 5  | IU  | 1 |
| 1  | 10061-01-5       | -cis-1,3-Dichloropr | opene_  |     | 1           | 5. | I U | 1 |
| 1  | 79-01-6          | -Trichlorsethene    |         |     | 1           | 5  | l U | 1 |
| 1  | 124-48-1         | -Dibromochlorometha | ne      |     | 1           | 5  | ۱IJ | į |
| 1  | 79-00-5          | -1,1,2-Trichloroeth | ane     |     | 1           | 5  | ΙÜ  | l |
| 1  | 71-43-2          | -Benzene            |         |     | 1           | 5  | ΙU  | 1 |
| 1  |                  | -trans-1,3-Dichloro | propen  | e   |             | 5  | ١U  | 1 |
| 1  | 75-25-2          | -Bromoform          |         |     |             | 5  | ΙÜ  | I |
| 1  | 108-10-1         | -4-Methyl-2-Pentano | ne      |     |             | 10 | IU  | 1 |
| ĺ  | 591-78-6         | -2-Hexanone         |         |     |             | 10 | IU  | ı |
| 1  | 127-18-4         | -Tetrachloroethene_ |         |     | 1           | 5  | ١U  | 1 |
| 1  | 79-34-5          | -1,1,2,2-Tetrachlor | oethane | e   | 1           | 5  | l U | ł |
| ı  | 109-88-3         | -Toluene            |         |     | <u> </u>    | 5  | IU  | 1 |
| 1  | 108-90-7         | -Chlorobenzene      |         |     | 1           |    | ١U  | ı |
| ļ  | 100-41-4         | -Ethylbenzene       |         |     | 1           |    | ΙŪ  | 1 |
| ı  | 100-42-5         | -Styrene            |         |     |             | 5  | ΙU  | i |
| 1  | 1330-20-7        | -Xylene (total)     |         |     | 1           | 5  | t U | ı |
| 1_ |                  | -                   |         |     | 1           |    | l   | 1 |
| _  |                  |                     |         |     |             |    |     |   |

## 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

|     | FPA  | SAMPLE | NU. |
|-----|------|--------|-----|
|     |      |        |     |
| í   |      |        | , I |
| - 1 | 1101 | V1.81  |     |

Lab Name: E & E INC.

Contract:

Matrix: (spil/water) WATER Lab Sample ID: VBLKW1

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2439

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 05/13/91

Column (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:
Number TICs found: 0 (uq/L or uq/Kq) UG/L

I CAS NUMBER I COMPOUND NAME RT | EST. CONC. | Q |

#### 4A VOLATILE METHOD BLANK SUMMARY

'⇒b Name: E & E INC.

Matrix: (soil/water) WATER

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Lab File ID: F9944

Lab Sample ID: VBLKW2

Date Analyzed: 05/14/91

Time Analyzed:

1651

Level:(low/med) LOW

Instrument ID: 7001F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| I EPA<br>I SAMPLE NO. | I LAB<br>I SAMPLE ID | I LAB<br>I FILE ID | I TIME I<br>I ANALYZED I |
|-----------------------|----------------------|--------------------|--------------------------|
| =========             |                      |                    |                          |
| 011W021               | 1 10143              | L F9946            | I 1821 I                 |
| 021W025D              | 1 10147              | 1 F9945            | l 1744 - I               |
| 031WFB06              | 1 10148              | l F9947            | l 1858 l                 |
| 04!WTB06              | 1 10151              | I F9948            | l 1936 l                 |
| 051WTB06MS            | I 10151MS            | 1 F9949            | 1 2013                   |
| 06 INTB06MSD          | 10151MSD             | 1 F9950            | 1 2050 1                 |
| 1                     | f                    | 1                  | 1 . 1                    |

MENTS:

## VOLATILE METHOD ELANK SUMMARY

Lab Name: E & E INC.

Contract:

Lab Code: EANDS Case No.: 9101\_052 SAS No.: SDG No.:

Lab File ID: F9944

Lab Sample IO: UBLKW2

Date Analyzed: 05/14/91

Time Analyzed: 1651

Matrix: (soil/water) WATER

Level:(low/med) LOW

Instrument ID: 7001F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| l EPA       | 1      | LAB      | 1    | LAB     | ITIME           |
|-------------|--------|----------|------|---------|-----------------|
| I SAMPLE NO | . 1    | SAMPLE   | ID 1 | FILE ID | I ANALYZED I    |
| ========    | ==   = | =======  | ==== |         | =   = = = = = = |
| 011W021     | ı      | 10143    | 1    | F9946   | 1821            |
| 021W025D    | l      | 10147    | t    | F9945   | 1 1744   1      |
| 031WFB06    | 1      | 10148    | J    | F9947   | 1 1858 1        |
| 041WTB06    | 1      | 10151    | l    | F9948   | 1 1936          |
| 051WTB06MS  | 1      | 10151MS  | 1    | F9949   | 1 2013 1        |
| 061WTB06MSD | ŧ      | 10151MSD | 1    | F9950   | 1 2050 1        |
| 1           | 1_     |          |      |         | _11             |

EPA SAMPLE NO.

UBLKW2

ን Name: E & E INC. Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: UBLKW2

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: F9944

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 05/14/91

Column: (pack/cap) CAP Dilution Factor: 1.0

|    | CAS NO.   | COMPOUND                                    | CONCENT |                                         |                |      | Q   |     |
|----|-----------|---------------------------------------------|---------|-----------------------------------------|----------------|------|-----|-----|
| ı  |           |                                             |         |                                         | 1              |      | 1   | ı   |
| 1  | 74-87-3   | -Chloromethane                              |         |                                         | 1              | 10   | IJ  | 1   |
| 1  | 74-83-9   | -Bromomethane                               |         |                                         | <del>_</del> , | 10   | 111 | 1   |
| i  | 75-01-4   | -Vinyl Chloride                             |         |                                         | 1              | 10   | ΙŪ  | 1   |
| 1  | 75-30-3   | -Chloroethane                               |         |                                         |                | 10   | ΙŪ  | ł   |
| 1  | 75-09-2   | -Methulane Chloride                         |         |                                         | }              | 5    | 10  | ì   |
| ì  | 67-64-1   | -Acetone<br>-Carbon Disulfide               |         |                                         |                | 17   | 1   | i   |
| i  | 75-15-0   | -Carbon Disulfide                           |         |                                         | i              | 5    | ΙÜ  | 1   |
| 1  | 75-35-4   | -1,1-Dichloraethene                         |         | *************************************** |                | 5    | j U | 1   |
| 1  | 75-34-3   | -1,1-Dichloroethane                         |         |                                         | 1              | 5    | l U | 1   |
| 1  | 540-59-0  | -1,2-Dichloroethene                         | (total  | ( )                                     | <del></del> i  | 5    | ΙÜ  | ì   |
|    |           |                                             |         |                                         |                | 5    | ΙÜ  | ì   |
| İ  | 107-06-2  | -Chloroform <u>-</u><br>-1,2-Dichloroethane |         |                                         |                | 5    | ΙÜ  | 1   |
| 1  | 78-93-3   | -2-Butanone                                 |         |                                         |                | 10   | l U | ţ   |
| 1  | 71-55-6   | -1,1,1-Trichloroeth                         | ane     |                                         |                | 5    |     | 1   |
|    |           | -Carbon Tetrachiori                         |         |                                         |                | 5    | ŧυ  | ı   |
|    |           | -Vinyl Acetate                              |         |                                         |                | 10   | iU  | 1   |
|    |           | -Bromodichlorometha                         |         |                                         |                | 5    | IU  | 1   |
|    |           | -1,2-Dichloropropan                         |         |                                         |                | 5    | ΙU  | 1   |
|    |           | -cís−1,3-Dichloropr                         |         |                                         |                | 5    | IU  | 1   |
| 1  | 79-01-6   | -Trichĺoroethene                            |         |                                         | 1              | 5    | IU  | i   |
| 1  | 124-48-1  | -Dibromochlorometha                         | ne      |                                         |                | 5    | IU  | 1   |
|    |           | -1,1,2-Trichloroeth                         |         |                                         |                | 5    | ١U  | i   |
|    |           | -Bénžene                                    |         |                                         |                | 5    | IU  | t   |
|    |           | -trans-1,3-Dichloro                         |         |                                         |                | 5    | IU  | 1   |
|    |           | -Bramoform                                  |         |                                         |                | 5    |     | ŧ   |
| ĺ  | 108-10-1  | -4-Methyl-2-Pentano                         | ne      |                                         | 1              | 10   | IU  | 1 - |
| 1  | 591-78-6  | -2-Hexanone                                 | -       |                                         | <u></u> ı      | 10   | H   | 1   |
| ı  | 127-18-4  | -Tetrachloroethene_                         |         |                                         | 1              | 5    | IU  | I   |
| 1  | 79-34-5   | -1,1,2,2-Tetrachlor                         | oethane | ·                                       | 1              | 5    | IU  | ı   |
| 1  | 108-88-3  | -Tolúene                                    |         |                                         | 1              | 5    | 10  | ı   |
| 1  | 108-90-7  | -Chlorobenzene                              |         |                                         |                | 5    | IU  | i   |
| 1  | 100-41-4  | -Ethylbenzene                               |         |                                         | 1              | 5    | ΙU  | 1   |
| 1  | 100-42-5  | -Styrene                                    |         |                                         | 1              | 5    | ۱U  | 1   |
| 1  | 1330-20-7 | -Styrene<br>-Xylene (total)                 |         |                                         | 1              | 5    | ļЦ  | ı   |
| 1_ |           | -                                           |         |                                         |                | <br> | 1   |     |

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: VBLKW2

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: F9944

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 05/14/91

Column (pack/cap) CAP Dilution Factor: 1.8

CONCENTRATION UNITS:

Number TICs found: 0 (ug/L or ug/Kg) UG/L

CAS NUMBER | COMPOUND NAME | RT | EST. CONC. | Q |

# VOLATILE METHOD BLANK SUMMARY .

√b Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Lab File ID: D2533

Lab Sample ID: VBLKW3

Date Analyzed: 05/16/91

Time Analyzed: 1209

Matrix: (soil/water) WATER Level:(low/med) LOW

Instrument ID: 7001D

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

|     | EPA .      | l | LAB     |      | 1     | LAE           | }     | I   | TIME     | 1 |
|-----|------------|---|---------|------|-------|---------------|-------|-----|----------|---|
| İ   | SAMPLE NO. | 1 | SAMPLE  | ID   | i     | FILE          | DI    | 1   | ANALYZED | ١ |
| - 1 |            | = |         | ==== | =   = | . = = = = = = | ===== | 1 : |          | 1 |
| 01  | WFB06BEDL  | I | 10148DL |      | ţ     | D2534         |       | l   | 1256     | 1 |
| -   |            | ١ |         |      |       |               |       | ١   |          | 1 |
|     |            |   | #       |      |       |               |       |     |          |   |

COMMENTS:

6/17/91 bms

### VOLATILE METHOD BLANK SUMMARY

Lab Name: E & E INC.

Matrix: (soil/water) WATER

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

Lab File ID: D2533

Lab Sample ID: VBLKW3

Date Analyzed: 05/16/91

Time Analyzed:

1209

Level:(low/med) LOW

Instrument ID: 7001D

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| _    |            |       |         |     |        |                                         |        |          |     |
|------|------------|-------|---------|-----|--------|-----------------------------------------|--------|----------|-----|
| 1    | EPA        | 1     | LAB     |     | 1      | LAB                                     | 1      | TIME     | 1   |
| i    | SAMPLE NO. | i     | SAMPLE  | ΙD  | 1      | FILE ID                                 | 1      | ANALYZED | ı   |
| 1 =  |            | =   = |         | === | ==   = | ======================================= | ==   : |          | =   |
| 0114 | JFB06FZ DL | ł     | 10148DL |     | 1      | D2534                                   | ł      | 1256     | 1   |
| 1_   |            | _     |         |     | 1_     |                                         | 1      |          | _ 1 |
|      | رمرا ر     | 10,   | Logic   |     |        | *************************************** |        |          | _   |

COMMENTS:

6/17/91 bms

EPA SAMPLE NO.

VBLKW3

□ Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: UBLKW3

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2509

Level: (low/med) LDW Date Received:

% Moisture: not dec. Date Analyzed: 05/15/91

Column: (pack/cap) CAP Dilution Factor: 1.0

|                                                                                                                      | CAS NO.                                                                                                                                                                                                                                                                                                                                                                                                                            | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           | ATION UNITS:<br>ug/Kg) UG/L |                                | Q               |    |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|--------------------------------|-----------------|----|
| AND THE REAL PROPERTY AND THE PART AND THE PART AND THE PART AND THE PART AND THE PART AND THE PART AND THE PART AND | 74-87-3         74-83-9         75-01-4         75-09-2         67-64-1         75-15-0         75-35-4         75-34-3         540-59-0         540-59-0         75-34-3         707-06-2         76-23-5         108-93-3         75-27-4         78-87-5         10061-01-5         79-01-6         79-01-5         104-48-1         79-05-2         108-10-1         79-25-2         108-10-1         79-34-5         108-88-3 | -Chloromethane -Bromomethane -Vinyl Chloride -Chloroethane -Methylene Chloride -Acetone -Carbon Disulfide -1,1-Dichloroethane -1,2-Dichloroethane -1,2-Dichloroethane -1,2-Dichloroethane -2-Butanone -1,1,1-Trichloroeth -Carbon Tetrachlori -Vinyl Acetate -Bromodichlorometha -1,2-Dichloropropan -cis-1,3-Dichloropr -Trichloroethene -Dibromochlorometha -1,1,2-Trichloroeth -Benzene -trans-1,3-Dichloro -Bromoform -4-Methyl-2-Pentano -2-Hexanone -Tetrachloroethene -Toluene | (ug/L or  (total)_  ane_ de_  opene_ e_ opene_ ne_ ane_ propene_ oethane_ | ug/Kg) UG/L                 | 55555 <b>50</b> 10 <b>55</b> 5 |                 |    |
| 1                                                                                                                    | 100-41-4                                                                                                                                                                                                                                                                                                                                                                                                                           | -Chlorobenzene<br>-Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           | 1                           | 5                              | U<br>  U<br>  U | 1  |
| 1                                                                                                                    | 1330-20-7                                                                                                                                                                                                                                                                                                                                                                                                                          | -Styrene<br>-Xylene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                             |                                | U<br>           | .1 |

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: E & E INC.

Contract:

1 UBLKW3

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: VBLKW3

Sample wt/vol: 5.0 (g/mL) ML

COMPOUND NAME

Lab File ID: D2509

Level: (low/med) LOW

Date Received:

% Moisture: not dec.

CAS NUMBER

Date Analyzed: 05/15/91

Column (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Number TICs found: 0

I RT | EST. CONC. | Q |

FORM I VOA-TIC

1/87 Rev.

### VOLATILE METHOD BLANK SUMMARY

' b Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Lab File ID: D2533

Lab Sample ID: VBLKW4

Date Analyzed: 05/16/91

Time Analyzed: 1209

Matrix: (soil/water) WATER

Level:(low/med) LOW

Instrument ID: 7001D

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| I EPA<br>I SAMPLE NO.                                   | LAB  <br>  SAMPLE ID | LAB<br>FILE ID                   | TIME  <br>  ANALYZED |
|---------------------------------------------------------|----------------------|----------------------------------|----------------------|
| 01 WFB06<br>  02 WTB06<br>  03 WTS06MS<br>  04 WTS06MSD | 10148                | D2534<br>D2535<br>D2536<br>D2537 | 1256                 |
| !                                                       | 11                   |                                  | i1                   |

COMMENTS:

EPA SAMPLE NO.

Lab Name: E & E INC.

Contract:

Matrix: (soil/water) WATER Lab Sample ID: VBLKW4

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D2533

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 05/16/91

Column: (pack/cap) CAP Dilution Factor: 1.0

|   | CAS NO.    | СОМРОИНО            |                                       | ATION UNITS:<br>ug/Kg) UG/L |    | Q          |
|---|------------|---------------------|---------------------------------------|-----------------------------|----|------------|
| ı |            |                     |                                       |                             |    | 1 (        |
| ; | 74-87-3    | Chloromethane       |                                       | t                           | 10 | U i        |
| 1 | 74-83-9    | Bromomethane        |                                       | <del></del> ;               |    | ו עו       |
|   | 75-01-4    | Vinyl Chloride      |                                       | <del></del> '               |    | 10 1       |
| 1 | 75_00_3    | Chloroethane        |                                       |                             |    | ו טו       |
|   | 75-09-2    | Methylene Chloride  |                                       | <del></del>                 | 7  |            |
| : | 67-64-1    | Acetone             | · ————                                |                             | 10 | 1 1        |
| • | 75-15-0    | Carbon Disulfide_   |                                       | <del></del> ;               |    | 111        |
|   |            | 1,1-Dichloroethene  |                                       |                             | -  | 14         |
|   |            | 1,1-Dichloroethane  |                                       |                             | -  | 1U I       |
| 1 | 540-59-0   | 1,2-Dichloroethene  | · (tatal)                             |                             | -  | , <u>.</u> |
|   | 67-66-3    | •                   |                                       |                             | •  |            |
|   |            | 1,2-Dichloroethane  | ·                                     | ;                           | •  |            |
| i | 78-93-3    | 2-Butanone          | <del></del>                           | ;                           |    | iŭ i       |
| i | 71-55-6    | -1,1,1-Trichloroeth | nane                                  | · \                         |    |            |
| ì | 56-23-5    | Carbon Tetrachlor:  | ide                                   | ·                           |    | iu i       |
| i | 108-05-4   | Vinyl Acetate       | -                                     | ·                           |    | ا لاا      |
| i | 75-27-4    | Bromodichlorometha  | ine                                   | 1                           | 5  | iu i       |
|   |            | -1,2-Dichloropropar |                                       |                             | 5  | IÚ I       |
|   |            | cis-1,3-Dichloropa  |                                       |                             | 5  | IU I       |
|   |            | Trichĺoroethene     |                                       |                             | 5  | IU I       |
|   |            | Dibromochlorometha  |                                       |                             | 5  | IU I       |
| į | 79-00-5    | 1,1,2-Trichloroeth  | nane                                  | 1                           | 5  | 14 1       |
| ı | 71-43-2    | Benzene             |                                       | 1                           | 5  | IU I       |
| 1 | 10061-02-6 | trans-1,3-Dichlore  | propene_                              | <u></u> 1                   | 5  | 10 1       |
| l | 75-25-2    | Bromoform           |                                       |                             | 5  | IU I       |
| 1 | 108-10-1   | 4-Methy1-2-Pentand  | ne                                    | 1                           | 10 | 10 1       |
| į | 591-78-6   | 2-Hexanone          |                                       |                             | 10 | IU I       |
| ı | 127-18-4   | Tetrachloroethene   |                                       |                             | 5  | 1U 1       |
| ı | 79-34-5    | 1,1,2,2-Tetrachlor  | oethane_                              | 1                           | 5  | lu l       |
| 1 | 108-88-3   | -Toluene            |                                       | I                           | 5  | ↓U I       |
| 1 | 108-90-7   | Chlorobenzene       |                                       | 1                           | -  | IU I       |
| ţ | 100-41-4   | Ethylbenzene        |                                       | 1                           | 5  | 1U 1       |
| ł | 100-42-5   | Styrene             | · · · · · · · · · · · · · · · · · · · | 1                           | 5  | 10 1       |
| İ | 1330-20-7  | Xylene (total)      |                                       | 1                           | 5  | 10 1       |
| 1 |            |                     |                                       | I                           |    | 11         |

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

**VBLKW4** 

EPA SAMPLE NO.

) Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: VBLKW4

Sample wt/vol: 5.0 (g/mL) ML

Lab File ID: D2533

Level: (low/med) LOW

Date Received:

% Moisture: not dec.

Date Analyzed: 85/16/91

Column (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

Number TICs found: 0

(ug/L or ug/Kg) UG/L

I RT | EST. CONC. | Q COMPOUND NAME

EPA SAMPLE NO.

W021

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10143

Sample wt/vol: 1000 (g/mL) ML Lab File ID: G3714

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q | 108-95-2----Phenol 10 1 U | 111-44-4-----bis(2-Chloroethyl)Ether | 10 14 1 95-57-8-----2-Chlorophenol\_\_\_\_\_ 10111 | 541-73-1----1,3-Dichlorobenzene\_\_\_\_\_ 10 111 | 106-46-7-----1,4-Dichlorobenzene\_\_\_\_| 10| 100-51-6----Benzyl Alcohol\_\_\_\_\_ ΙЦ 10 1.0IЦ 95-48-7----2-Methylphenol 111 101 39638-32-9----bis(2-Chloroisopropyl)Ether\_\_!  $1 \, 0$ ΙU ! 106-44-5----4-Methylphenol\_\_\_\_\_ 10 111 1 621-64-7-----N-Nitroso-Di-n-Propylamine\_\_\_\_\_ 1.0 $\perp$ | 67-72-1----Hexachloroethane\_\_\_\_\_| 10  $\sqcup$ 10111 | 78-59-1------Isophorone\_\_\_\_ | 88-75-5-----2-Nitrophenol\_\_\_\_ 10 111 1 Ü 111 | 105-67-9-----2,4-Dimethylphenol\_\_\_\_\_ 6 IJ 1 65-85-0-----Benzoic Acid\_\_\_\_\_ 5 û 14 | 111-91-1----bis(2-Chloroethoxy)Methane\_\_\_! 10 IU | 120-83-2----2,4-Dichlorophenol\_\_\_\_\_! 10 IU | 120-82-1----1,2,4-Trichlorobenzene\_\_\_\_ 10 IU 1 91-20-3-----Naphthalene\_\_\_\_\_ 35 1 | 106-47-8----4-Chloroaniline\_\_\_\_ 10ΙU | 87-68-3-----Hexachlorobutadiene\_\_\_\_ 10 ΙU 10 111 1 91-57-6----2-Methylnaphthalene\_\_\_\_ - 7 IJ 1 77-47-4-----Hexachlorocyclopentadiene\_\_\_\_ 10IU 1 88-06-2----2,4,6-Trichlorophenol\_\_\_\_ 10 . 10 50 IШ | 91-58-7----2-Chloronaphthalene | 10 IU | 88-74-4----2-Nitroaniline\_\_\_\_ 50 IU| 131-11-3-----Dimethyl Phthalate\_\_\_\_\_ 10 Ш 10 IU. 1 606-20-2----2,6-Dinitrotoluene\_\_\_\_ 10ILI

W021

5 Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10143

Sample wt/vol: 1000 (q/mL) ML Lab File ID: G3714

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

|   | CAS NO.      | COMPOUND                        |                     | ATION UNITS:<br>ug/Kg) UG/L |                  | Q     |            |
|---|--------------|---------------------------------|---------------------|-----------------------------|------------------|-------|------------|
|   |              |                                 |                     | ,                           |                  | ,     |            |
| 1 | 00 00 0      | 7 641 644 - 1732                |                     | 1                           | <b>~</b> 0       | 1 4 4 | 1          |
| 1 | 99-09-2      | -3-Nitroaniline                 |                     | !                           | 50               | نا ا  | 1          |
| 1 | - BJ-JZ-Y    | -Acenaphthene                   |                     | i                           | $\frac{10}{\pi}$ | 111   |            |
| 1 | λ1-23-5      | -2,4-Dinitrophenol_             |                     |                             | 50<br>50         | ١U    | 1          |
| 1 | 100-02-/     | -4-Nitrophenol<br>-Dibenzofuran |                     |                             | 50               | 111   |            |
| į | 132-64-7     | -Dibenzofuran                   | ···                 | !                           | 10               | IJ    | 1          |
| į | 121-14-2     | -2,4-Dinitrotoluene             | 2                   |                             | 10               | IП    | 1          |
| 1 |              | -Diethylphthalate_              |                     |                             | 10               | IU    | ì          |
| 1 | 7005-72-3    | -4-Chlorophenyl-phe             | enylether.          | <u> </u>                    | 10               | l U   | i          |
| 1 | 86-73-7      | -Fluorene                       |                     | 1                           | 10               | IU    | l,         |
| ł | 100-10-6     | -4-Nitroaniiine                 |                     |                             | 50               | ΙIJ   | 1          |
| į | 534-52-1     | -4,6-Dinitro-2-Meth             | ylphenol_           | ţ                           | 50               | IU    | 1          |
| 1 | 86-30-6      | -N-Nitrosodiphenyla             | amine $(1)_{\perp}$ |                             | 10               | נוו   | 1          |
| ! | 101-55-3     | -4-Bromophenyl-pher             | ylether_            | 1                           | 10               | IU    | l          |
| l | 118-74-1     | -Hexachlorobenzene_             |                     |                             | 10               | iU    | l          |
| 1 | 87-86-5      | -Pentachlorophenol_             |                     |                             | 50               | IU    | 1          |
| 1 | 85-01-8      | -Phenanthrene                   |                     |                             | 1 a              | 11    | 1          |
| l | 120-12-7     | -Anthracene                     |                     |                             | 10               | IU    | 1          |
| 1 | 84-74-2      | -Di-n-Butylphthalat             | :e                  | 1                           | 1                | ١J    | į.         |
| - | 206-44-0     | -Fluoranthene                   |                     |                             | 10               | ‡ U   | 1          |
| 1 | 129-00-0     | -Pyrene                         |                     | [                           | 10               | IU    | Į          |
| 1 | 85-68-7      | -Butylbenzylphthala             | te                  | 1                           | 10               | 1 U   | 1          |
| 1 | 91-94-1      | -3,3'-Dichlorobenzi             | .dine               | <b> </b>                    | 20               | ١U    | 1          |
| 1 | 56-55-3      | -Bénzo(a)Anthracene             | ;                   |                             | 10               | 111   | 1          |
| ı | 218-01-9     | -Chrysene                       |                     | I                           | 10               | IU    | 1          |
| t | 117-81-7     | -bis(2-Ethylhexyl)F             | Phthalate           | <b>t</b>                    | 2                | IBJ   | 1          |
| 1 | 117-84-0     | -Di-n-Octyl Phthala             | ite                 | <b>{</b>                    | 10               | ΙU    | ı          |
| 1 | 205-99-2     | -Benzo(b)Fluoranthe             | ene                 |                             | 10               | IU    | ı          |
| ı | 207-08-9     | -Benzo(k)Fluoranthe             | ene                 | <del></del>                 | 10               | ΙU    | i          |
| Į | 50-32-8      | -Benzo(a)Pyrene                 |                     |                             | 10               | ΙŪ    | i          |
| i | 193-39-5     | -Indeno(1,2,3-cd)Ps             | rene                |                             | 10               | ΙŪ    | 1          |
| 1 | 53-70-3      | -Dibenz(a,h)Anthrac             | ene                 |                             | 10               | ΙŪ    | I          |
| ĺ | 191-24-2     | -Benzo(g,h,i)Peryle             | ne                  |                             | 10               | ΙŪ    | i          |
| i | <b>-</b> · - |                                 |                     | 1                           |                  | 1     | 1          |
|   | 1)           | annakad Casa Dieba              |                     | *                           |                  |       | <b>-</b> · |

#### 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

|   | EPA  | SAMPLE | NO. |   |
|---|------|--------|-----|---|
|   |      |        |     | ļ |
| 1 | 1100 | 3 1    |     |   |

Lab Name: E & E INC.

Contract:

| W021

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10143

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: 63714

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec. dec.

Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH:

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 20

| 1 | CAS NUMBER                            | COMPOUND NAME                 | '<br> | RT                   | l<br>I EST | T. CONC.        | <br>  Q | 1  |
|---|---------------------------------------|-------------------------------|-------|----------------------|------------|-----------------|---------|----|
| 1 |                                       |                               | = =   |                      | =====      | . = = = = = =   | =====   | ŀ  |
| 1 | 1.                                    | Dimethyl Benzene Isomer       | ţ     | 6.06                 | 1          | 140             | IJ      | 1  |
| 1 | 2.                                    | Ethyl Methyl Benzene (somer ) | t     | 8.54                 | 1          | 42              | 13      | 1  |
| ţ | <i>3</i> .                            | Trimethyl Benzene Isomer      | !     | 8.72                 | l          | <i>3</i> 0      | IJ      | 1  |
| 1 |                                       |                               | 1     | 9.98                 | i          | 37              | l.J     | 1  |
| į |                                       | Ethyl Dimethyl Benzene Isome  | ĺ     | 11.28                | 1          | 22              | IJ      | 1  |
| 1 |                                       | I NKNOMN                      |       | 12.67                | 1          | <i>3</i> 0      | ١J      | 1  |
| ì |                                       | UNKNOWN                       | l     | 13.64                | 1          | 22              | IJ      | 1  |
| 1 | a.                                    | IUNKNOWN                      | ı     | 14.28                | 1          | 22              | IJ      | 1. |
| 1 | 9.                                    | IUNKNOWN                      | ļ     | 16.94                | 1          | 20              | IJ      | i  |
| ţ | · · · · · · · · · · · · · · · · · · · | UNKNOWN                       |       | 18,37                | 1          | 19              | l.J     | 1  |
| ĺ |                                       | LUNKNOWN                      | l     | 18.50                |            | 35              | IJ      | 1  |
| i |                                       | IUNKNOWN                      |       | 19.01                | 1          | 11              | IJ      | 1  |
| i |                                       | LUNKNOWN                      | 1     | 19.56                | 1          | 16              | IJ      | t  |
| i |                                       | IUNKNOWN                      |       | 20.19                | 1          | $\overline{1}4$ | IJ      | 1  |
| i |                                       | IUNKNOWN                      | l     | 20.75                | 1          | 23              | IJ      | 1  |
| i |                                       | LUNKNOWN                      |       | 21.81                | 1          | 11              | IJ      | 1  |
| i |                                       | LUNKNOWN HYDROCARBON          | 1     | 23.46                | 1          | 9.0             |         | 1  |
| i |                                       | UNKNOWN HYDROCARBON           | 1     | 24.79                | ١          | 10              | IJ      | 1  |
| i |                                       | Molecular Sulfur              |       | 26.43                | 1          | 150             | IJ      | 1  |
| ì | •                                     | IUNKNOWN                      |       | 26.84                | İ          | 14              | l BJ    | 1  |
| i |                                       | 1                             | 1     | · - · <del>-</del> · | 1          |                 | 1       | 1  |

|    | EPA SAMPLE | NO. |   |
|----|------------|-----|---|
| ٠. |            |     |   |
| l  |            |     | ì |
| 1  | W023       |     | 1 |

b Name: E & E INC. Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10144

Sample wt/vol: 1000 (g/mL) ML Lab File ID: G3715

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

|    | CAS NO.    | COMPOUND                               |          | RATION UNITS:<br>- ug/Kg) UG/L |    | Q   |     |
|----|------------|----------------------------------------|----------|--------------------------------|----|-----|-----|
|    |            |                                        |          |                                |    |     |     |
| -  |            | · · · · · · · · · · · · · · · · · · ·  |          | 1                              |    | 1   | ļ   |
| 1  | 108-95-2   |                                        |          | !                              | 10 | IU  | 1   |
| 1  | 111-44-4   | -bis(2-Chloroethyl)                    | Ether    | !                              | 10 | 1U  | 1   |
| 1  |            | -2-Chlorophenol                        |          |                                | 10 | 10  | 1   |
| 1  |            | -1,3-Dichlorobenzer                    |          |                                | 10 | l U | l   |
|    |            | -1,4-Dichlorobenzer                    |          |                                | 10 | 1 🗓 | 1   |
|    |            | -Benzyl Alcohol                        |          |                                | 10 | 111 | - 1 |
|    |            | -1,2-Dichlorobenzer                    |          |                                | 10 | IU  | 1   |
|    |            | -2-Methylphenol                        |          |                                | 10 | 111 | -   |
|    | 39638-32-9 | -bis(2-Chloroisopro                    | ppl)Ethe | er                             | 10 | IU  | 1   |
| 1  | 196-44-5   | -4-Methylphenol<br>-N-Nitroso-Di-n-Pro |          |                                | 10 | 117 | - 1 |
| 1  | 621-64-7   | -N-Nitroso-Di-n-Pro                    | pylamine | 1                              | 10 | IU  | ı   |
| 1  | 67-72-1    | -Hexachloroethane                      |          | i                              | 10 | IJ  | ł   |
|    |            | -Nitrobenzene                          |          |                                | 10 | 10  | i   |
| 1  |            | -Isophorone                            |          |                                | 10 | IU  | 1   |
| -  |            | -2-Nitrophenol                         |          |                                | 10 | 10  | ļ   |
| 1  |            | -2,4-Dimethylphenol                    |          |                                | 10 | IU  | 1   |
| -  | 65-85-0    | -Benzoic Acid                          |          | !                              | 50 | 1 U | ı   |
| -  |            | -bis(2-Chloroethoxy                    |          |                                | 10 | 10  | 1   |
| 1  | 120-83-2   | -2,4-Dichlorophenol                    |          |                                | 1υ | 1U  | I   |
|    |            | -1,2,4-Trichlorober                    |          |                                | 10 | IU  | 1   |
|    | 91-20-3    | -Naphthalene                           | ·        | <u> </u>                       | 10 | I U | l   |
| 1  | 106-47-8   | -4-Chloroaniline                       |          |                                | 10 | IU  | İ   |
|    |            | -Hexachlorobutadier                    |          |                                | 10 | 1 U | 1   |
|    |            | -4-Chloro-3-Methylp                    |          |                                | 10 | IU  | İ   |
|    |            | -2-Methylnaphthaler                    |          |                                | 10 | IU  | 1   |
|    |            | -Hexachlorocycloper                    |          |                                | 10 | IU  | 1   |
| 1  | 88-06-2    | -2,4,6-Trichlorophe                    | nol      |                                | 10 | IU  | 1   |
| 1  | 95-95-4    | -2,4,5-Trichlorophe                    | nol      |                                | 50 | IU  | 1   |
| 1  | 91-58-7    | -2-Chloronaphthaler                    | 1e       | I                              | 10 | IU  | -   |
|    |            | -2-Nitroaniline                        |          |                                | 50 | IU  | ł   |
| 1  | 131-11-3   | -Dimethyl Phthalate                    | )        | I                              | 10 | IU  | 1   |
|    |            | -Acenaphthylene                        |          |                                | 10 | IU  | 1   |
| 1  |            | -2,6-Dinitrotaluene                    |          |                                | 10 | ΙU  | 1   |
| 1_ |            | · · · · · · · · · · · · · · · · · · ·  |          |                                |    | I   | _   |

EPA SAMPLE NO.

Lab Name: E & E INC.

Contract:

Matrix: (soil/water) WATER

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

dec.

SDG No.:

Sample wt/vol:

1000 (g/mL) ML

Lab File ID:

G3715

W023

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed: 05/14/91

Lab Sample ID: 10144

GPC Cleanup: (Y/N) N

pH:

Dilution Factor: 1.8

CONCENTRATION UNITS: (ua/L or ua/Ka) UG/L

|    | CAS NO.   | COMPOUND            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ug/Kg)   |      | Q    |     |
|----|-----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|------|-----|
| ı  |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ı        |      | į    | 1   |
| i  | 99-09-2   | -3-Nitroaniline     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1        | 50   | IU   | 1   |
| i  | 83-32-9   | -Acenaphthene       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |      |          | 10   | ĪŪ   | 1   |
| ı  | 51-28-5   | -2,4-Dinitrophenol_ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1        | 50   | النا | Ì   |
| 1  | 100-02-7  | -4-Nitrophenol      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | 50   | ĪŪ   | ĺ   |
| 1  | 132-64-9  | -Dibenzofuran       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | l        | 10   | 111  | 1   |
| ŧ  | 121-14-2  | -2,4-Dinitrotoluene | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |          | 10   | ίŪ   | 1   |
| 1  | 84-66-2   | -Díethylphthalate   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | I        | 10   | IU   | 1   |
| 1  | 7005-72-3 | -4-Chlorophenyl-phe | nyleth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er_  | 1        | 10   | ΙU   | 1   |
| 1  | 86-73-7   | -Fluorene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | 10   | IU   | 1   |
| Í  | 100-10-5  | -4-Nitroaniline     | 14.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | <u> </u> | 50   | ПIJ  | 1   |
| Ī  | 534-52-1  | -4,6-Dimitro-2-Meth | ylphen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ol_  | 1        | 50   | IU   | t   |
| I  | 86-30-6   | -N-Nitrosodiphenyla | mine (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1)_  | 1        | 10   | IU   | 1   |
| l  | 101-55-3  | -4-Bromophenyl-phen | ylethe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r    | 1        | 10   | ΙIJ  | 1   |
| ١  | 118-74-1  | -Hexachlorobenzene_ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | i        | 10   | IU   | 1   |
| 1  | 87-86-5   | -Pentachlorophenol_ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1        | 50   | IU   | 1   |
| ĺ  | 85-01-8   | -Phenanthrene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | <b>l</b> | 10   | IU   | 1   |
| -  | 120-12-7  | -Anthracene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1        | 10   | IU   | 1   |
| ł  | 84-74-2   | -Di-n-Butylphthalat | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | I        | 1    | IJ   | 1   |
| 1  | 206-44-0  | -Fluoranthene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ١        | 10   | ١U   | ŧ   |
| 1  | 129-00-0  | -Pyrene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1        | 10   | lυ   | ì   |
| 1  | 85-68-7   | -Butylbenzylphthala | ite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | ţ        | 10   | IU   | 1   |
| 1  | 91-94-1   | -3,3'-Dichlorobenzi | dine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1        | 20   |      | į.  |
| ŀ  | 56-55-3   | -Benzo(a)Anthracene |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | 10   | l U  | 1   |
| 1  | 218-01-9  | -Chrysene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1        | 10   | IU   | ı   |
| 1  | 117-81-7  | -bis(2-Ethylhexýl)f | hthala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t e_ |          | ó    | 183  | 1   |
| 1  | 117-84-0  | -Di-n-Octyl Phthala | te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |          | 10   | ١U   | į   |
| 1  | 205-99-2  | -Benzo(b)Fluoranthe | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |          | 10   | 1 U  | 1   |
| 1  | 207-08-9  | -Benzo(k)Fluoranthe | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | l        | 10   | IU   | l l |
| -1 | 50-32-8   | -Benzo(a)Pyrene     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1        | 10   | 1 U  | ł   |
| ŀ  | 193-39-5  | -Indeno(1,2,3-cd)Py | rene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1        | 10   | IU   | 1   |
| ŧ  | 53-70-3   | -Dibenz(a,h)Anthrac | ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |          | 10   | IU   | 1   |
| 1  | 191-24-2  | -Benzo(g,ĥ,i)Peryle | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1        | 10   | IU   | 1   |
| 1  |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | <br> |      |     |

#### 1F

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

|     | EPA | SAMPLE | NO. |   |
|-----|-----|--------|-----|---|
| 1   |     |        |     | 1 |
| - i | W02 | 23     |     | l |

b Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10144

Sample wt/vol: 1000 (g/mL) ML Lab File ID: G3715

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

umber TICs found: 16

| !   |            | •        |               | 1  |       | ı     |                 |  |
|-----|------------|----------|---------------|----|-------|-------|-----------------|--|
| ļ   | CAS NUMBER | l        | COMPOUND NAME | I  | RT    | 1     | EST. CONC.   Q  |  |
| } = |            | =======  |               | == |       | =   = |                 |  |
| 1   | 1.         | LUNKHOWN |               | i  | 10.08 | ì     | 15 (J )         |  |
| ì   | 2.         | IUNKNOWN |               | ŧ  | 10.65 | ŧ     | 6.01J           |  |
| !   | <b>3.</b>  | LUNKHOWN |               | İ  | 11.24 | 1     | 42 IJ I         |  |
|     | 4.         | LUNKHOWH |               | 1  | 12.26 | Į     | 110 13 1        |  |
| . ' | 5.         | LUNKHOWH | ACID          | 1  | 12.47 | 1     | 27 IJ I         |  |
| 1   | <b>6.</b>  | LUNKHOWH |               | 1  | 13.06 | ł     | 7.01J t         |  |
| i   | <b>フ.</b>  | LUNKHOWN |               | }  | 19.27 | 1     | 5.01J 1         |  |
| }   | ខ.         | LUNKNOWN |               | ł  | 19.73 | {     | 7.0!J           |  |
| 1   | <b>9.</b>  | LUNKNOWN | HYDROCARBON   | ļ  | 20.61 | 1     | 7.01 <b>J</b> i |  |
| 1   | 10.        | LUNKHOWH | HYDROCARBON   | Į  | 22.07 | ı     | 7.01J 1         |  |
| 1   | 11.        | LUNKNOWN | HYDROCARBON   | 1  | 23.45 | 1     | 6.DIJ I         |  |
| 1   | 12.        | HUNKHOWN | HYDROCARBON   | l  | 24.78 | i     | 5.01J           |  |
| 1   | 13.        | IUNKNOWN |               | 1  | 26.77 | -1    | 49 18J          |  |
| 1   | 14.        | LUNKHOWH | HYDROCARBON   | 1  | 31.63 | ŧ     | 5.01J I         |  |
| l   | 15.        | IUNKNOWN |               | 1  | 33.59 | 1     | 12 IJ I         |  |
| 1   | 16.        | IUNKNOWN |               | l  | 43.78 | l     | 22 IJ I         |  |
| 1_  |            | l        |               | ١  |       | _     | !               |  |

EPA SAMPLE NO.

W024

Lab Name: E & E INC.

Contract:

CAS NO.

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10145

Sample wt/vol:

1000 (g/mL) ML

Lab File ID:

G3716

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec. dec.

Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N

рН:

COMPOUND

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

|     | 2                                                            | -    | •        |   |
|-----|--------------------------------------------------------------|------|----------|---|
| 1   |                                                              | 1    | ţ        | l |
| 1   | 108-95-2Phenol                                               | i 10 | IU       | } |
| 1   | 111-44-4bis(2-Chloroethul)Ether                              | 1 10 | ΙÚ       | ţ |
| 1   | 95-57-82-Chlorophenol                                        | i 10 | 10       | 1 |
| į   | 541-73-11,3-Dichlorobenzene                                  | 10   | الا      | 1 |
| į   | 106-46-71,4-Dichlorobenzene                                  | 10   |          | i |
| ŧ   | 190-51-6Benzul Alcohol                                       | 1 10 | الا      | 1 |
| 1   | 190-51-6Bénzyl Alcohol<br>95-50-11,2-Dichlorobenzene         | 10   | ΙÜ       | 1 |
| 1   | 95-48-72-Methylphenol                                        | 10   | 111      | 1 |
| 1   | 95-48-72-Methylphenol                                        | 1 10 | ĪŪ       | 1 |
| 1   | 106-44-54-Methylohenol                                       | 1 10 | 111      | 1 |
| 1   | 106-44-54-Methylphenol<br>621-64-7N-Nitroso-Di-n-Propylamine | 10   | 18       | i |
| 1   | 67-72-1Hexachloroethane                                      | 10   | i ii     | 1 |
| 1   | 98-95-3Nitrobenzene                                          | 10   | -<br>I U | l |
| į   | 78-59-1Isophorone                                            | 10.  | 11       | 1 |
| 1   | 88-75-52-Nitrophenol                                         | 10   | ĪŪ       |   |
| i   | 105-67-92,4-Dimethylphenol                                   | 10   | IÜ       | 1 |
| 1   | 65-85-0Bénzoic Acid                                          | l 50 | ĪŪ       | 1 |
| 1   | 111-91-1bis(2-Chloroethoxy)Methane                           | 10   | ΙU       | 1 |
| 1   | 120-83-22,4-Dichlorophenoi                                   | 10   | 1U       | 1 |
| 1   | 120-82-11,2,4-Trichlorobenzene                               | 10   | I U      | 1 |
| ı   | 91-20-3Naphthalene                                           | 10   | IU       | ţ |
| - 1 | 91-20-3Naphthalene<br>106-47-84-Chloroaniline                | 10   | ١U       | l |
| 1   | 87-68-3Hexachlorobutadiene                                   | 10   | IU       | ł |
| - 1 | 59-50-74-Chloro-3-Methylphenol                               | 10   | l U      | l |
| j   | 91-57-62-Methylnaphthalene                                   |      | IU       | İ |
| ١   | 77-47-4Hexachlorocyclopentadiene                             | 10   | 10       | 1 |
| - 1 | 88-06-22,4,6-Trichlorophenol                                 | 10   | 1 U      | l |
| ı   | 95-95-42,4,5-Trichlorophenol                                 | 50   | 1 🗆      | ı |
| ţ   | 91-58-72-Chloronaphthalene                                   |      | l U      | 1 |
| ١   | 88-74-42-Nitroaniline                                        | , 50 | 10       |   |
| 1   | 131-11-3Dimethyl Phthalate                                   | 10   | 10       | 1 |
| 1   | 209-96-8Acenaphthylene                                       | 10   | IU I     | i |
| ١   | 606-20-22,6-Dinitrotoluene                                   | 10   | IU I     | ł |
| 1   | ,                                                            |      | 1        | i |

EPA SAMPLE NO.

W024

'b Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10145

Sample wt/vol: 1000 (q/mL) ML Lab File ID: G3716

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L a 1 99-09-2----3-Nitroaniline\_\_\_\_ 50 نا ا 1 83-32-9-----Acenaphthene\_\_\_\_ 10 111 | 51-28-5----2,4-Dinitrophenol\_\_\_\_\_ 50 10 | 100-02-7-----4-Nitrophenol\_\_\_\_\_| ភូម 111 | 132-64-9------Dibenzofuran\_\_\_\_\_| 1016 121-14-2----2,4-Dinitrotoluene\_\_\_\_ 10 | 84-66-2----Diethylphthalate\_\_\_\_ 10 Lil 1 7005-72-3-----4-Chlorophenyl-phenylether\_\_\_\_| 10 | 86-73-7-----Fluorene | 100-10-6-----4-Nitroaniline 1010 50  $\Box$ 1 534-52-1-----4.6-Dinitro-2-Methylphenol 1 50 1 86-30-6----N-Nitrosodiphenylamine (1)\_\_\_1 10111 10Ш | 118-74-1-----Hexachlorobenzene\_\_\_\_\_| 10 111 | 87-86-5-----Pentachlorophenol\_\_\_\_\_| 50  $I \sqcup$ | 85-01-8-----Phenanthrene\_\_\_\_\_| 10 14 | 120-12-7-----Anthracene\_\_\_ 1010 1 IJ | 206-44-0----Fluoranthene\_\_\_\_\_| 10 IU | 129-00-0-----Pyrene\_\_\_\_\_ IIJ 10 | 85-68-7-----Butylbenzylphthalate\_\_\_\_ 10 10 1 91-94-1----3,3'-Dichlorobenzidine\_\_\_\_\_ Ш 20 | 56-55-3-----Benzq(a)Anthracene\_\_\_\_\_\_ 10111| 218-01-9-----Chrysene\_\_\_\_ 1 U 10 | 117-81-7----bis(2-Ethylhexyl)Phthalate\_\_\_| 7 183 | 117-34-0-----Di-n-Octyl Phthalate\_\_\_\_\_| 10 lU 1 205-99-2----Benzo(b)Fluoranthene\_\_\_\_\_\_ ΙU 10 | 207-08-9-----Benzo(k)Flyoranthene\_\_\_\_ ΙU 10 1 50-32-8-----Benzo(a)Pyrene\_\_\_\_ 111 10 1 193-39-5-----Indeno(1,2,3-cd)Pyrene\_\_\_\_\_ 10 IШ 10 1 U | 191-24-2-----Benzo(g,h,i)Perylene\_\_\_\_\_| 10 ΙU

(1) - Cannot be separated from Diphenylamine

#### 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

W024

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: G3716

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Date Extracted: 05/09/91

Lab Sample ID: 10145

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N

pH:

dec.

Dilution Factor: 1.0

CONCENTRATION UNITS:

Number TICs found: 13 (ug/L or ug/Kg) UG/L

| 1   | CAS NUMBER      | 1        | COMPOUND NAME  | 1           | RT            | <br>  <b> </b> | CONC. I   | G       | 1 |
|-----|-----------------|----------|----------------|-------------|---------------|----------------|-----------|---------|---|
| 1 - | CHO NUNDEX      | !        | CONFOUND (MALE | !<br>! == = | K 1           | 1 E31.         |           | لدا<br> | 1 |
| 1 - |                 | LUNKNOWN |                | , — -<br>!  | 19.27         | ,              | 4.01      | 3       | 1 |
| ,   | $\frac{1}{2}$ . | TUNKMOWN | HYDROCARBON    | 1           | 20.62         | 1              | 6.01      | -       | 1 |
| 1   | ∠.<br>3.        | LONKHOWN | HYDROCARBON    | i<br>i      | 22.06         | 1<br>1         | 6.01      |         | 1 |
| 1   |                 |          | HYDROCARBON    | <b>!</b>    | 23.46         | <b>}</b>       | · · · · - |         | i |
| 1   | 4.              |          | =              | 1           |               | 1              | 5.01      |         | 1 |
| 1   | 5.              | LUNKNOWN | HYDROCARSON    |             | 24.78         |                | 5.01      | _       | I |
| 1   | <u>6</u> .      | INNKHOMM |                | i           | 26.77         | l              |           | 8J      | Ì |
| -   | フ・              | LUNKNOWN | HYDROCARBON    | l           | <i>3</i> 0.58 | Į              | 6.01      | J       | İ |
| l   | ⅓.              | TUNKNOWN | HYDROCARBON    | ł           | 31.60         | i              | 10 1      | .]      | ļ |
| 1   | 9.              | LUNKNOWN | HYDROCARBON    | i           | 32.59         | į              | 5.01      | J       | 1 |
| 1   | 10.             | TUNKNOWN |                | }           | 33.59         | 1              | 13 1      | J       | 1 |
| 1   | 11.             | TUNKHOWN |                | 1           | <i>36.70</i>  | 1              | 6.04      | J       | 1 |
| 1   | 12.             | LUNKNOWN |                | i           | 42.59         | l              | 12        | J       | 1 |
| 1   | 13.             | LUNKNOWN |                | l           | 43.77         | l              | 21        | J       | i |
| 1   |                 | 1        |                | l           |               | l              | 1         |         | 1 |
| _   |                 |          |                |             |               |                |           |         |   |

EPA SAMPLE NO.

| W025

'ab Name: E & E INC. Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10146

Sample wt/vol: 1000 (g/mL) ML Lab File ID: G3717

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.8

CONCENTRATION UNITS:

|    | CAS NO.    | COMPOUND                           |            | HITUN UNITS:<br>ug/Kg) UG/L |    | a   |    |
|----|------------|------------------------------------|------------|-----------------------------|----|-----|----|
|    | CAS NO.    | COM COME                           | (11g) E 01 | advikā, pavit               |    | CA) |    |
| 1  |            |                                    |            | 1                           |    | t   | 1  |
| 1  | 108-95-2   | <br>-Phenol<br>-bis(2-Chloroethyl) |            | 1                           | 10 | ! U | İ  |
| Į. | 111-44-4   | <br>-bis(2-Chloroethyl)            | Ether      |                             | 10 | 1:1 | 1  |
| 1  | 95-57-8    | <br>-2-Chlorophenol                |            |                             | 10 | 111 | 1  |
| 1  | 541-23-1   | <br>-1,3-Dichlorobenzer            | ne         |                             | 10 | IU  | 1  |
| -  | 106-46-7   | <br>-1,4-Dichlorobenzer            | າຮ         |                             | 10 | ΙŪ  | 1  |
| ŧ  | 100-51-6   | <br>-Benzyl Alcohol                |            |                             | 10 | ΙU  | 1  |
| 1  | 95-50-1    | <br>-1,2-Dichlorobenzer            | າອ         |                             | 10 | IU  | 1  |
| 1  | 95-48-7    | <br>-2-Methylphenol                |            |                             | 10 | 111 | 1  |
| 1  | 39638-32-9 | <br>-bis(2−Chloro:sopro            | pyl)Ethe   | rI                          | 10 | IU  | 1  |
| į  | 196-44-5   | <br>-4-Methylphenol                |            |                             | 10 | ١١  | 1  |
|    |            | -N-Nitroso-Di-n-Pro                |            |                             | 10 | IU  | ì  |
| 1  | 67-72-1    | <br>-Hexachloroethane              |            | <u> </u>                    | 10 | ΙU  | 1  |
|    |            | -Nitrobenzene                      |            |                             | 10 | باا | ;  |
|    |            | -Isophorone                        |            |                             | 10 | 111 | i  |
| 1  | 88-75-5    | <br>-2-Nitrophenol                 |            | 1                           | 10 | l U | 1  |
| 1  | 105-67-9   | <br>-2,4-Dimethylphenol            | ·          | 1                           | 10 | IJ  | 1  |
| 1  | 65-85-0    | <br>-Benzoic Acid                  |            | '                           | 50 | 1 📙 | 1  |
| i  | 111-91-1   | <br>-bis(2-Chloroethoxy            | )Methane   |                             | 10 | IU  | 1  |
| 1  | 120-83-2   | <br>-2,4-Dichlorophenol            |            | 1                           | 10 | l U | 1  |
| 1  | 120-82-1   | <br>-1,2,4-Trichlorober            | zene       |                             | 10 | ١U  | 1  |
| 1  | 91-20-3    | <br>-Naphthalene                   |            | t                           | 9  | 1 J | 1  |
| l  | 106-47-8   | <br>-4-Chloroaniline               |            |                             | 10 | ١U  | 1  |
| ł  | 87-68-3    | <br>-Hexachlorobutadier            | re         |                             | 10 | ١U  | 1  |
| 1  |            | -4-Chloro-3-Methylp                |            |                             | 10 | IU  | 1  |
|    |            | -2-Methylnaphthaler                |            |                             | á  | IJ  | 1  |
|    |            | -Hexachlorocycloper                |            |                             | 10 | IU  | 1  |
| 1  | 88-06-2    | <br>-2,4,6-Trichlorophe            | enal       |                             | 10 | IU  | 1  |
|    |            | -2,4,5-Trichlorophe                |            |                             | 50 | IU  | 1  |
|    |            | -2-Chloronaphthaler                |            |                             | 10 | IU  | 1  |
| 1  | 88-74-4    | <br>-2-Nitroaniline                |            |                             | 50 | 1 U | l  |
| •  | 131-11-3   | <br>-Dimethyl Phthalate            |            |                             | 10 | IU  | i  |
| 1  |            | -Acenaphthylene                    |            |                             | 10 | IU  | 1  |
| 1  | 606-20-2   | <br>-2,6-Dinitrotoluens            | )          |                             | 10 | 1 U | ļ  |
| Ŧ, |            | ,                                  |            |                             |    | 1   | _1 |

EPA SAMPLE NO.

W025

Lab Name: E & E INC. Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10146

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 63717

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (YVN) N pH: Dilution Factor: 1.8

|        |           |                                  | CONCENTR          | ATION UNITS:                           |          |      |               |
|--------|-----------|----------------------------------|-------------------|----------------------------------------|----------|------|---------------|
|        | CAS NO.   | COMPOUND                         | (ug/L or          | ug/Kg) UG/L                            |          | Q    |               |
| ţ      |           |                                  |                   | ì                                      |          | 1    | i             |
| i      | 99_09_2   | 3-Nitroaniline                   |                   | 1                                      | 50       | 111  | 1             |
| 1      | 93-32-9   | Acenaphthene_                    |                   | '                                      | 10       | 10   | 1             |
| 1      | 51_28_5   | 2,4-Dinitrophe                   | na l              |                                        | 50       | 111  | i             |
| 1      | 100-02-7  | 4-Nitrophenol_                   | :1101             | · · · · · · · · · · · · · · · · · · ·  | 50<br>50 | 10   | i             |
| 1      | 139-64-9  | Dibenzofuran                     |                   | ;<br>i                                 | 10       | 1 [] | 1             |
| 1      | 121-14-2  | 2,4-Dinitrotol                   | uene              | · · · · · · · · · · · · · · · · · · ·  | 10       | ; U  | 1             |
| ì      | 84-66-2   | Diethylphthals                   | ta.               | · · · · · · · · · · · · · · · · · · ·  | 10       | 10   |               |
| i      | 7005-72-3 | 4-Chlorophenyl                   | -phanulathar      | 1                                      | 10       | 1 U  | 1             |
| 1      | 96-73-7   | Fluorana                         | -buenàrecher      | · · · · · · · · · · · · · · · · · · ·  | 10       | 1 U  | !             |
| 1      | 100-10-4  | Fluorene                         |                   | !                                      | 50       | 1 U  | i i           |
| i      | 534_69_1  | 4-Nitroaniline<br>4,6-Dinitro-2- | Mathulphanel      | <del></del>                            | 20<br>50 |      | 1             |
| 1      | 94-30-4   | N-Nitrosodiphe                   | nethytphenot.     | <sup>1</sup>                           | 10       | 10   | !             |
| ı<br>l | 101-55-3  | 4-Bromophenyl-                   | myramine (1).     |                                        | 10       | 111  | ;             |
| 1      | 119-74-1  | Hexachlorobenz                   | .bueulare cues.** |                                        | 10       | 10   | 1             |
| 1      | 97-86-5   | Pentachlorophe                   | .cne              | <sup>†</sup>                           | 50       | , U  | 1             |
| 1      | 95_01_9   | Phenanthrene                     |                   | '                                      | 10       | 111  | i<br>I        |
| 1      | 120-12-7  | Anthracene                       |                   | <sup>1</sup>                           | 10       | 10   | 1             |
| 1      | 94-74-9   | Di-n-Butylphth                   | - late            |                                        | 10       | 1 🗆  | ,             |
| 1      | 204-44-0  | Fluoranthene_                    | 191916            | !                                      | 10       | IU   | ,             |
| 1      | 129-00-0  | Pyrene                           |                   | '                                      | 10       | 10   | ,             |
| ł      | 95_49_7   | Butylbenzylpht                   | halate            |                                        | 10       | 10   | 1             |
| i      | 91-94-1   | ·3,3'-Dichlorab                  | enzidine          | · · · · · · · · · · · · · · · · · · ·  | 20       | 1 11 | 1             |
| 1      | 56-55-3   | Benzo(a)Anthra                   | C826              |                                        | 10       | ΙU   | 1             |
| 1      | 719-01-9  | Chrysene                         |                   |                                        | 10       | l U  | 1             |
| ì      | 117-91-7  | bis(2-Ethylhex                   | uliPhthalata      |                                        | 4        | iBJ  | 1             |
| 1      | 117-84-0  | Di-n-Octyl Pht                   | halate            |                                        | 10       | 1 U  | i             |
| i      | 205-99-2  | Benzo(b)Fluora                   | natace            | '                                      | 10       | וט   | ì             |
| 1      | 207-77-2  | Benzo(k)Fluora                   | nthene            |                                        | 10       | IU   | ,             |
| ŀ      | 50-32-8   | Benzo(a)Pyrene                   | ill Chelle        | <u>'</u>                               | 10       | ΙU   | 1             |
| 1      | 193-39-5  | Indeno(1,2,3-c                   | d)Purana          | ······································ | 10       | 10   | 1             |
| •      | 53-70-3   | Dibenz(a,h)Ant                   | bracene           | ·'                                     | 10       | 10   | 1             |
| i      | 191-24-2  | Benzo(g,h,i)Pe                   | rulene            |                                        | 10       | 10   | 1             |
| i      | _,        | Denizo(g,n,1)re                  | - yrene           | ······································ | 7.7      |      | 1             |
| ١.     | 1 )       |                                  |                   | ·                                      |          | _ '  | <del></del> ' |

<sup>(1) -</sup> Cannot be separated from Diphenylamine

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

W025

b Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10146

Sample wt/vol: 1000 (q/mL) MLLab File ID: G3717

Lavel: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. Date Extracted: 05/09/91 dec.

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N Dilution Factor: 1.0 pH:

CONCENTRATION UNITS:

Number TICs found: 11 (ug/L or ug/Kg) UG/L

| <br>  CAS NUMBER | COMPOUND NAME                                                                                                                                                                                                | I RT                                                                                                                | I EST. CONC. I Q I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.               | IEthyl Dimethyl Benzene Isome IUNKNOWN PAH IMethyl Naphthalene Isomer IUNKNOWN HYDROCARBON IUNKNOWN HYDROCARBON IUNKNOWN HYDROCARBON IMolecular Sulfur IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN | 11.30<br>  12.97<br>  15.79<br>  20.61<br>  22.07<br>  24.78<br>  26.36<br>  33.58<br>  40.43<br>  42.62<br>  43.77 | 6.013   5.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013   7.013 |

EPA SAMPLE NO.

W025D

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10147

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: G3718

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec. dec.

Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH:

Dilution Factor: 1.0

| CHUNCEL | HIKE | HULL     | ПM         | 1:2:  |
|---------|------|----------|------------|-------|
| (00/21  |      | 1100 ZVZ | <b>-</b> ) | B© 7E |

|     |            |                                        | COLLCELLIZE    | 11 TOW - 011 T'O: |    |     |     |
|-----|------------|----------------------------------------|----------------|-------------------|----|-----|-----|
|     | CAS NO.    | COMPOUND                               | (ug/L or       | ug/Kg) UG/L       |    | Q   |     |
| ı   |            |                                        |                |                   |    | 1   | 1   |
| i   | 108-95-2   | -Phenol                                |                | i                 | 10 | iu  | í   |
| i   | 111-44-4   | -Phenol_<br>-bis(2-Chloroethyl)        | Ether          | · · ·             | 10 | iū  | i   |
| 1   | 95-57-8    | -2-Chlorophenol                        |                |                   | 10 | iU  | i   |
| 1   | 541-73-1   | -1,3-Oichlorobenzer                    | 7 <del>2</del> |                   | 10 | ΙŪ  | 1   |
| i   |            | -1,4-Dichlorobenzer                    |                |                   | 10 | ſÜ  | i   |
| į   | 100-51-6   | -Bénzyl Alcohol                        |                | 1                 | 10 | 117 | 1   |
| 1   | 95-50-1    | -1,2-Ďichlarobenzer                    | 18             | 1                 | 10 | ΙU  | 1   |
| 1   | 95-48-7    | -2-Methulphenol                        |                | <u> </u>          | 10 | IU  | i   |
| ١   | 39638-32-9 | -2-Methylphenol <u> </u>               | pyl)Ether      | 1                 | 10 | 1U  | 1   |
| i   | 106-44-5   | -4-Methylphenol                        | •              | 1                 | 10 | Ш   | ŧ   |
| į   | 621-64-7   | -4-Methylphenol<br>-N-Nitroso-Di-n-Pro | pylamine_      | 1                 | 10 | 11) | i   |
| i   | -67-72-1   | -Hexachloroethane                      |                |                   | 10 | IU  | 1   |
| ì   | 98-95-3    | -Nitrobenzene                          |                |                   | 10 | IU  | ì   |
| 1   | 78-59-1    | -Isophorone                            |                |                   | 10 | Ш   | 1   |
| . 1 | 88-75-5    | -2-Nitrophenol                         |                | İ                 | 10 | IU  | l l |
| 1   | 105-67-9   | -2-Nitrophenol<br>-2,4-Dimethylphenol  |                |                   | 10 | ΙU  | 1   |
| 1   | 65-85-0    | -Benzoic Acid                          |                |                   | 50 | IU  | i   |
| -   | 111-91-1   | -bis(2-Chloroethoxy                    | ()Methane_     |                   | 10 | ناا | 1   |
| 1   | 120-83-2   | -2,4-Dichlorophenoľ                    |                | I                 | 10 | IU  | 1   |
| 1   | 120-82-1   | -1,2,4-Trichlorober                    | izene          |                   | 10 | IU  | ł   |
| ţ   | 91-20-3    | -Naphthalene                           |                | 1                 | 4  | IJ  | 1   |
| 1   | 106-47-8   | -Naphthalene<br>-4-Chloroaniline       |                | I                 | 10 | 111 | 1   |
| İ   | 87-68-3    | -Hexachlorobutadier                    | re             | 1                 | 10 | ١U  | l   |
|     |            | -4-Chlaro-3-Methylp                    |                |                   | 10 | l U | 1   |
| ١   | 91-57-6    | -2-Methylnaphthaler                    | re             | I                 | 2  | IJ  | 1   |
| Į   | 77-47-4    | -Hexachlorocycloper                    | itadiene       |                   | 10 | IU  | 1   |
| 1   | 88-06-2    | -2,4,6-Trichĺorophe                    | eno l          | 1                 | 10 | III | 1   |
| I   | 95-95-4    | -2,4,5-Trichlorophe                    | eno l          | 1                 | 50 | IU  | i   |
| ŀ   | 91-58-7    | -2-Chloronaphthaler                    | ,e             | l                 | 10 | ľ   | I   |
| 1   | 88-74-4    | -2-Nitroaniline                        |                |                   | 50 | I U | 1   |
| I   |            | -Dimethyl Phthalate                    |                |                   | 10 | نا۱ | 1   |
| ١   | 208-96-8   | -Acenaphthylene                        | <u> </u>       |                   | 10 | I U | 1   |
| 1   | 606-20-2   | -2,6-Dinitrotoluene                    |                |                   | 10 | IU  | I   |
| - 1 |            |                                        |                | 1                 |    | ţ   | 1   |

EPA SAMPLE NO.

W025D

'S Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10147

Sample wt/vol: 1000 (g/mL) ML Lab File ID: G3718

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

|    | CAS NO.                  | COMPOUND                                                |                                       |       | TION UNITS:<br>ug/Kg) US/L |                                                     | ū        |                        |
|----|--------------------------|---------------------------------------------------------|---------------------------------------|-------|----------------------------|-----------------------------------------------------|----------|------------------------|
| 1  | 83-32-9                  | -3-Nitroaniline<br>-Acenaphthene<br>-2,4-Dinitrophenol_ |                                       |       | i                          | 50<br>10<br>50                                      |          | Baggy journer grant El |
| i  | 100-02-7                 | -4-Nitrophenol                                          |                                       |       | 1                          | ភព<br>ភព                                            | 14       | ;                      |
| 1  | 132-64-9                 | -Oibenzofuran                                           |                                       |       | 1                          | 10                                                  | ΙIJ      | ì                      |
| ţ  | 121-14-2                 | -2,4-Dinitrotoluene                                     |                                       |       | 1                          | 10                                                  | lU       | ţ                      |
| ì  | 84-66-2                  | -Diethylphthalate                                       |                                       |       |                            | 10                                                  | ΙU       | 1                      |
| İ  | 7005-72-3                | -4-Chlorophenyl-phe                                     | inyleth.                              | er_   | 1                          | 10                                                  | ΙÜ       | 1                      |
| 1  | 86-73-7                  | -Fluorene                                               |                                       |       | l                          | 10                                                  | ΙÜ       | i                      |
| 1  | 100-10-6                 | -4-Nitroaniline                                         | ,                                     |       |                            | 50                                                  | נוו      | İ                      |
| t  |                          | -4,6-Dinitro-2-Meth                                     |                                       |       |                            | 50                                                  | 1.1      | !                      |
| i  | 36-30-6                  | -N-Nitrosodiphenyla                                     | ımıne (                               | 1)_   | <u> </u>                   | 10                                                  |          | l                      |
| 1  | 101-55-3                 | -4-Bromophenyl-pher                                     | iylathe                               | r     | !                          | 10                                                  | 10       | į.                     |
| 1  | 118-/4-1                 | -Hexachlorobenzene_                                     |                                       |       | \                          | 10                                                  | U        | į                      |
| 1  |                          | -Pentachlorophenol_<br>-Phenanthrene                    |                                       |       |                            | 50                                                  | 16<br>16 | i<br>I                 |
| 1  | - 190 19 7<br>- 190 19 7 | -Anthracene                                             |                                       |       | I                          | $egin{smallmatrix} 1 \ 0 \ 1 \ 0 \end{smallmatrix}$ | 1 (1)    | 1                      |
| 1  | 94-74-2                  | -Brithmacene<br>-Di-n-Butylphthalat                     |                                       |       | '                          | 10                                                  | 10       | 1                      |
| 1  | 204-44-0                 | -Fluoranthene                                           | . =                                   |       | t                          | 10                                                  | 10       | 1                      |
| ,  | 129-00-0                 | -Pyrene                                                 |                                       |       | '                          | 10                                                  | 10       | i                      |
| i  | 85-68-7                  | -Butylbenzylphthala                                     | . + ->                                |       | ' '                        | 10                                                  | 10       | •                      |
| i  | 91-94-1                  | -3,3'-Dichlorobenzi                                     | dine                                  |       | i                          | 20                                                  | IU       | į                      |
| 1  | 56-55-3                  | -Benzo(a)Anthracens                                     | · · · · · · · · · · · · · · · · · · · |       | <del></del> ;              | 10                                                  | 10       | ì                      |
| Ì  | 218-01-9                 | -Chrysene                                               |                                       | ***** | <u> </u>                   | 10                                                  | ΙÜ       | i                      |
| 1  | 117-81-7                 | -bis(2-Ethylhexyl)F                                     | hthala                                | te    |                            | 4                                                   | IBJ      | i                      |
| 1  |                          | -Di-n-Octyĺ Phtĥala                                     |                                       |       |                            | 10                                                  | l U      | 1                      |
| †  | 205-99-2                 | -8enzo(b)Fluoranthe                                     | ne                                    |       | 1                          | 10                                                  | ΙU       | 1                      |
| l  |                          | -Benzo(k)Fluoranthe                                     |                                       |       |                            | 10                                                  | 1 U      | 1                      |
| 1  |                          | -Benzo(a)Pyrene                                         |                                       |       |                            | 10                                                  | 1U       | 1                      |
|    |                          | -Indeno(1,2,3-cd)Py                                     |                                       |       |                            | 10                                                  | 111      | i                      |
|    |                          | -Dibenz(a,h)Anthrac                                     |                                       |       |                            | 10                                                  | 1 🗆      | ţ                      |
| 1  | 191-24-2                 | -Benzo(g,h,i)Peryle                                     | ne                                    |       | !                          | 10                                                  | IU       | 1                      |
| 1_ | <u> </u>                 |                                                         | <del></del>                           |       |                            |                                                     | _        | _1                     |

#### 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA | SAMPLE | NO. |
|-----|--------|-----|
|     |        |     |

W025D

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10147

Sample wt/vol: 1000 (q/mL) ML Lab File ID: G3718

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 9

| 1     | CAS NUMBER                              | l<br>I CI    | OMPOUND  | NAME                                   | l<br>      | RT.   | 1   | EST. | CONC.        | 1           | []<br>[] |
|-------|-----------------------------------------|--------------|----------|----------------------------------------|------------|-------|-----|------|--------------|-------------|----------|
| 1 = = | : = = = = = = = = = = = = = = = = = = = | INNKNOMN H.  | YDROCARB | ###################################### | 1 = =<br>1 | 20.61 | ;== | ==== | =====<br>5.0 | 1∓=:<br> ¦] | ===      |
| 1     |                                         | I NNKNOMN H, |          | <del></del> · ·                        | i          | 22.07 | 1   |      | 6.0          | _           | 1        |
| 1     | <i>3</i> .                              | LUNKNOWN H   | YDROCARB | ION                                    | 1          | 23.46 | i   |      | 4.0          | НJ          | 1.       |
| 1     | 4.                                      | LUNKNOWN H   | YDROCARB | ION                                    | Į          | 24.77 | 1   |      | 4.0          | ١J          | 1        |
| f     | 5.                                      | LUNKNOMN H,  | YDROCARB | NOI                                    | 1          | 31.60 | l   |      | 7.0          | I.J         | í        |
| 1     | ó.                                      | LUNKNOWN     |          |                                        | 1          | 33.59 | 1   |      | 12           | IJ          | Į        |
| 1     | 7.                                      | LUNKHOWN     |          |                                        | i          | 40.50 | i   |      | j6.U         | НJ          | ŧ        |
| i     | 3.                                      | LUNKNOWN     |          |                                        | i          | 42.60 | ì   |      | 5.0          | IJ          | ;        |
| 1     | 9.                                      | LUNKNOWN     |          |                                        | i          | 43.77 | i   |      | 23           | IJ          | į        |
| 1     |                                         | 1            |          |                                        | ١          |       | .1  |      |              | .           | {        |

EPA SAMPLE NO.

WFB06

o Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10148

Sample wt/vol: 1000 (q/mL) ML Lab File ID: G3719

Lavel: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

| CAS NO.  | COMPOUND                                                                                                                                                                                                                                                            | CONCENTRATION UNIT<br>(ug/L or ug/Kg) UG                 |                                                                      | Q                                       |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|--|
| 108-95-2 | COMPOUND  -Phenol                                                                                                                                                                                                                                                   | (ug/L or ug/Kg) UG  Ether  ne  ne  ppyl)Ether  ppylamine | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | מכנכנננננננננננננננננננ                 |  |
| 120-83-2 | -2,4-Dichlorophenol -1,2,4-Trichlorober -Naphthalene -4-Chloroaniline -4-Chloro-3-Methylp -2-Methylnaphthaler -4,6-Trichlorophe -2,4,6-Trichlorophe -2,4,5-Trichlorophe -2-Chloronaphthaler -2-Nitroaniline -Dimethyl Phthalate -Acenaphthylene -2,6-Dinitrotoluene | nzene                                                    | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>50<br>10             | ו ביייייייייייייייייייייייייייייייייייי |  |

EPA SAMPLE NO.

WFB06

Lab Name: E & E INC.

Contract:

Lab Code: EANDE

Case No.: 9101\_052

SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10148

Sample wt/vol:

1000 (q/mL) ML

Lab File ID:

G3719

Level: (low/med) LOW

Date Received:

05/04/91

% Moisture: not dec.

dec.

Date Extracted: 05/09/91

Extraction:

(SepF/Cont/Sonc)

SEPF

Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N

pH:

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kq) UG/L I) 1 1 99-09-2----3-Nitroaniline\_\_\_\_ 50 1 📙 1.0 111 50  $+ \cup$ | 100-02-7----4-Nitrophenol\_\_\_\_\_| 50 111 | 132-64-9-----Dibenzofuran\_\_\_\_\_| | 121-14-2----2,4-Dinitrotoluene\_\_\_\_| HJ10 ! 84-66-2-----Diethylphthalate\_\_\_\_\_ 10 111 10 111 1.0  $\Box$ 50 LU 1 534-52-1-----4,6-Dinitro-2-Methylphenol\_\_\_! 50  $\Box$ 1 36-30-6----N-Nitrosodiphenylamine (1)\_\_\_\_! 10 | 101-55-3-----4-Bromophenyl-phenylether\_\_\_\_| 10  $\mathbf{I}\mathbf{U}$ | 119-74-1-----Hexachlorobenzene\_\_\_\_\_| 10 111 | 87-86-5-----Pentachlorophenol\_\_\_\_\_i 50 111 | 35-01-8-----Phenanthrene\_\_\_\_\_ 10 111 | 120-12-7-----Anthracene\_\_\_\_\_\_| 10 1 11 10 IU | 206-44-0----Fluoranthene\_\_\_\_\_ 11)  $\Box$ | 129-00-0-----Pyrene\_\_\_\_\_ 19HJ| 85-68-7----Butylbenzylphthalate\_\_\_\_\_| 1.01U1 91-94-1----3,3'-Dichlorobenzidine\_\_\_\_\_1 20 IU 1 56-55-3-----Penzo(a)Anthracene\_\_\_\_\_I 101111 218-01-9-----Chrysene 10 ΙU | 117-81-7----bis(2-Ethylhexyl)Phthalate\_\_\_| 4 IBJ | 117-84-0----Di-n-Octyl Phthalate\_\_\_\_\_ 10 IU 1 205-99-2----Benzo(b)Fluoranthene\_\_\_\_\_ 10  $\mathbf{H}$ 1 207-08-9----Benzo(k)Fluoranthene\_\_\_\_\_1 10 111 | 50-32-8-----Benzo(a)Pyrene\_\_\_\_ 10 111 | 193-39-5-----Indeno(1,2,3-cd)Pyrene\_\_\_\_ 10 IU | 53-70-3-----Dibenz(a,h)Anthracene\_\_\_\_\_ IU 10 | 191-24-2----Benzo(g,h,i)Perylene\_\_\_\_\_| 10 IU

(1) - Cannot be separated from Diphenylamine

### 1F

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

|   | EPA  | SAMPLE | NO. |  |
|---|------|--------|-----|--|
| ļ |      |        | I   |  |
| i | 1.15 | anz    | 1   |  |

⇒ Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10148

Sample wt/vol: 1000 (q/mL) ML Lab File ID: G3719

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

CONCENTRATION UNITS: --

Number TICs found: 7

| !           | CAS NUMBER | 1        | COMPOUND NAME | <br>          | RT<br> | I<br>I EST. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JNC. I Q | .<br> <br> |
|-------------|------------|----------|---------------|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| <del></del> | 1.         | •        | HYDROCARBON   | ! <del></del> | 20.61  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0 J    | ;          |
| 1           | 2          | HUNKNOWN | HYDROCARBON   | i<br>i        | 22.07  | ). And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o | 7.01J    | 1          |
|             | 3.         | LUNKNOMN | HYDROCARBON   | ł             | 23.45  | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0IJ    | i          |
|             | 4.         | LUNKNOWN | HYOROCARBON   | Į             | 24.78  | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.01J    | İ          |
| ĺ           | 5.         | LUNKNOWN |               | Ì             | 26.78  | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48 IBJ   | 1          |
| ì           | 6.         | LONKNOWN |               | i             | 42.62  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 IJ    | 1          |
| ŀ           | 7.         | HUNKMOWN |               | Ì             | 44.56  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.01J    | 1          |
| 1           |            | 1        |               | I             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 1          |

EPA SAMPLE NO.

WRBU6

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10149

Sample wt/vol: 1000 (g/mL) ML Lab File ID: G3720

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

CONCENTRATION UNITS:

|   | CAS NO.      | СОМРОИМО                         | (ug/L or  | ug/Kg) UG/L |           | Q   |          |
|---|--------------|----------------------------------|-----------|-------------|-----------|-----|----------|
| 1 |              |                                  |           | 1           |           | 1   | !        |
| 1 | 108-95-2     | -Phenol                          | _         |             | 13        | 111 | <b>;</b> |
| ļ | 111-44-4     | -bis(2-Chloroethyl)              | Ether     | i           | 10        | ! U | i        |
| ļ | 95-57-8      | -2-Chloraphenal                  |           | {           | ΙÚ        | 114 | 1        |
| } | 541-23-1     | -1,3-Dichlorobenzen              | e         | 1           | 10        | 10  | 1        |
| 1 | 106-46-7     | -1,4-Dichlorobenzen              | e         |             | 10        | i U | į        |
| į | 100-51-6     | -Benzyl Alcohol                  |           |             | 10        | 1 🖯 |          |
| 1 | 95-50-1      | -1,2-Dichlorobenzen              | ·e        |             | 10        | 10  | 1        |
| 1 | 95-48-7      | -2-Methylphenol                  |           | Ì           | $1 {f 0}$ | iU  |          |
| Į | - 27628-22-7 | -615(2-Chloro13opro              | (pyl/Ethe | ۲ <u></u> ۱ | 10        | 14  | 1        |
| t | 106-44-5     | -4-Methylphenol                  |           |             | 10        | 111 | i        |
| ţ | 621-64-7     | -N-Nitroso-Dı-n-Pro              | pylamine  | <u></u> 1   | 10        | 111 |          |
| Î | 67-72-1      | -Hexachloroethane                |           |             | 7.0       | 111 | i        |
| i | 98-95-3      | -Nitrobenzene                    |           | I           | 10        | 10  | 1        |
| İ | 78-59-1      | -Isophorone                      |           |             | 10        | IU  | 1        |
| } | 88-75-5      | -2-Nitrophenol                   |           | 1           | 10        | ΙU  | i        |
| 1 | 105-67-9     | -2,4-Dimethylphenol              |           |             | 10        | IU  | 1        |
| 1 | 65-85-0      | -Benzoic Acid                    |           |             | 50        | l U | 1        |
| i | 111-91-1     | -bis(2-Chloroethoxy              | )Methane  | 1           | 10        | I U | 1        |
| 1 | 120-83-2     | -2,4-Dichlorophenoĺ              |           |             | 10        | ľU  | 1        |
| 1 | 120-32-1     | -1,2,4-Trichloroben              | zene      | <b>!</b>    | 10        | ١U  | 1        |
| 1 | 91-20-3      | -Naphthalene<br>-4-Chloroaniline |           | <u> </u>    | 10        | 111 | ŀ        |
| 1 | 106-47-8     | -4-Chloroaniline                 |           | 1           | 10        | ١U  | i        |
| 1 | 87-68-3      | -Hexachlorobutadien              | e         |             | 10        | ΙU  | 1        |
| ł | 59-50-7      | -4-Chloro-3-Methylp              | henol     |             | 10        | IU  | i        |
| l | 91-57-6      | -2-Methylnaphthalen              | e         |             | 10        | 1U  | 1        |
|   |              | -Hexachlorocyclopen              |           |             | 10        | IU  | 1,       |
| ı | 88-06-2      | -2,4,6-Trichlorophe              | nol       |             | 10        | 1U  | 1        |
| ł | 95-95-4      | -2,4,5-Trichlorophe              | no l      |             | ១០        | IU  | 1        |
| 1 | 91-58-2      | -2-Chloronaphthalen              | e         |             | 10        | 1 U | 1        |
| ì | 88-74-4      | -2-Nitroaniline                  |           |             | 50        | IU  | 1        |
| 1 | 131-11-3     | -Dimethyl Phthalate              |           |             | 10        | IU  | 1        |
| ı | 208-96-8     | -Acenaphthylene                  |           |             | 10        | IU  | 1        |
| 1 | 606-20-2     | -2,6-Dinitrotoluene              | ·         |             | 10        | IU  | 1        |
| 1 |              | ,                                |           |             |           | !   | _ 1      |

EPA SAMPLE NO.

WRB06

"ab Name: E & E INC.

Contract:

Lab Code; EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 10149

Sample wt/vol: 1000 (g/mL) ML Lab File ID: G3720

Level: (low/med) LOW Date Received: 05/04/91

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N pH: Bilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L G

1 99-09-2----3-Nitroaniline\_\_\_\_ 5 ü 1 83-32-9-----Acenaphthene  $10^{\circ}$ | 51-28-5----2,4-Dinitrophenol\_\_\_\_ 50 1111 100-02-7----4-Nitrophenol\_\_\_\_\_ ្ទាប់ 10 | 132-64-9-----| | 1 | 132-64-9-----| 13 111 10 IЦ ! 84-66-2------Diethylphthalate\_\_\_\_\_i 1.0111 1 7005-72-3----4-Chlorophenyl-phenylether\_\_\_\_| 10 | 86-73-7-----Fluorene\_\_\_\_ | 100-10-6----4-Nitroaniline\_\_\_\_ 10111 50 | 534-52-1----4,6-Dinitro-2-Methylphenol\_\_\_\_| 5 U 111 ! 86-30-6----N-Nitrosodiphenylamine (1)\_\_\_\_! 10 | 101-55-3-----4-Bromophenyl-phenylether | 111 10 | 113-74-1-----Hexachlorobenzene Ш 10 1 87-86-5-----Pentachlorophenol\_\_\_\_ គរា 111 | 85-01-8-----Phenanthrene\_\_\_\_ 10 111 | 120-12-7-----Anthracene | | 10 1 1 84-74-2-----Di-n-Butylphthalate 10 111 | 206-44-0-----Fluoranthene\_\_\_\_\_ 10 IU 129-00-0-----Pyrene 10 1 85-68-7-----Butylbenzylphthalate\_\_\_\_ IШ 10+ 91-94-1-----3,3'-Dichlorobenzidine\_\_\_\_\_ 201 56-55-3-----Benzo(a)Anthracene\_\_\_\_ 10 IU | 218-01-9-----Chrysene\_\_\_\_ ΙU 101 117-81-7-----bis(2-Ethylhexyl)Phthalate 1 5 IBJ | 117-84-0-----Di-n-Octyl Phthalate\_\_\_\_\_| 10 111 1 205-99-2----Benzo(b)Fluoranthene\_\_\_\_\_ 10  $I \sqcup$ | 207-08-9-----Benzo(k)Fluoranthene\_\_\_\_! 10 1 50-32-8-----Benzo(a)Pyrene\_\_\_\_ 1 🛭 10 1 193-39-5-----Indeno(1,2,3-cd)Pyrene\_\_\_\_\_ 10 LH | 53-70-3-----Dibenz(a,h)Anthracene\_\_\_\_ 10 IU 1 191-24-2----Benzo(q,h,i)Perylene\_\_\_\_\_ 1 n ш

(1) - Cannot be separated from Diphenylamine

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO. WRB06

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10149

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: G3720

Level: (low/med) LOW

Date Received: 05/04/91

% Moisture: not dec.

Extraction: (SepF/Cont/Sonc) SEPF

Date Extracted: 05/09/91 Date Analyzed: 05/14/91

GPC Cleanup: (Y/N) N

pH:

dec.

Dilution Factor: 1.0

CONCENTRATION UNITS:

Number TICs found: 6 (ug/L or ug/Kg) UG/L

| ;     |            | 1        |               | ì  |       | į            |      |       | 1     |     | ì   |
|-------|------------|----------|---------------|----|-------|--------------|------|-------|-------|-----|-----|
| 1     | CAS NUMBER | 1        | COMPOUND NAME | ļ  | RT    | 1            | EST. | COMC. | 1     | 13  | i   |
| ! = = |            | =======  |               | == |       | \ <b>=</b> : |      |       | =     | === | 2 } |
| 1     | 1.         | TUNKNOWN | HYDROCARBON   | 1  | 20.60 | i            |      | 5.0   | UI    |     | 1   |
| 1     | 2.         | LUNKNOWN | HYDROCARBON   | ŀ  | 22.06 | 1            |      | 7.1   | )     |     | į   |
| 1     | 3.         | TUNKNOWN | HYDROCARBON   | l  | 23.46 | 1            |      | 7.0   | J I J |     | i   |
| t     | 4.         | TUNKNOWN | HYDROCARBON   | t  | 24.79 | i            |      | 7.0   | LIC   |     | Ì   |
| İ     | 5.         | LUNKHOWH |               | 1  | 26.77 | 1            |      | 53    | 183   | }   | ì   |
| 1     | Ġ.         | LUNKNOWN |               |    | 40.49 | 1            |      | 3.0   | UH    |     | Ì   |
| 1     |            | 1        |               | t  |       | 1            |      |       | _ 1   |     | _ ; |

### WATER VOLATILE SURROGATE RECOVERY

Lab Name: E & E INC.

Contract:

SDG No.:

| l EPA                                 | 1     | Si    | 1     | 52   | Ī   | <b>6</b> 3 | 10       | THER  | 1     | TO    | -<br>- |
|---------------------------------------|-------|-------|-------|------|-----|------------|----------|-------|-------|-------|--------|
| I SAMPLE NO.                          | i     | (TOL) | #1 (  | SFB: | 1#1 | (DOE)      | #1       |       | 11    | וטכ   | ГΙ     |
| ===================================== | =   : | ===== | =   = | ==== | =   | =====      | ==   = : | ====: | =   : | = = = | =      |
| 01 W021                               | İ     | 95    | 1     | ខន   | 1   | 94         | ı        | 0     | 1     | 0     | 1      |
| 021W024                               | -     | 96    | 1     | 90   | - 1 | 101        | 1        | 0     | - [   | Ū     | I      |
| 031W025                               | 1     | 97    | ł     | 91   | ı   | 104        | ı        | υ     | 1     | 0     | i      |
| 041W025D                              | 1     | 104   | 1     | 87   | l   | 97         | 1        | 0     | ĺ     | 0     | I      |
| 051WFB06                              | 1     | 94    | - 1   | 32   | *   | 98         | l        | Ü     | 1     | 1     | i      |
| 061WFB06FEDL                          | ļ     | 97    | ł     | 89   | ŀ   | 95         | I        | Ū     | 1     | Û     | i      |
| 071WPB06                              | 1     | 102   | 1     | 94   | - 1 | 110        | l        | Ü     | 1     | 0     | 1      |
| 081WRB06                              | 1     | 100   | 1     | 93   | 1   | 110        | ı        | ŋ     | 1     | 0     | 1      |
| 091WTB06                              | 1     | 108   | 1     | 92   | 1   | 101        | l        | Ū     | i     | 0     | -      |
| 101WTB06MS                            | ļ     | 101   | 1     | 89   | - 1 | 100        | 1        | 0     | 1     | 0     | 1      |
| 11 WTB06MSD                           | 1     | 105   | ŀ     | 36   | - 1 | 102        | ı        | 0     | i     | 0     | 1      |
| 12 UBLKW1                             | 1     | 101   | l     | 89   | - 1 | 95         | i        | 0     | t     | 0     | 1      |
| 13 I VBLKW2                           | 1     | 105   | 1     | 89   | - 1 | 94         | ŀ        | 0     | 1     | υ     | -      |
| 14TUBLKW3                             | ì     | 101   | i     | 94   | 1   | 99         | 1        | ŋ     | 1     | 0     | 1      |
|                                       | _1_   |       | 1_    |      | 1   |            | !_       |       | _ t _ |       | _1     |

6/17/9/8mSS1 (TOL) = Toluene-d8

<sup>(88-110)</sup> S2 (BFB) = Bromofluorobenzene (86-115)S3 (DCE) = 1,2-Dichloroethane-d4 ( 76-114)

<sup>#</sup> Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D Surrogates diluted out

#### 2A WATER VOLATILE SURROGATE RECOVERY

Lab Name: E & E INC.

Contract:

Lab Code: EANDE

Case No.: 9101\_052 SAS No.:

SDG No.:

|    | EPA        | S1     | 52      | S3      | OTHER | TOT |
|----|------------|--------|---------|---------|-------|-----|
|    | SAMPLE NO. | (TOL)# | (BFB) # | (DCE) # |       | OUT |
|    |            |        | =====   |         | ===== | === |
| 01 | W021       | 95     | 88      | 94      | 0     | 0   |
| 02 | W023       | 101    | 95      | 110     | 0     | 0   |
| 03 | W024       | 96     | 90      | 101     | 0     | 0   |
| 04 | W025       | 97     | 91      | 104     | 0     | 0   |
| 05 | W025D      | 104    | 87      | 97      | 0     | 0   |
|    | WFB06      | 94     | 82 *    | 98      | 0     | 1 1 |
| 07 | WFB06BÆ DL | 97     | 89      | 95      | 0     | 0   |
|    | WPB06      | 102    | 94      | 110     | 0     | 0   |
| 09 | WRB06      | 100    | 93      | 110     | 0     | 0   |
| 10 | WTB06      | 108    | 92      | 101     | 0     | 0   |
| 11 | WTB06MS    | 101    | 89      | 100     | 0     | 0   |
| 12 | WTB06MSD   | 105    | 86      | 102     | 0     | 0   |
| 13 | VBLKW1     | 101    | 89      | 95      | 0     | 0   |
| 14 | VBLKW2     | 105    | 89      | 94      | 0     | 0   |
| 15 | VBLKW3     | 101    | 94      | 99      | 0     | 0   |
|    |            | 1      |         |         |       |     |

Eph 3/7/9

QC LIMITS

S1 (TOL) = Toluene-d8 ( 88-110) S2 (BFB) = Bromofluorobenzene ( 86-115) S3 (DCE) = 1,2-Dichloroethane-d4 ( 76-114)

<sup>#</sup> Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D Surrogates diluted out

#### 2C WATER SEMIUOLATILE SURROGATE RECOVERY

Lab Name: E & E INC.

Contract:

Jb Code: EANDE

Case No.: 9101\_052 SAS No.:

SDG No.:

| I EPA     |      |     | S1         | ı     | S2    | 1   | S3    | 1   | 54                                     | 1      | S5    | ì     | S6     | IOT     | HER  | 1     | TOT | -   |
|-----------|------|-----|------------|-------|-------|-----|-------|-----|----------------------------------------|--------|-------|-------|--------|---------|------|-------|-----|-----|
| I SAMPLE  | ΝО.  | 1 ( | NBZ)       | #     | (FBP) | # 1 | (TPH  | )非1 | (PHL                                   | )非;    | (2FP) | #1(   | TBP )4 | ŧ I     |      | 10    | דטכ | - 1 |
| =======   | ==== | =   | ====       | =   = |       | =   | ===== | ==  |                                        | ==   : | ===== | =   = | =====  | :   = = | ==== | :   : | =   | : 1 |
| 01 W021   |      | 1   | 72         | I     | 64    | 1   | 69    | 1   | 35                                     | I      | 56    | 1     | 92     | 1       | Û    | 1     | Ü   | 1   |
| 021W023   |      | 1   | <i>7</i> 6 | 1     | 77    | 1   | 74    | 1   | <b>3</b> 0                             | 1      | 48    | [     | 68     | l       | 0    | 1     | C   | I   |
| 031W024   |      | 1   | <i>7</i> 0 | 1     | 72    | - 1 | 68    | 1   | 29                                     | ı      | 45    | 1     | 64     | 1       | 0    | ì     | Û   | l   |
| 041W025   |      | 1   | 61         | 1     | 64    | 1   | 66    | j   | 25                                     | !      | 41    | 1     | 69     | 1       | Û    | 1     | υ   | 1   |
| 051W025D  |      | 1   | 61         | 1     | 67    | 1   | 70    | 1   | 24                                     | 1      | 42    | 1     | 62     | 1       | Ð    | 1     | 0   | 1   |
| 06 WFB06  |      | 1   | 62         | 1     | 68    | 1   | 22    | 1   | 24                                     | I      | 38    | t     | 58     | l,      | υ    | 1     | 0   | 1   |
| 071WRB06  |      | 1   | 62         | l     | 63    | †   | 72    | i   | 28                                     | - 1    | 45    | I     | 67     | 1       | 0    | 1     | Ð   | 1   |
| 08 SBLKW1 |      | 1   | 49         | 1     | 53    | 1   | 51    | 1   | 5                                      | *      | 36    | 1     | 46     | i       | Û    | ı     | 1   | 1   |
| 1         |      | -   |            | _     |       | 1   |       | 1   | ************************************** | ا      |       | _     |        | 1       |      | _ ا _ |     | _1  |

QC LIMITS S1 (NBZ) = Nitrobenzene-d5 (35-114)S2 (FBP) = 2-Fluorobiphenyl( 43-116) S3 (TPH) = Terphenyl S4 (PML) = Phenol-d5 (33-141)( 10-94 ) S5 (2FP) = 2-Fluorophenol( 21-100) S6 (TSP) = 2,4,6-Tribromophenol ( 10-123)

<sup>#</sup> Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D Surrogates diluted out

### WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

|            |         |           |              |            |       |            |       |      |       |            |       |      |       |      |       |     | _  |
|------------|---------|-----------|--------------|------------|-------|------------|-------|------|-------|------------|-------|------|-------|------|-------|-----|----|
| I EPA      | 1       | S1        | 1            | <b>S</b> 2 | İ     | S3         | 1     | 54   | ţ     | <b>S</b> 5 | 1     | S6   | ΙŪ    | THER | 1     | TOT | īl |
| I SAMPLE N | 0.10    | NBZ):     | <b>#</b> 1 ( | FBP)       | #11   | (HPH)      | #1(   | PHL: | (非)   | (2FP)      | #1(   | TBP) | #1    |      | 10    | TUC | ī  |
| ========   | ===   = | ====:     | = ( =        | ====       | =   = | ====       | =   = | ==== | =   = |            | =   = | ==== | =   = | ==== | =   : | === | =  |
| 01:W021    | 1       | 72        | ł            | 64         | 1     | 69         | 1     | 35   |       | 56         | 1     | 92   | 1     | ٥    | 1     | Ð   | -  |
| 021W023    | !       | 76        | !            | 22         | -     | <b>74</b>  | ì     | 30   | - 1   | 48         | 1     | 63   | Í     | ij   | į     | Ū   | 1  |
| 031W024    | 1       | <b>70</b> | t            | 72         | 1     | 68         | 1     | 29   | I     | 45         | ļ     | 64   | 1     | ŋ    | ŀ     | ŋ   | 1  |
| 041W025    | 1       | 61        | 1            | 64         | 1     | 66         | 1     | 25   | •     | 41         | 1     | 69   | 1     | U    | 1     | Ũ   | i  |
| 051W025D   | 1       | 61        | ţ            | 67         | j     | <b>7</b> 0 | ţ     | 24   | 1     | 42         | į     | 62   | 1     | Ð    | ł     | 0   | 1  |
| 06 WF806   | 1       | 62        | ı            | 68         | 1     | <i>7</i> 7 | ļ     | 24   | 1     | 38         | 1     | ទទ   | 1     | Ũ    | 1     | Ü   | 1  |
| 071WRB06   | 1       | 62        | 1            | 63         | l     | 72         | 1     | 28   | l     | 45         | į     | 67   | 1     | ŋ    | 1     | O.  | 1  |
| 08:SBLKW1  | 1       | 49        | i.           | 53         | ţ     | 51         | 1     | 5    | *     | 36         | 1     | 46   | ĺ     | Ü    | ł     | 1   | 1  |
|            | 1       | •         | 1            |            | i     |            | 1     |      | 1     |            | 1     |      | 1     |      | 1     |     | 1  |

QC LIMITS ( 35-114) S1 (NBZ) = Nitrobenzene-d5 S2 (FBP) = 2-Fluorobiphenyl ( 43-116) S3 (TPH) = Terphenyl S4 (PHL) = Phenol-d9 (33-141)(10-94)S5 (2FP) = 2-Fluorophenol ( 21-190) S6 (TBP) = 2.4,6-Tribromophenol ( 10-123)

<sup>#</sup> Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D Surrogates diluted out

#### 4B SEMIVOLATILE METHOD BLANK SUMMARY

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Lab File ID: G3698

Lab Sample ID: SBLKW1

Date Extracted: 05/09/91

Extraction:(SepF/Cont/Sonc) SEPF

Date Analyzed: 05/13/91

Time Analyzed: 1311

Matrix: (soil/water) WATER

Level:(low/med) LOW

Instrument ID: 7002G

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| EPA          | I LAB     | l LAB     | I DATE I       |
|--------------|-----------|-----------|----------------|
| ! SAMPLE NO. | SAMPLE ID | ! FILE ID | I ANALYZED I   |
|              |           |           |                |
| 011W021      | 1 10143   | 1 G3714   | 1 05/14/91 1   |
| 021W023      | 1 10144   | I G3715   | 1 05/14/91 +   |
| 031W024      | 10145     | T G3716   | tj 05714791 it |
| 041W025      | 1 10146   | T G3717   | 05/14/91       |
| 051W025D     | 1,10147   | I G3718   | 05/14/91       |
| 061WF886     | 10148     | I G3719   | 1 05/14/91     |
| 071WRB06     | 1 10149   | I G3720   | 1 05/14/91 1   |
| 1            |           | _ 1       | 1              |

LOMMENTS:

## SEMIVOLATILE METHOD BLANK SUMMARY

Lab Name: E & E INC.

Matrix: (soil/water) WATER

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: . SDG No.:

Lab File ID: G3698

Lab Sample ID: SBLKW1

Date Extracted: 05/09/91 Extraction:(SepF/Cont/Sonc) SEPF

Date Analyzed: 05/13/91

Time Analyzed: 1311

Lavel:(low/med) LOW

Instrument ID: 7002G

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| I EPA             | l LAB          | l LAB        | I DATE I     |
|-------------------|----------------|--------------|--------------|
| I SAMPLE N        | O. I SAMPLE    | ID   FILE ID | I ANALYZED I |
|                   | ===   ======== |              |              |
| 011W021           | 1 10143        | G3714        | 1 05/14/91 1 |
| 021W023           | 1 10144        | / G3715      | 1 05/14/91 1 |
| 031W024           | 1 10145        | G3716        | 05/14/91     |
| 04:W025           | 10146          | I G3717      | 05/14/91     |
| 05   W0250        | 10147          | : G3718      | 1 05/14/91 1 |
| 061WFB06          | 1 10148        | I G3719      | : 05/14/91 [ |
| 071WR <b>80</b> 6 | 1 10149        | 1 G3720      | 1 05/14/91 ( |
| l                 |                | <u> </u>     |              |

COMMENTS:

EPA SAMPLE NO.

SBLKW1

.b Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: SBLKW1

Sample wt/vol: 1000 (g/mL) ML Lab File ID: G3698

Level: (low/med) LOW Date Received:

% Moisture: not dec. dec. Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 05/13/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

|    | CAS NO.    | COMPOUND                           |            | ATION UNITS:<br>ug/Kg) UG/L |      | Q   |   |
|----|------------|------------------------------------|------------|-----------------------------|------|-----|---|
| Í  |            |                                    |            | 1                           |      | 1   | 1 |
| t  | 108-95-2   | -Pheno I                           |            | !                           | 10   | נוו | - |
| 1  | 111-44-4   | -bis(2- <mark>Chloroethyl</mark> ) | Ether      |                             | 10   | LU  | i |
| 1  | 95-57-8    | -2-Chlarophenal <u> </u>           |            |                             | 10   | ΙU  | ţ |
| 1  | 541-73-1   | -1,3-Dichlarobenzer                | \e         | <u> </u>                    | 10   | ل ا | i |
| 1  | 106-46-7   | -1,4-Dichlorobe <mark>nze</mark> r | ne         |                             | 10   | LII | } |
| ŧ  | 100-51-6   | -Benzyl Alcohol                    |            |                             | 10   | IЦ  | İ |
| 1  | 95-50-1    | -1,2-Dichlorobenzer                | 1e         |                             | 10   | ١U  | ł |
| 1  | 95-48-7    | -2-Methylphenol                    |            | !                           | 10   | נוו |   |
| 1  | 39638-32-9 | -bis(2-Chloroisopro                | opyl)Ether | r!                          | 10   |     | 1 |
| 1  | 106-44-5   | -4-Methylphenol                    |            | i                           | 10   | LI  | 1 |
| i  | 621-64-7   | -N-Nit <b>r</b> oso-Di-n-Pro       | pylamine,  | 1                           | 10   | IU  | 1 |
| 1  | 67-72-1    | -Hexachlorcethane                  |            |                             | 10   |     | 1 |
| į  | 98-95-3    | -Nitrobenzene                      |            |                             | 10   | ΙIJ | 1 |
| į  | 78-59-1    | -Isophorone                        |            |                             | 10   | ru_ | 1 |
| 1  | 88-75-5    | -2-Nitrophenol                     |            |                             | 10   | 11  | 1 |
| l  | 105-67-9   | -2,4-Dimethylphenol                |            | 1                           | 10   | 111 | ţ |
| 1  | 65-85-0    | -Benzoic Acid                      |            | 1                           | 50   | I U | 1 |
| 1  | 111-91-1   | -bis(2-Chloroethoxy                | )Methane   | <b> </b>                    | 10   | 1 🗆 | 1 |
| 1  | 120-83-2   | -2,4-Dichlorophenol                | ·          | 1                           | 10   | ١U  | j |
| ţ  | 120-32-1   | -1,2,4-Trichloroben                | zene       | I                           | 10   | IU  | 1 |
| ł  | 91-20-3    | -Naphthalene                       |            | 1                           | 10   | 14  | ! |
| ł  | 196-4/-8   | -4-Chloroaniline                   |            |                             | 10   | IJ  | 1 |
| -  | 87-68-3    | -Hexachlorobutadien                | e          |                             | 10   | 1 🖰 | 1 |
|    |            | -4-Chloro-3-Methylp                |            |                             | 10   | ł U | 1 |
| İ  | 91-57-6    | -2-Methylnaphthalen                | e          |                             | 10   | l U | ĺ |
| 1  | 77-47-4    | -Hexachlorocyclopen                | itadiene_  | t                           | 10   | 10  | 1 |
| 1  | 88-06-2    | -2,4,6-Trichĺorophe                | no l       | 1                           | 10   | IU  | i |
| ţ  | 95-95-4    | -2,4,5-Trichlorophe                | nol        |                             | 50   | IJ  | 1 |
|    |            | -2-Chloronaphthalen                |            |                             | 10   | ŧυ  | 1 |
| 1  | 88-74-4    | -2-Nitroaniline                    |            |                             | 50 ° | ΙU  | 1 |
| 1  | 131-11-3   | -Dimethyl Phthalate                |            |                             | 10   | l U | 1 |
| 1  |            | -Acenaphthylene                    |            |                             | 1 ü  | IU  | l |
| 1  | 606-20-2   | -2,6-Dinitrotoluene                |            |                             | 10   | 10  | 1 |
| 1_ |            |                                    |            | t                           |      | 1   |   |

|   | EPA                                   | SAMPLE | NO. |   |
|---|---------------------------------------|--------|-----|---|
| 1 | · · · · · · · · · · · · · · · · · · · |        |     | ł |
| 1 | SBL                                   | _KW1   |     |   |

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: SBLKW1

Sample wt/vol:

1000 (g/mL) ML

Lab File ID: G3698

Lavel: (low/med) LOW

Date Received:

% Maisture: not dec. dec.

Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed: 05/13/91

GPC Cleanup: (Y/N) N

pH:

Dilution Factor: 1.0

CONCENTRATION UNITS:

|     | CAS NG.   | COMPOUND:                          |            | ug/Kg) UG/L                           |     | Q    |    |
|-----|-----------|------------------------------------|------------|---------------------------------------|-----|------|----|
| ŧ   |           |                                    |            | 1                                     |     | 1    | ŀ  |
|     | 99-09-2   | -3-Nitroaniline                    |            |                                       | 5 O | 1 📙  | į  |
| į   | 33-32-9   | -Acenachthene                      |            |                                       | 10  |      | ļ  |
| ì   | 51-28-5   | -2,4-Dinitrophenol_                |            |                                       | 50  | l U  | į  |
| ţ   | 100-02-7  | -4-Nitrophenol                     |            | 1                                     | 50  | !  _ | 1  |
|     | 132-64-9  | -Dibenzofuran                      |            |                                       | 10  | 111  | -  |
| i   | 121-14-2  | -2,4-Dinitrotoluene                |            |                                       | 10  | i U  | i  |
| i   | 84-66-2   | -Diethylphthalate_                 |            | 1                                     | 10  | IIJ  | l  |
| 1   | 7005-72-3 | -4-Chlorophenyl-phe                | inylether. |                                       | 10  | IU   | 1  |
| -   | 86-73-7   | -Fluorene                          |            |                                       | 10  | ΙU   | 1  |
| į   | 100-10-6  | -4-Nitroaniline                    |            |                                       | 5 D | نا ا | İ  |
| 1   | 534-52-1  | -4,6-Dinitro-2-Meth                | ylphenol,  |                                       | 50  | !  _ | 1  |
| 1   | 86-30-6   | -N-Nitrosodiphenyla                | mine $(1)$ |                                       | 10  | IU   | 1  |
| 1   | 101-55-3  | -4-Bromophenyl-pher                | ylether_   |                                       | 10  | ١١:  | •  |
| 1   | 118-74-1  | -Hexachlorobenzene_                |            |                                       | 10  | 111  | 1  |
| 1   | 87-86-5   | -Pentachlorophenol_                |            | 1                                     | 50  | 14   | 1  |
| 1   | 35-01-8   | -Phenanthrene                      |            |                                       | 10  | ΙU   | ļ  |
| 1   | 120-12-7  | -Anthracene                        |            | 1                                     | 10  | IU   | 1  |
| I   | 84-74-2   | -Di-n-Butylphthalat                | e          |                                       | 10  | 111  | ł  |
| Į   | 206-44-0  | -Fluoranthene                      |            |                                       | 10  | 14   | 1  |
| ļ   | 129-00-0  | -Pyrene                            |            |                                       | 10  | IU   | 1  |
|     |           | -Butylbenzylphthala                |            |                                       | 10  | 111  | l  |
| ļ   | 91-94-1   | -3,3°-Dichlorobenzi                | dine       | · · · · · · · · · · · · · · · · · · · | 20  | l U  | 1  |
| 1   | 56-55-3   | -Benzo (a)Anthracene               | -          |                                       | 10  | ١U   | 1  |
| 1   | 218-01-9  | -Chrysene                          |            |                                       | 10  | IU   | 1  |
| 1   | 117-81-7  | -bis(2-Ethylhexyl)F                | hthalate_  | [                                     | 4   | 1.0  | 1  |
| ŧ   | 117-84-0  | -Di-n-Octyl Phthala                | te         | 1                                     | 10  | IU   | 1  |
| ı   | 205-99-2  | -Benzo(b)Fluoranthe                | ne         |                                       | 10  | IU   | 1  |
| 1   | 207-08-9  | -Benzo(k)Fluoranthe                | ne         | {                                     | 10  | IU   | 1  |
| ł   | 50-32-8   | -Benzo(a)Pyrene                    |            |                                       | 10  | ١U   | 1  |
| 1   | 193-39-5  | -Indena(1,2,3-cd)Py                | rene       |                                       | 10  | ١U   | 1  |
| 1   | 53-70-3   | -Dibenz(a,h)Anthrac                | ene        |                                       | 10  | IU   | 1  |
| 1   | 191-24-2  | -Benzo(g,ĥ,i)Peryle                | ne         |                                       | 10  | IN   | 1  |
| -1, |           |                                    |            | <u> </u>                              |     | _ I  | _1 |
| *   | 1 )       | and an all the contract to the bar | 1          |                                       |     |      |    |

<sup>(1) -</sup> Cannot be separated from Diphenylamine

#### 15

### SEMIVULATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SBLKW1

ی Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 9101\_052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: SBLKW1

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: 63698

Lavel: (low/med) LOW

Date Received:

% Moisture: not dec.

dec.

Date Extracted: 05/09/91

Extraction: (SepF/Cont/Sono) SEPF

Date Analyzed: 05/13/91

GPC Cleanup: (Y/N) N pH:

Dilution Factor: 1.0

CONCENTRATION UNITS:

Number TICs found: 5

(ug/L or ug/Kg) US/L

| !   | CAS NUMBER | I COMPO  | UND NAME ! | RT    | i EST.  | CCMC.  | : 0           | 1        |
|-----|------------|----------|------------|-------|---------|--------|---------------|----------|
| :=: |            | TONKNOWN | <b></b> ;  | 9,26  | ======= | <br>41 | :!====<br>::J | = {<br>: |
| 1   | A          | LUNKNOWN |            | 9.99  | İ       | 43     | 13            | !        |
|     | <b>X</b>   | TUNKNOWN | ;          | 10.93 | (       | 10     | [,]           | :        |
|     | 4.         | HUNKHOWN | 1          | 13.97 | i       | 31     | 1.3           | :        |
| ł   | 5.         | LUNKHOWH | 1          | 27.07 | 1       | 15     | 1.3           | ÷        |
| 1   |            | ;        |            |       | 1       |        | . !           | _ '      |

## PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

W021

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 052

SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10143

Sample wt/vol:

1000

(q/mL) ML

Lab File ID:

Level: (low/med) LOW

Date Received:

05/04/91

% Maisture: not dec.

Date Extracted: 05/08/91

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed: 05/23/91

GPC Cleanup: (Y/N) N

рНҙ

dec.

Dilution Factor:

CONCENTRATION UNITS:

|     | CAS NO.    | COMPOUND                         |        | (ug/L | or ug | /Kg) | UG/L  | Q    |     |
|-----|------------|----------------------------------|--------|-------|-------|------|-------|------|-----|
| i   |            | alpha-BHC                        |        | •     |       | ı    |       | 1    | i   |
| i   | 319-84-6   | alpha-BHC                        |        |       |       | 1    | 0.050 | IU   | ł   |
| - 1 | 319-85-7   | beta-BHC                         |        |       |       | ١,   | 0.050 | ΙU   | ı   |
| 1   | <i></i>    | delta-BHC                        |        |       |       | 1    | 0.050 | ΙU   | i   |
| 1   | 58-89-9    | gamma-BHC (L                     | indane | )     |       | 1    | 0.050 | IU   | 1.  |
| 1   | 76-44-8    | Ĥeptachlor                       |        |       |       | 1    | 0.050 | IU   | 1   |
| į   | 309-00-2   | Aldrin                           |        |       |       | 1    | 0.050 | 1U   | 1   |
| i   | 1024-57-3  | Aldrin_<br>Heptachlor e          | poxide |       |       | 1    | 0.050 | IU   | 1   |
| -1  | 959-98-8   | Endosulfan I                     |        |       |       | 1    | 0.050 | IU   | ŀ   |
| 1   | 60-57-1    | Dieldrin                         |        |       |       | 1    | 0.10  | IU   | 1   |
| - [ | 72-55-9    | 4,4'-DDE<br>Endrin               |        |       |       | 1    | 0.10  | IU   | 1   |
| -   | 72-20-8    | Endrin′                          |        |       |       | 1    | 0.10  | ΙU   | 1   |
| - 1 | 33213-65-9 | Endosulfan I                     | I      |       |       | 1    | 0.10  | 10 / | 1   |
| i   | 72-54-8    | 4,4'-DDD                         |        |       |       | 1    | 0.10  | IU \ | İ   |
| 1   | 1031-07-8  | 4,4'-DDD <u></u><br>Endosulfan s | ulfate |       |       | 1    | 0.10  | IU   | l   |
| 1   | 50-29-3    | 4,4'-DDT                         |        |       |       | 1    | 0.10  | IU.  | Į.  |
| i   | 72-43-5    | Methoxychlor                     |        |       |       | ı    | 0.50  | I U  | ł   |
| 1   | 53494-70-5 | Endrin keton<br>alpha-Chlord     | e      |       |       | ł    | 0.10  | IU   | i   |
| 1   | 5103-71-9  | alpha-Chlord                     | ane    |       |       | 1    | 0.50  | IU   | ı   |
| -   | 5103-74-2  | gamma-Chlord                     | ane    |       |       | ŀ    | 0.50  | 10   | 1   |
| ł   | 8001-35-2  | Toxaphene                        |        |       |       | 1    | 1.0   | IU   | l.  |
| -   | 12674-11-2 | Aroclor-1016                     |        |       | *     | 1    | 0.50  | IU   | 1.1 |
| -   | 11104-28-2 | Aroclor-1221                     |        | _     |       | 1    | 0.50  | IU   | 1   |
| -1  | 11141-16-5 | Aroclor-1232                     | _      |       |       | 1    | 0.50  | IU   | 1   |
| ı   | 53469-21-9 | Aroclor-1242                     |        |       |       | 1    | 0.50  | IU   | l   |
| 1   | 12672-29-6 | Aroclor-1248                     |        |       |       | 1    | 0.50  | lU   | ı   |
| 1   | 11097-69-1 | Aroclor-1254                     |        |       |       | 1    | 1.0   | IU   | ì   |
| 1   | 11096-82-5 | Aroclor-1260                     |        |       |       | 1    | 1.0   | IU   | ł   |
| 1   |            |                                  |        |       |       | 1    |       | 1    | 1   |

#### 1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

W023

Lab Name: E & E INC.

Contract:

Lab Code: EANDE

Case No.: 052

SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID:

Sample wt/vol:

1000

(g/mL) ML

Lab File ID:

Level:

(low/med) LOW

Date Received:

05/04/91

10144

% Moisture: not dec.

dec.

Date Extracted: 05/08/91

Extraction:

(SepF/Cont/Sonc)

SEPF

Date Analyzed: 05/23/91

GPC Cleanup:

(Y/N) N

pH;

Dilution Factor:

1.00

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kq) UG/L

| 319-84-6----alpha-BHC\_ 0.05010 | 319-85-7----beta-BHC\_ 0.050IU 319-86-8-----delta-BHC 0.050 IU | 58-89-9----qamma-BHC (Lindane)\_\_\_ 0.050IU 1 76-44-8-----Heptachlor\_\_\_\_ 0.05010 1 309-00-2-----Aldrin\_ 0.05010 1024-57-3----Heptachlor epoxide\_\_ 0.05010 959-98-8-----Endosulfan I\_ 0.0501U 1 60-57-1-----Dieldrin\_ 0.1010 1 72-55-9-----4,4'-DDE\_ 0.1010 72-20-8-----Endrin\_\_ 0.1010 33213-65-9----Endosulfan II\_ 0.1014 1 72-54-8-----4.4'-DDD\_ 0.1010 | 1031-07-8----Endosulfan sulfate\_\_\_\_\_ 0.1014 1 50-29-3-----4,4'-DDT 0.1014 72-43-5-----Methoxychlor\_ 0.5014 1 53494-70-5----Endrin ketone\_\_ 0.1010 i 5103-71-9----alpha-Chlordane\_ 0.5010 | 5103-74-2----gamma-Chlordane\_\_\_ 0.5010 1 8001-35-2----Toxaphene\_ 1.010 12674-11-2----Aroclor-1016\_ 0.5010 | 11104-28-2----Aroclor-1221\_ 0.5014 | 11141-16-5----Aroclor-1232\_ 0.5014 1 53469-21-9----Aroclor-1242\_ 0.5010 | 12672-29-6----Aroclor-1248\_ 0.5014 | 11097-69-1----Aroclor-1254\_ 1.01 | 11096-82-5----Aroclor-1260 1.014



Lab Name: E & E INC.

Contract:

Lab Code: EANDE

Case No.: 052

SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10145

Sample wt/vol:

1000

(q/mL) ML

Lab File ID:

Level:

(low/med) LOW Date Received:

05/04/91

W024

% Moisture: not dec.

dec.

Date Extracted: 05/08/91

Extraction:

(SepF/Cont/Sonc)

SEPF

Date Analyzed: 05/23/91

GPC Cleanup: (Y/N) N

pH:

Dilution Factor:

CONCENTRATION UNITS:

1.00

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q | 319-84-6----alpha-BHC 0.050IU 1 319-85-7----beta-BHC\_ 0.05010 1 319-86-8-----delta-BHC 0.05010 | 58-89-9----gamma-BHC (Lindane)\_\_\_\_ 0.0501U | 76-44-8-----Heptachlor\_\_\_\_ 0.05010 1 309-00-2----Aldrin\_ 0.050 LU | 1024-57-3-----Heptachlor epoxide\_\_\_\_\_ 0.050IU | 959-98-8-----Endosulfan | 0.050IU | 60-57-1-----Dieldrin 0.1014 1 72-55-9-----4,4'-DDE\_ 0.1010 | 72-20-8-----Endrin\_\_\_\_\_ 0.1010 1 33213-65-9-----Endosulfan II\_\_\_\_ 0.10|U\ 1 72-54-8-----4,4'-DDD\_\_ 0.1014 | 1031-07-8----Endosulfan sulfate\_\_\_\_ 0.1010 1 50-29-3-----4,4'-DDT 0.1014 1 72-43-5-----Methoxychlor\_ 0.5010 1 53494-70-5----Endrin ketone\_ 0.1010 | 5103-71-9----alpha-Chlordane\_\_ 0.5010 | 5103-74-2----gamma-Chlordane\_\_\_ 0.5010 | 8001-35-2----Toxaphene\_\_ 1.010 | 12674-11-2----Aroclor-1016 0.5010 | 11104-28-2----Aroclor-1221\_ 0.5010 | 11141-16-5----Araclar-1232 0.5010 | 53469-21-9----Aroclor-1242\_ 0.5010 1 12672-29-6----Aroclor-1248\_ 0.5010 i 11097-69-1----Aroclor-1254\_ 1.010 | 11096-82-5----Aroclor-1260\_ 1.010

### 1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

WB25

Lab Name: E & E INC.

Contract:

Lab Code: EANDE

Case No.: 052

SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10146

Sample wt/vol:

1000 (g/mL) ML

Lab File ID:

Level:

(low/med) LOW

Date Received:

05/04/91

% Moisture: not dec.

dec.

Date Extracted: 05/08/91

Extraction:

(SepF/Cont/Sonc)

SEPF

Date Analyzed: 05/23/91

GPC Cleanup:

(Y/N) N

+ 11104-28-2----Aroclor-1221\_

| 11141-16-5----Aroclor-1232

1 53469-21-9----Araclar-1242\_

| 12672-29-6----Aroclor-1248

| 11097-69-1----Araclar-1254

| 11096-82-5----Aroclor-1260

pH:

Dilution Factor:

1.00

0.501U

0.5010

0.5010

0.5010

1.010

1.010

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L | 319-84-6----alpha-8HC\_ 0.05010 1 319-85-7-----beta-BHC\_ 0.05010 1.319-86-8-----delta-BHC 0.05010 1 58-89-9----gamma-BHC (Lindane)\_\_\_ 0.0501U 1 76-44-8-----Heptachlor\_\_\_ 0.05014 1 309-00-2----Aldrin\_ 0.05010 1024-57-3----Heptachlor epoxide\_ 0.050 IU 959-98-8----Endosulfan I\_ 0.05010 1 60-57-1-----Dieldrin 0.1010 1 72-55-9-----4,4'-DDE\_ 0.1010 1 72-20-8-----Endrin\_ 0.10 U 1 33213-65-9----Endosulfan II\_ 0.1010\ 1 72-54-8-----4,4'-DDD\_ 0.1010 | 1031-07-8----Endosulfan sulfate\_\_\_\_ 0.1010 1 50-29-3-----4,4'-DDT 0.1010 72-43-5-----Methoxychlor\_ 0.5010 1 53494-70-5----Endrin ketone\_ 0.1010 1 5103-71-9----alpha-Chlordane\_ 0.5010 | 5103-74-2----gamma-Chlordane\_\_\_ 0.5010 1 8001-35-2----Toxaphene\_ 1.010 | 12674-11-2----Aroclor-1016 0.5010

#### 10 PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

W025D

Lab Name: E & E INC.

Contract:

Lab Code: EANDE

Case No.: 052

SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10147

Sample wt/vol:

1000

(g/mL) ML

Lab File ID:

Level: (low/med) LOW

Date Received:

05/04/91

% Moisture: not dec.

dec.

Date Extracted: 05/08/91

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed: 05/23/91

GPC Cleanup: (Y/N) N

i 12672-29-6----Aroclor-1248\_

| 11097-69-1----Aroclor-1254

1 11096-82-5----Aroclor-1260\_

pH:

Dilution Factor: 1.08

|   | CAS NO.    | COMPOUND                            | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L |                |     |
|---|------------|-------------------------------------|-------------------------------------------|----------------|-----|
| 1 |            |                                     |                                           |                | 1   |
| 1 | 319-84-6   | alpha-BHC                           | I                                         | 0.0501U        | i   |
| ł | 319-85-7   | beta-BHC                            | l .                                       | 0.0501U        | i   |
| 1 | 319-86-8   | delta-BHC                           |                                           | 0.0501U        | i   |
| i | 58-89-9    | gamma-BHC (Lindane                  | e)                                        | 0.0501U        | i   |
| Į | 76-44-8    | Heptachlor                          |                                           | 0.0501U        | i   |
| 1 | 309-00-2   | Aldrin                              |                                           | 0.05014        | 1   |
| - | 1024-57-3  | Heptachlor epoxide                  | el                                        | 0.0501U        | - 1 |
| ł | 959-98-8   | Endosulfan I                        |                                           | 0.0501U        | 1   |
| 1 | 60-57-1    | Dieldrin                            | 1                                         | 0.101U         | - 1 |
| 1 | 72-55-9    | 4,4'-DDE<br>Endrin<br>Endosulfan II |                                           | 0.101U         | 1   |
| - | 72-20-8    | Endrin                              |                                           | 0.1010         | ı   |
| į | 33213-65-9 | Endosulfan II                       |                                           | 0.10(U\        | ı   |
| į | 72-54-8    | 4,4'-DDD                            |                                           | 0.10IU `       | 1   |
| 1 | 1031-07-8  | 4,4'-DDD<br>Endosulfan sulfate      | <b>=</b>                                  | 0.101U         | i   |
| 1 | 50-29-3    | 4,4'-DDT                            |                                           | 0.10IU         | 1   |
| ١ | 72-43-5    | Methoxychlor                        | 1                                         | 0.501U         | - 1 |
| 1 | 53494-70-5 | Endrin ketone                       | t                                         | 0.1010         | - 1 |
| 1 | 5103-71-9  | alpha-Chlordane                     |                                           | <b>0.</b> 501U | i   |
| 1 | 5103-74-2  | gamma-Chlordane                     |                                           | 0.5010         | 1   |
| 1 | 8001-35-2  | Toxaphene                           | 1                                         | 1.01U          | 1   |
| 1 | 12674-11-2 | Aroclor-1016                        | 1                                         | 0.501U         | 1   |
| 1 | 11104-28-2 | Aroclor-1221                        | [                                         | 0.5010         |     |
| Ī | 11141-16-5 | Aroclor-1232                        |                                           | 0.5010         | 1   |
| i | 53469-21-9 | Aroclor-1242                        |                                           | 0.501U         | - 1 |

0.5010

1.010

1.010

## PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

WFB06

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 052 SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 10148

Sample wt/vol:

1000 (q/mL) ML

Lab File ID:

Level: (low/med) LOW

Date Received:

05/04/91

% Moisture: not dec.

dec.

Date Extracted: 05/08/91

Extraction: (SepF/Cont/Sonc)

SEPF

Date Analyzed: 05/23/91

GPC Cleanup: (Y/N) N

pH:

Dilution Factor:

CONCENTRATION UNITS: COMPOUND CAS NO.

(ug/L or ug/Kg) UG/L

|      |                                                   |        | щ     |
|------|---------------------------------------------------|--------|-------|
| 1    |                                                   | ı      | 1     |
| i    | 319-84-6alpha-BHC                                 | 0.0501 | u i   |
| ł    | 319-85-7beta-BHCI                                 | 0.0501 |       |
| ı    | 319-36-8delta-BHC                                 | 0.0501 |       |
| 1    | 319-86-8delta-BHC1<br>58-89-9gamma-BHC (Lindane)1 | 0.0501 |       |
| 1    | 76-44-8HeptachlorI                                | 0.0501 | Ū I   |
| 1    | 309-00-2    1                                     | 0.0501 | U I   |
| 1    | 1024-57-3Heptachlor epoxide                       | 0.0501 | U I   |
| 1    | 959-98-8Endosulfan I                              | ŭ.050l | UÌI   |
| 1    | 60-57-1Dieldrin                                   | 0.101  | U I   |
| ı    | 72-55-94,4'-DDEI                                  | 0.101  | Ū l   |
| - 1  | 72-20-8Endrin /                                   | 0.101  | U I   |
| - 1  | 33213-65-9Endosulfan II                           | 0.10 ( | U\ I  |
| ļ    | 72-54-84.4'-DDD                                   | 0.101  | u ` ı |
| 1    | 1031-07-8Endosulfan sulfate                       | 0.101  | U I   |
| I    | 50-29-34,4'-DOTI                                  | 0.101  | U I   |
| ı    | 72-43-5Methoxychlor!                              | 0.501  | U I   |
| 1    | 53494-70-5Endrin ketoneI                          | 0.101  | UI    |
| ı    | 5103-71-9alpha-Chlordane                          | 0.501  | UÌ    |
| ì    | 7207 / + E                                        | 0.501  |       |
| ı    | 8001-35-2ToxapheneI                               | 1.01   | U I   |
| ı    | 12674-11-2Aroclor-1016i                           | 0.501  | U I   |
| 1    | 11104-28-2Aroclor-1221i                           | 0.501  | u I   |
|      | 11141-16-5Aroclor-1232i                           | 0.501  | U I   |
| l    | 53469-21-9Aroclor-1242                            | 0.501  | U I   |
| 1    | 12672-29-6Aroclor-1248                            | 0.501  | U I   |
| ı    | 11097-69-1Aroclor-1254                            | 1.01   | u I   |
| ı    | 11096-82-5Aroclor-1260                            | 1.01   | U I   |
| - 1, | İ                                                 |        |       |

#### 2E WATER PESTICIDE SURROGATE RECOVERY

Lab Name: E & E INC.

Contract:

Lab Code: EANDE

Case No.: 052

SAS No.:

SDG No.:

|            |     |       |            |        |      | _   |
|------------|-----|-------|------------|--------|------|-----|
| I EPA      |     | ı     | <b>S</b> 1 | 10     | THER | 1   |
| I SAMPLE   | NO. | 10    | (DBC)      | #!     |      | 1   |
| =======    |     | -   - | = = = = =  | =   == | ==== | . [ |
| 011PBLKW5  |     | 1     | 127        | ١      | 0    | ١   |
| 021PBLKW6  |     | ı     | 112        | 1      | 0    | ١   |
| 031MSB2    |     | 1     | 124        | -      | 0    | i   |
| 041W021    |     | ı     | 51         | I      | 0    | į   |
| 05 IW023   |     | ı     | 58         | 1      | 0    | ı   |
| 061W024    | ,   | ı     | 68         | 1      | 0 .  | ı   |
| 071W025    | i   | í     | 71         | 1      | Ū    | 1   |
| 08 W025D   | ř.  | 1     | 64         | i      | Ū    | 1   |
| 091WFB06   |     | ١     | 120        | 1      | Ů.   | 1   |
| 10 WRB06   |     | 1     | 124        | 1      | 0    | ţ   |
| 11!W025DMS |     | 1     | 59         | ł      | 0    | ı   |
| I          |     | _     | •          | I      |      | _ 1 |

ADVISORY QC LIMITS

S1 (DBC) = Dibutlychlorendate

(24-154)

- # Column to be used to flag recovery values
- \* Values outside of contract required QC limits
- D Surrogates diluted out

### PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

**PBLKW6** 

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 052

SAS No.:

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 02\_632-10

Sample wt/vol:

1000

(g/mL) ML

Lab File ID:

Level: (low/med) LOW

Date Received:

% Moisture: not dec.

dec.

Date Extracted: 05/08/91

Extraction: (SepF/Cont/Sonc)

SEPF

Date Analyzed: 05/22/91

GPC Cleanup: (Y/N) N

pH:

Dilution Factor:

CONCENTRATION UNITS:

1.00

|     | CAS NO.    | COMPOUND                           | (ug/L    | or ug/ | ′Kg) UG/ | L       | Q |
|-----|------------|------------------------------------|----------|--------|----------|---------|---|
| 1   |            |                                    | •        | ı      |          | 1       | 1 |
| 1   | 319-84-6   | -alpha-BHC                         |          |        |          | 0.0501U | 1 |
| 1   | 319-85-7   | -beta-BHC                          |          | 1      |          | 0.0501U | 4 |
| - 1 | 319-86-8   | -delta-BHC                         |          |        | 1        | 0.0501U | 1 |
| ١   | 58-89-9    | -gamma-BHC (Lindane                | :)(:     | !      |          | 0.0501U | ŀ |
| 1   | 76-44-8    | -Heptachlor                        |          |        | İ        | 0.0501U | 1 |
| Í   | 309-00-2   | -Aldrin                            |          | 1      |          | 0.0501U | i |
| 1   | 1024-57-3  | -Heptachlor epoxide                | <b>:</b> | 1      |          | 0.0501U | 1 |
| -   | 959-98-8   | -Endosulfan I                      |          |        |          | 0.0501U | 1 |
| 4   | 60-57-1    | -Dieldrin                          |          | i      |          | 0.1010  | 1 |
| 1   | 72-55-9    | -4,4'-DDE                          |          |        |          | 0.1010  | 1 |
| - 1 | 72-20-8    | -Endrin                            |          |        |          | 0.1010  | ļ |
| 1   | 33213-65-9 | -Endosulfan II                     |          | l      |          | 0.1010  |   |
| 1   | 72-54-8    | -4,4'-DDD<br>-Endosulfan sulfate   |          |        |          | 0.101U  | 1 |
| 1   | 1031-07-8  | -Endosulfan sulfate                |          |        |          | 0.1010  | ı |
| 1   | 50-29-3    | -4,4'-DDT                          |          |        | •        | 0.1014  | ŀ |
| 1   | 72-43-5    | -Methoxuchlor                      |          |        |          | 0.501U  | ı |
| - 1 | 53494-70-5 | -Endrin ketone<br>-alpha-Chlordane |          |        |          | 0.101U  | ļ |
| i   | 5103-71-9  | -alpha-Chlordane                   |          |        | ,        | 0.5014  | 1 |
| 1   | 5103-74-2  | -gamma-Chlordane                   |          | I      |          | 0.50IU  | 1 |
| 1   | 8001-35-2  | -Toxaphene                         |          |        |          | 1.014   | 1 |
| 1   | 12674-11-2 | -Aroclor-1016                      |          | 1      |          | 0,501U  | 1 |
| 1   | 11104-28-2 | -Aroclor-1221                      |          | !      | •        | 0.501U  | I |
| ł   | 11141-16-5 | -Aroclor-1232                      |          |        |          | 0.501U  | ł |
| 1   | 53469-21-9 | -Aroclor-1242                      |          | 1      |          | 0.5014  | 1 |
| 1   | 12672-29-6 | -Aroclor-1248                      |          | 1      |          | 0.5010  | 1 |
| -   | 11097-69-1 | -Aroclor-1254                      |          | 1      |          | 1.014   | 1 |
| 1   | 11096-82-5 | -Aroclor-1260                      |          |        |          | 1.014   | 1 |
| 1   |            |                                    |          | 1      |          | i       | 1 |

### PESTICIDE METHOD BLANK SUMMARY

Lab Name: E & E INC.

Contract:

Lab Code: EANDE

Case No.: 052

SAS No.:

SDG No.:

Lab Sample ID: 01\_632-10

Lab File ID:

Matrix: (soil/water) WATER

Level:(low/med)

LOW

Date Extracted:

05/08/91

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed (1): 05/22/91

Date Analyzed (2):

Time Analyzed (1): 2055

Time Analyzed (2):

Instrument ID (1): 6000\_2A

Instrument ID (2):

GC Column ID (1): OV-1

GC Column ID (2):

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| I EPA                                   | I LAB         | I DATE I DATE I          |
|-----------------------------------------|---------------|--------------------------|
| I SAMPLE NO.                            | I SAMPLE ID   | TANALYZED 1TANALYZED 21  |
| *====================================== | -   -         | _   =========   ======== |
| 01 MSB2                                 | i 3121_632-10 | 1 05/22/91 1             |
| 021W021                                 | 1 10143       | 1 05/23/91               |
| 031W023                                 | 1 10144       | 1 05/23/91 1             |
| 041W024                                 | l 10145       | 1 05/23/91               |
| 051W025                                 | 1 10146       | 1 05/23/91 1             |
| 061W025D                                | 1 10147       | 1 05/23/91               |
| 071WFB06                                | 1 10148       | U5/23/91                 |
| 09 WRB06                                | 1 10149       | 1 05/23/91 1             |
| 091W025DMS                              | 1 10147MS     | 1 05/23/91 1             |
|                                         | _1            | _                        |

COMMENTS: